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Preface

Topological condensed matter physics is a recent arrival among the disciplines of mod-
ern physics, with a distinctive and substantive nature. Its roots, however, reach far
back, to Dirac’s magnetic monopoles and strings of the early 1930s and Skyrme’s
topologically non-trivial solutions in the nonlinear sigma models of nuclear physics of
the 1960s. In the 1970s, the influx of topology into physics came in parallel in differ-
ent subdisciplines: mathematical physics, high-energy physics, and condensed matter
physics.

Much of the current importance of topological condensed matter physics derives
from exciting developments in the last half-century. These include, in the 1970s, Weg-
ner’s farsighted analysis of lattice gauge theories and the foundation of the study
of what is now known as order beyond the Landau–Ginzburg–Wilson paradigm; the
work of Kosterlitz and Thouless on the eponymous phase; Anderson’s pioneering work
on an alternative type of magnetic state of matter, the resonating valence bond li-
quids; and the seminal studies by Jackiw and Rebbi and by Su, Schrieffer, and Heeger
of solitons and topological zero modes with concomitant charge fractionalization in
one-dimensional systems.

In the 1980s, there was an outburst of developments in which topology took centre
stage in condensed matter physics, many inspired by the experimental discovery of
the integer quantum Hall effect by von Klitzing and of the fractional effect by Tsui,
Störmer, and Gossard. This was the time when the foundational concepts of Berry’s
phase and Thouless’s pumps arose, when Haldane added a topological term to field
theories of spin chains, and when Laughlin’s work on the fractional quantum Hall
effect lifted charge fractionalization to two-spatial dimensions and provided a setting
where anyon statistics could appear. The fractional quantum Hall effect also opened
the door for topological field theories to enter condensed matter physics, along with
protected edge states and the notion of topological order. These concepts and their
relation with quantum Hall physics were at the centre of an earlier Les Houches school,
‘Topological Aspects of Low-Dimensional Systems’, organized in 1998.

The field has since advanced rapidly, grown explosively, and diversified greatly. We
now have a zoo of topological phenomena—the quantum spin Hall effect, topological
insulators, Coulomb spin liquids, and non-Abelian anyonic statistics and their po-
tential application in topological quantum computing, to name but a few—as well
as an increasingly sophisticated set of concepts and methods underpinning their
understanding.

Our aim for this Les Houches Summer School was to present an overview of this
field, along with a sense of its origins and its place on the map of advances in fun-
damental physics. The school comprised a set of basic lectures (Part 1) aimed at a
pedagogical introduction of the fundamental concepts, together with more advanced
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lectures (Part 2) covering individual topics at the forefront of today’s research in
condensed matter physics.

This school was, to its date, the most sought after of the Les Houches Schools in
terms of number of applicants, which we read as evidence of the interest and relevance
of the topic to modern condensed matter physics. Its popularity forced us to reject
such a large number of suitable applicants that we decided to video-record the lectures,
which can now be viewed at the school’s website http://topo-houches.pks.mpg.de.

We thus hope that this book, along with these video recordings, will provide access
to the knowledge shared at the school to audiences from all corners of the globe—an
earnest way to express our intentions, even if geometrically imprecise!

The book starts with two conceptual presentations, by J. Moore and by B.
A. Bernevig (with T. Neupert). The former introduces topological band theory,
topological field theories, and Berry phases. The latter introduces the concepts of
topological superconductivity and of fractional excitations along with their descrip-
tion within the framework of category theory. These are followed by the lecture notes
of J. Chalker, which are oriented towards spin systems, more specifically spin liquids
and frustrated magnetism.

The physics of the quantum Hall effect, which may be viewed as a paradigm of topo-
logical condensed matter physics, was covered in several advanced lectures. A modern
view of the quantum Hall effect is provided by N. Regnault, within the framework of
entanglement spectra and advanced numerical techniques. Historical and experimen-
tal aspects of this field were covered in a short series of seminars by K. von Klitzing,
which, along with other experimental seminars, are available in video form on the
school’s website (http://topo-houches.pks.mpg.de).

The second part of the book is concerned with the advanced and more specialized
lectures. F. Wegner’s presentation provides a broad view on lattice gauge theories,
harking back to the very origins of the field in the duality construction of phase
transitions not associated with a local order parameter.

Generalizations of topological insulators due to interaction effects are the topic of
A. Vishwanath’s contribution. The topological tenfold-way classification of insulators
and superconductors, as well as a stability analysis of one-dimensional edge channels
at the boundary of two-dimensional Abelian topological phases, are presented by C.
Mudry, who also gives an introduction to Abelian bosonization.

One-dimensional lattice systems are covered by F. Pollmann’s lecture notes, where
state-of-the art numerical techniques are introduced, such as matrix product states
and their descendants. To conclude the study of one-dimensional topological systems,
F. von Oppen expands on the topic of topological superconductivity in quantum wires
and quantum chains.

The lecture notes by D. Carpentier are concerned with the transport properties
of the (D − 1)-dimensional surface states that accompany many topological phases
living in D dimensions. A particular aspect of quantum Hall systems, namely quantum
Hall ferromagnetism and its charged topological spin textures, skyrmions, is presented
within the context of a modern approach by B. Douçot.
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C. Castelnovo covers out-of-equilibrium properties in spin systems and kinetically
constrained models. The topical lectures conclude with those by A. Niemi on topology
and the physics of proteins and their folding.

All in all, we felt an acute need for a written account of the state of the field,
much of the introductory material on which is scattered among review articles in the
literature. The lecture notes collated in this volume, along with their oral deliveries,
hopefully present a reasonably complete and concise introduction to the burgeoning
field of topological condensed matter physics.

The school and the realization of this book would not have been possible with-
out generous financial support from the continuous-formation programme ‘École
thématique’ of CNRS and from the Franco-German University (DFH-UFA). Financial
support from the European Spallation Source should also be acknowledged. We would
furthermore like to thank all the participants—lecturers and students—for their stimu-
lating interactions and scientific discussions, the outcome of which is also reflected in
the present lecture notes. These interactions were favoured by the extremely pleasant
environment of the Physics Centre at Les Houches, and we would therefore also like
to acknowledge its administrative staff. Finally, we would like to most warmly thank
Titus Neupert for the portraits of the various speakers, which figure at the beginning
of their respective lecture notes.

As we were finalising these lecture notes for publication, the Nobel Prize 2016 was
awarded to Duncan Haldane, Michael Kosterlitz and David Thouless “for theoretical
discoveries of topological phase transitions and topological phases of matter”, and the
Buckley Prize 2017 of the American Physical Society to Alexei Kitaev and Xiao-gang
Wen “for theories of topological order and its consequences in a broad range of physical
systems”. We hope that this recognition will further motivate students of all ages to
learn about, and start contributing to, this exciting field of physics.

Claudio Chamon,
Mark O. Goerbig,

Roderich Moessner,
Leticia F. Cugliandolo
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Basic concepts 5

1.1 Introduction

These lectures seek to present a coherent picture of some key aspects of topological in-
sulators and the quantum Hall effect. Rather than aiming for completeness or historical
accuracy, the goal is to show that a few important ideas, such as the Berry phase and
the Chern and Chern–Simons differential forms, occur repeatedly and serve as links
between superficially different areas of physics. Non-interacting topological phases,
electrical polarization, and some transport phenomena in metals can all be understood
in a unified framework as consequences of Abelian and non-Abelian Berry phases. The
fractional quantum Hall effect is then discussed as an example of topological order, and
we introduce its description by the (Abelian) Chern–Simons topological field theory.

Some effort has been made to avoid duplicating the material covered in other Les
Houches lectures, both past and present. Readers seeking alternative approaches and
a comprehensive list of references are encouraged to consult the many review articles
on topological insulators [16, 17, 35] and the recent book by Bernevig [4]. For the
fractional quantum Hall effect, our treatment parallels closely the review article of
Wen [40], and the Les Houches notes of Girvin [14] provide an overview of the topic
that includes more physical background than we provide here.

As part of our goal is to explain the topological invariants that underlie various
topological phases, we start in Section 1.2 with some preliminaries: a few examples of
the two kinds of topology (homotopy and cohomology) that appear most frequently
in condensed matter physics and a derivation of the Berry phase formula for adiabatic
transport. No claims of rigour or completeness are made, and the book of Nakahara [30]
is a good place to start learning more; readers focused on physics content should feel
free to skip this section and refer back to it as necessary.

Section 1.3 introduces non-interacting topological phases of electrons (the integer
quantum Hall effect and topological insulators are two important examples) and re-
lated phenomena, focusing on topological aspects. The concept of the Berry phase
links these topological phases to important physical observables such as electrical
polarization and the magnetoelectric effect.

Section 1.4 discusses topological phases in interacting systems, using a field-theory
approach that starts with an example of topological terms in a conventional field the-
ory (the Haldane gap in spin systems) and then moves on to the purely topological
description of the fractional quantum Hall effect via Chern–Simons theory. Many add-
itional steps in describing Chern–Simons field theory properly can be found in the
Les Houches notes of Dunne [7]. While neither the interacting nor the non-interacting
topological phases are discussed in full detail, it is hoped that this way of presenting
them gives some practical understanding of what it means for an electronic state of
matter to be ‘topological’.

1.2 Basic concepts

1.2.1 Mathematical preliminaries

1.2.1.1 An intuitive example of global geometry and topology:
Gauss–Bonnet

You may have heard a topologist described as ‘a mathematician who can’t tell the
difference between a donut and a coffee cup’. As an example of the connections between
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geometry and topology, we start by discussing an integral that will help us classify
two-dimensional (2D) compact manifolds (surfaces without boundaries) embedded
smoothly in three dimensions. The integral we construct is ‘topologically invariant’
in that if one such surface can be smoothly deformed into another, then the two will
have the same value of the integral. The integral can’t tell the difference between the
surface of a coffee cup and that of a donut, but it can tell that the surface of a donut
(a torus) is different from a sphere. Such global integrals of geometrical quantities are
a common origin of topological quantities in physics.

We start with a bit of local geometry. Given our 2D surface in 3D, we can choose
coordinates at any point on the surface so that the (x, y, z = 0) plane is tangent to
the surface, which can locally be specified by a single function z(x, y). We choose
(x = 0, y = 0) to be the given point, so z(0, 0) = 0. The tangency condition is

∂z

∂x

∣∣∣∣
(0,0)

=
∂z

∂y

∣∣∣∣
(0,0)

= 0. (1.1)

Hence we can approximate z locally from its second derivatives:

z(x, y) ≈ 1
2

(x y)

⎛⎜⎜⎝
∂2z

∂x2

∂2z

∂x ∂y

∂2z

∂y ∂x

∂2z

∂y2

⎞⎟⎟⎠
(
x

y

)
. (1.2)

The ‘Hessian matrix’ that appears here is real and symmetric. It can be diagonalized
and has two real eigenvalues λ1, λ2, corresponding to two orthogonal eigendirections
in the (x, y) plane. The geometric interpretation of these eigenvalues is simple: their
magnitude is an inverse radius of curvature, and their sign tells us whether the surface
is curving towards or away from the positive z direction in our coordinate system. To
see why the first is true, suppose that we carried out the same process for a circle of
radius r tangent to the x axis at the origin. Parametrize the circle by an angle θ that
is 0 at the origin and traces the circle counterclockwise, i.e.

x = r sin θ, y = r(1− cos θ). (1.3)

Near the origin, we have

y = r
[
1− cos

(
sin−1 x

r

)]
= r −

(
1− x2

2r2

)
=
x2

2r
, (1.4)

which corresponds to an eigenvalue λ = 1/r of the matrix in (1.2).
Going back to the Hessian, its determinant (the product of its eigenvalues, λ1λ2)

is called the Gaussian curvature and has a remarkable geometric significance. First,
consider a sphere of radius r, which at every point has λ1 = λ2 = 1/r. Then we can
integrate the Gaussian curvature over the sphere’s surface:∫

S2
λ1λ2 dA =

4πr2

r2
= 4π. (1.5)
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Beyond simply being independent of radius, this integral actually gives the same value
for any compact manifold that can be smoothly deformed to a sphere.

However, we can easily find a compact manifold with a different value for the inte-
gral. Consider the torus made by revolving the circle in (1.3), with r = 1, around the
axis of symmetry x = t, y = −1, z = 0, with −∞ < t <∞. To compute the Gaussian
curvature at each point, we sketch the calculation of the eigenvalues of the Hes-
sian as follows. One eigenvalue is around the smaller circle, with radius of curvature
r: λ1 = 1/r = 1. Then the second eigenvalue must correspond to the perpendicu-
lar direction, which has a radius of curvature that depends on the angle θ around
the smaller circle (we keep θ = 0 to indicate the point closest to the axis of sym-
metry). The distance from the axis of symmetry is 2− cos θ, so we might have guessed
λ2 = (2− cos θ)−1, but there is an additional factor of cos θ that appears because of
the difference in direction between the surface normal and this curvature. So our guess
is that

λ2 = − cos θ
2− cos θ

. (1.6)

As a check and to understand the sign, note that this predicts a radius of curvature
1 at the origin and other points closest to the symmetry axis, with a negative sign in
the eigenvalue indicating that this curvature is in an opposite sense as that described
by λ1. At the top, the radius of curvature is 3 and in the same sense as that described
by λ1, and on the sides, λ2 vanishes because the direction of curvature is orthogonal
to the tangent vector.

Now we compute the curvature integral. With φ the angle around the symmetry
axis, the curvature integral is∫

T 2
λ1λ2 dA =

∫ 2π

0

dθ

∫ 2π

0

(2− cos θ) dφλ1λ2

=
∫ 2π

0

dθ

∫ 2π

0

dφ (− cos θ) = 0.

(1.7)

Again this zero answer is generic to any surface that can be smoothly deformed to
the torus. The general result (the Gauss–Bonnet formula) of which the above are
examples is ∫

S

λ1λ2 dA = 2πχ = 2π(2− g), (1.8)

where χ is a topological invariant known as the Euler characteristic and g is the
genus, essentially the number of ‘holes’ in the surface.1 For a compact manifold with
boundaries, the Euler characteristic becomes 2− 2g − b, where b is the number of

1 A good question is why we write the Euler characteristic as 2 − 2g rather than 1 − g; one way to
motivate this is by considering polygonal approximations to the surface. The discrete Euler charac-

teristic V − E + F , where V , E, and F count vertices, edges, and faces, respectively, is equal to χ.

For example, the five Platonic solids all have V − E + F = 2.
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boundaries: one can check this by noting that by cutting a torus, one can produce two
discs (by slicing a bagel) or alternatively a cylinder with two boundaries (by slicing a
Bundt cake).

More generally, we will encounter several examples where a topological invariant
is expressed as an integral over a local quantity with a geometric significance. We now
turn to a simpler example in order to allow us to introduce some basic concepts of
algebraic topology.

1.2.1.2 Invariant integrals along paths in two dimensions: exact forms

As our first example of a topological property, let’s ask about making line integrals
along paths (not path integrals in the physics sense, where the path itself is integrated
over2) that are nearly independent of the precise path: they will turn out to depend
in some cases on topological properties (homotopy or cohomology). We will assume
throughout these notes, unless otherwise specified, that all functions are smooth (i.e.
C∞, meaning derivatives of all orders exist).

First, suppose that we deal with paths on some open set U in the two-dimensional
plane R2. (An open set is one for which some neighbourhood of each point in the set
is also in the set.) We consider a smooth path (u(t), v(t)), where 0 ≤ t ≤ 1 and the
endpoints may be different3. Now let f(x, y) = (p(x, y), q(x, y)) be a two-dimensional
vector field that lets us compute line integrals of this path:

W =
∫ 1

0

dt p
du

dt
+ q

dv

dt
dt, (1.9)

where p and q are evaluated at (x(t), y(t)).

Mathematical note In more fancy language, f is a differential form, a ‘1-form’ to
be precise. All that this means is that f is something we can use to form integrals
over paths that are linear and probe the tangent vector of the path. Another way to
state this, with which you may be more familiar, is that the tangent vector to a path,
which we call a ‘vector’, transforms naturally in the opposite way to the gradient of a
function, which we call a ‘covector’. To convince yourself that this is true, think about
how both transform under a linear transformation on the underlying space. We will
say a bit more about such forms in a moment.

Our first goal is to show that the following three statements are equivalent:

(a) W depends only on the endpoints (u(0), v(0)) and (u(1), v(1));
(b) W = 0 for any closed path;
(c) f is the gradient of a function g: (p, q) = (∂xg, ∂yg).

2 There are additional topological properties that emerge (‘quantum topology’) when integrals over
paths and other structures are incorporated; actually the Chern-Simons field theory that we discuss

in Section 1.4 was an important tool in the history of that field.
3 To make these results more precise, we should provide for adding one path to another by requiring

only piecewise-smooth paths and require that u and v be smooth in an open set including t ∈ [0, 1].

For additional rigour, see the first few chapters of Fulton’s book on algebraic topology [13].
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The formal language used for (c) is that f is an exact form: f = dg is the differential
of a 0-form (a smooth function) g.

Note that (c) obviously implies (a) and (b), since then W = g(u(1), v(1))− g(u(0),
v(0)). To show that (b) implies (a), suppose (b) is true and (a) is not. Then there
are two paths γ1, γ2 that have different integrals but the same endpoints. Form a new
path γ so that, as t goes from 0 to 1

2 , γ1 is traced, and then as t goes from 1
2 to 1,

γ2 is traced opposite to its original direction (now you can see why piecewise-smooth
paths are needed if one wants to be rigorous). Then this integral is non-zero, which
contradicts (b).

It remains to show that (a) implies (c). Define g(x, y) as equal to 0 at (0, 0), or
some other reference point in U if U does not include the origin. Everywhere else, set
g equal to the W obtained by integrating over an arbitrary path from (0, 0) to the
final point, which by (a) is path-independent. (If U is not connected, then carry out
this process on each connected component.) We will show that ∂xg = p, and the same
logic then implies ∂yg = q. We need to compute

∂xg = lim
Δx→0

g(x+ Δx, y)− g(x, y)
Δx

. (1.10)

We can obtain g by any path we like, so let’s take an arbitrary path to define g(x, y),
then add a short horizontal segment to that path to define the path for g(x+ Δx, y).
The value of the integral along this extra horizontal segment converges to p(x, y)(Δx),
as needed.

It turns out that the above case is simple because the plane we started with is
‘topologically trivial’. Before proceeding to look at a non-trivial example, let us state
one requirement on f that is satisfied whenever f is exact (f = dg). The fact that par-
tial derivatives commute means that, with f = dg = (p, q), ∂yp = ∂xq. We can come up
with an elegant notation for this property by expanding our knowledge of differential
forms.

Before, we obtained a 1-form f as the differential of a scalar g by defining

f = dg = ∂xg dx+ ∂yg dy. (1.11)

Note that we now include the differential elements dx, dy in the definition of f and
that 1-forms form a real vector space (spanned by dx, dy): we can add them and
multiply them by scalars. To obtain a 2-form as the differential of a 1-form, we repeat
the process: writing f = fi dxi (with x1 = x, x2 = y, f1 = p, f2 = q),

df =
∑
j

∂fi
∂xj

dxj ∧ dxi. (1.12)

where the ∧ product between differential forms satisfies the rule dxi ∧ dxj =
−dxj ∧ dxi, which implies that if any coordinate appears twice, then we get zero: dx ∧
dx = 0. For some intuition about why this anticommutation property is important,
note that in our 2D example,

df = (∂xfy − ∂yfx) dx ∧ dy, (1.13)
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so that the function appearing in df is just the curl of the 2D vector field represented
by f . So our statement about partial derivatives commuting is just the statement that
if f = dg, then df = 0, or that the curl of a gradient is zero. We label any 1-form
satisfying df = 0 a closed form. While every exact form is also closed, we will see that
not every closed form is exact, with profound consequences.

1.2.1.3 Topologically invariant integrals along paths: closed forms

As an example of non-trivial topology, we would now like to come up with an example
where integrals over paths are only path-independent in a limited ‘topological’ sense:
the integral is the same for any two paths that are homotopic, one of the fundamental
concepts of topology (to be defined in a moment). Basically, two paths are homotopic
if one can be smoothly deformed into another. Consider the vector field

f = (p, q) =
(
− y

x2 + y2
,

x

x2 + y2

)
=
−y dx+ x dy

x2 + y2
, (1.14)

where in the second step we have used our 1-form notation. This vector field is well
defined everywhere except the origin. This 1-form looks locally like the differential of
g = tan−1(y/x) (which just measures the angle in polar coordinates), but that function
can only be defined smoothly on some open sets. For example, in a disc around the
origin, the 2π ambiguity of the inverse tangent prevents us from defining g globally.

So, if we have a path that lies entirely in a region where g can be defined, then the
integral of this 1-form over the path will give the change in angle between the starting
point and end point, g(u(1), v(1))− g(u(0), v(0)). What about other types of paths,
for example, paths in R2 \ (0, 0), the 2D plane with the origin omitted, that circle the
origin and return to the starting point? We can still integrate using the 1-form f , even
if it is not the gradient of a scalar function g, and will obtain the value 2πn, where
n is the ‘winding number’, a signed integer that describes how many times the closed
path (u(t), v(t)) circles the origin as t goes from 0 to 1.

Now this winding number does not change as we make a small change in the
closed path, as long as the path remains in R2 \ (0, 0). What mathematical property
of f guarantees this? We have seen that any exact 1-form (the differential of a scalar
function) is also closed. While f is not exact, we can see that it is closed:

df =
(
∂x

x

x2 + y2

)
dx ∧ dy +

(
∂y

−y
x2 + y2

)
dy ∧ dx

=
2− 2
x2 + y2

dx ∧ dy = 0.

(1.15)

In other words, (−y, x)/(x2 + y2) is curl-free (‘irrotational’), while (−y, x) has constant
non-zero curl. Now suppose that we are given two paths γ1 and γ2 that differ by going
in different ways around some small patch dA in which the 1-form remains defined.
The difference in the integral of f over these two paths is then the integral of df over
the enclosed surface by Stokes’s theorem, which is zero if f is a closed form.
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So we conclude that if f is a closed form, then the path integral is path-independent
if we move the path through a region where f is always defined. For an exact form,
the integral is completely path-independent. In the case of R2 \ (0, 0), the 1-form in
(1.14) is locally but not completely path-independent. The set of closed forms and the
set of exact forms are both vector spaces (we can add and multiply by scalars), which
are typically infinite-dimensional, although their quotient as vector spaces is typically
finite-dimensional. (The quotient of a vector space A by a vector space B is the vector
space that identifies any two elements of A that differ only by an element of B.)
A basic object in ‘cohomology’ is the first de Rham cohomology group (a vector space
is by definition a group under addition):

H1(M) =
closed 1-forms on M
exact 1-forms on M

=
Z1(M)
B1(M)

. (1.16)

If you wonder why the prefix ‘co-’ appears in ‘cohomology’, there is a dual theory of
linear combinations of curves, etc., called homology, in which the differential operator
in de Rham cohomology is replaced by the boundary operator. However, while it may
be equally more basic mathematically, homology seems to crop up less frequently in
physics.

In this introductory discussion, we will focus on cohomology with real coefficients.
The first and second Chern numbers defined later and applied to topological phases are
related to elements of the even cohomology groups with integer coefficientsH2k(M,Z).
An even simpler object is the zeroth de Rham cohomology group. To understand this,
realize that a closed 0-form is one whose gradient is zero, i.e. one that is constant on
each connected component of U . There are no (−1)-forms and hence no exact 0-forms.
So the zeroth group is just Rn, where n is the number of connected components.

We can show that H1 = R for the unit circle S1 using the angle form f in (1.14), by
showing that this form (more precisely, its equivalence class up to exact forms) provides
a basis for H1. Given some other form f ′, we use the unit-circle path, parametrized
by an angle θ going from zero to 2π, to define

c =

∫ 2π

0

f ′∫ 2π

0

f

. (1.17)

Now f ′ − cf integrates to zero. We can define a function g via

g(θ) =
∫ θ

0

(f ′ − cf). (1.18)

Now g is well defined and periodic because of how we defined c, and f ′ = cf + dg,
which means that f ′ and cf are in the same equivalence class, because dg is an exact
form. We say that f ′ and f are cohomologous because they differ by an exact form.
So cf , c ∈ R, generates H1, and H1(S1) is isomorphic to R. With a little more work,
one can show that R2 \ (0, 0) also has H1 = R.
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Actually we can connect the results of this subsection to those of the previous one:
a general expression for the Euler characteristic is

χ(M) =
∑
i

(−1)i dimHi(M) =
∑
i

(−1)i dim
Zi(M)
Bi(M)

. (1.19)

The dimension of the ith cohomology group is called the ith Betti number. To be
pedantic, the Betti numbers are defined for homology rather than cohomology, but
we can use a duality relationship. There is a compact way to express the idea of
cohomology and homology that will let us introduce some notation and terminology.
If Ωr is the vector space of r-forms, and Cr is the dual space of r-chains, then the
action of the boundary operator and the differential is as follows:

←− Cr ←−−−−
[∂r+1]

Cr+1 ←−−−−
[∂r+2]

Cr+2 ←−, (1.20)

−−→ Ωr −−−−→
[dr+1]

Ωr+1 −−→
[dr+2]

Ωr+2 −−→. (1.21)

The rth cohomology group is the quotient ker dr+1/im dr, and the rth homology group
is ker ∂r/im ∂r+1.

The duality relationship is provided by Stokes’s theorem. Recall that this theorem
relates the integral of a form over a boundary to the integral of the differential of the
form over the interior. In terms of the linear operator (f, c) that evaluates the form f
on the chain c, we have the compact expression

(f, ∂c) = (df, c). (1.22)

Now we move on to a different type of topology that is perhaps more intuitive and
will be useful for our first physics challenge: how to classify defects in ordered systems.

1.2.1.4 Homotopy

What if we did not want to deal with smooth functions and calculus? An even more
basic type of topology is homotopy theory, which can be defined without reference
to calculus, differential forms, etc. Suppose that we are given a continuous map from
[0, 1] to a manifold M such that 0 and 1 get mapped to the same point; we can think
of this as a closed curve on M . We say that two such curves γ1, γ2 are homotopic if
there is a continuous function (a homotopy) f from [0, 1]× [0, 1] to M that satisfies

f(x, 0) = γ1(x), f(x, 1) = γ2(x). (1.23)

Intuitively, f describes how to smoothly distort γ1 to γ2. Now, homotopy is an
equivalence relation and hence defines equivalence classes: [γ1] is the set of all paths
homotopic to γ1. Furthermore, concatenation of paths (i.e. tracing one after the other)
defines a natural group structure on these equivalence classes: the inverse of any path



Basic concepts 13

can be obtained by tracing it in the opposite direction.4 We conclude that the equiva-
lence classes of closed paths form a group π1(M), called the fundamental group or
first homotopy group. Higher homotopy groups πn(M) are obtained by considering
mappings from the n-sphere Sn to M in the same way.

The homotopy groups of a manifold are not independent of the cohomology groups:
for example, if π1(M) is trivial, then so is the first de Rham group. The cohomology
groups are always Abelian; in general, the first de Rham group with integer coefficients
is the Abelianization of π1 (which need not be Abelian, although higher homotopy
groups are). If you are interested in further details, the result of Hurewicz gives a
relationship between higher cohomology and homotopy groups. The examples above
of R2 \ (0, 0) and S1 both have π1(M) = Z: there is an integer-valued winding number
that we can use to classify paths, and this winding number can be computed by the
angle form given above. So our 2D examples already contains the two types of topology
that occur most frequently in physics: cohomology and homotopy. We will return to
homotopy in much more detail in a moment, when we explain how it can be used to
classify topological defects such as vortices in broken-symmetry phases.

1.2.1.5 Application of homotopy to topological defects in
symmetry-breaking phases

As a direct physical application of homotopy theory, consider the notion of a ‘vortex’
in an ordered phase such as a superfluid. Such a configuration has a core where there
is no order, but far away from the core the system is always locally in an ordered state.
However, which ordered state the system is in varies smoothly as we move around the
vortex core. For a 2D defect with a point core, such as a vortex of the 2D XY model,
the vortex core is enclosed by a large real-space circle S1, and as we move around this
circle we have a map from S1 to S1, where the first circle is real space and the second
circle reflects that the ‘order-parameter manifold’ of distinct ordered configurations of
the XY model is also a circle.

The mathematical classification of topological defects has been carried out for
a variety of systems. Vortex-like defects (defects that can be circled by a loop) are
related to the group π1(M), where M is the manifold of degenerate values of the order
parameter once its magnitude has been set (for example, S1 for XY and S2 for the
Heisenberg model, where Sd is the unit sphere in d+ 1 dimensions). π1(M) is known
as the first homotopy group and is the group of equivalence classes of mappings from
S1 to M : for example, the mappings from S1 to S1 are characterized by an integer
winding number n ∈ Z, so π1(S1) = Z, while π1(S2) = 0 (the group with one element),
since any loop on the sphere is contractible to a point.

In other words, π1(M) gives the set of equivalence classes up to smooth deform-
ations of closed paths on M . Multiplication of equivalence classes in the group is
defined by concatenation of paths. The second homotopy group π2(M) classifies map-
pings from S2 to M , and describes defects circled by a sphere, such as pointlike defects

4 To be precise, one should define homotopy with reference to a particular point where paths start

and end; for a symmetric space where all points are basically equivalent, this is unnecessary.
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in 3D. For example, π2(S2) is non-zero, and there are stable point defect configurations
of Heisenberg spins (known descriptively as ‘hedgehogs’) but not of XY spins. There
can also be topological configurations that are not ‘defects’ but are not homotopic
to the identity: the most famous example is the skyrmion configuration of a uniaxial
ferromagnet in 2D, where all spins at infinity point in the same direction and the spin
direction moves in the plane in such a way as to cover the sphere once. Shankar’s
monopoles and other defect-free configurations in 3D are related to the group π3.

There is a considerable technology built up for the calculation of homotopy groups
of general order-parameter manifolds M = G/H, whose elements are cosets of the
residual symmetry group H, i.e. any symmetries that survive in the ordered phase,
in the high-temperature symmetry group G. For example, for a uniaxially ordered
Heisenberg ferromagnet, G = SO(2) andH = SO(3), so indeedM = S2 as anticipated
earlier. The advent of complicated ordered states in systems such as liquid crystals
and spinor condensates stimulated the development of the techniques described in the
Review of Modern Physics article by Mermin [25].

1.2.2 Berry phases in quantum mechanics

We now turn to a beautiful geometric property of quantum mechanics that was
understood relatively recently: the geometric or Berry phase. The connection to the
Gauss–Bonnet theorem we mentioned earlier is as follows. Curvature is a property
of Riemannian manifolds, which have a (real) inner product defined on the tangent
space at each point.5 This inner product varies smoothly from point to point, which
allows us to define a number of important concepts, including parallel transport and
curvature.

Frequently in quantum mechanics, we have, instead of a tangent space, a Hilbert
space (including a Hermitian inner product) that varies smoothly from point to point
in parameter space. Hence one can think of the Berry-phase objects we are about
to define as really quite similar to curvature and related properties on Riemannian
manifolds, except that the Berry phase does not come from the intrinsic geometry of
the manifold of parameters but rather is related to how the attached Hilbert space
evolves as parameters change.

An important result from undergraduate quantum mechanics is the ‘adiabatic ap-
proximation’. Suppose that a system is prepared in a non-degenerate eigenstate of a
time-dependent Hamiltonian H. For later reference, we will write H as a function of
some parameters λi that depend on time: H(t) = H(λ1(t), λ2(t), . . .). If the eigenstate
remains non-degenerate, then the adiabatic approximation is the result that if the
Hamiltonian changes slowly in time (how slowly depends primarily on the energy gap
between adjacent eigenstates), then there are no transitions between eigenstates.

This approximation, even when correct, only gives part of the story: it describes
the probability to remain in the eigenstate that evolved from the initial eigenstate, but

5 The combination of a differentiable manifold and its tangent space at each point is the ‘tangent

bundle’, the simplest example of a vector bundle, an attachment of a vector space to each point of a

manifold.
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there is actually non-trivial information in the phase of the final state as well. This
result may seem quite surprising because the overall phase in quantum mechanics is
in general independent of observable quantities. However, the Berry phase from an
adiabatic evolution is observable: for example, one system can be taken around a
closed path in parameter space, while another system initially identical to the first
can be taken around a different path, or the null path; an interference experiment on
the final states will reveal the Berry phase. The first example of this type of geometric
phase in physics was found more than 50 years ago by Pancharatnam in an optical
example, but Berry’s classic paper of 1984 was the first to explain the concept in its
full generality.

Berry’s result for a closed path is relatively simple to state, but some careful
thought is required to understand and derive it. In moving a system adiabatically
around a closed path in parameter space, the final wavefunction is in the same eigen-
state as the initial one (again, under the assumptions of the adiabatic approximation
as stated above), but its phase has changed:

|ψ(tf )〉 = exp
[
− i

�

∮ tf

ti

E(t′) dt′
]
eiγ |ψ(ti)〉. (1.24)

Here E(t′) means the corresponding eigenvalue of the Hamiltonian at that time, and
γ is the Berry phase, expressed as an integral over a path in parameter space with no
time dependence:

γ = i

∫
〈ψ̃(λi)|∇λ|ψ̃(λi)〉 · dλ. (1.25)

Note that there are two different wavefunctions ψ and ψ̃ in the above formulas. ψ(t) has
a time argument and means the wavefunction of the system at that time. The ‘reference
wavefunction’ ψ̃(λi) has a parameter argument and indicates the wavefunction we have
chosen of the Hamiltonian for that value of the parameters, which we assume to be
smoothly varying6 A key assumption of the following derivation is that there is some
smooth choice of the ψ̃(λi) throughout a surface in parameter space with the loop as
boundary.

For an open path, we need to describe the phase of the wavefunction relative to
this reference set, so the expression becomes more complicated (for the closed path,
we could simply compare the initial and final wavefunctions, without needing the
reference set at these points). We will show that, assuming ψ(ti) = ψ̃(λ(ti)) so that

6 A smooth choice of reference wavefunctions is always possible locally but not possible globally, as
in the example of a spin- 1

2
particle moving in a Zeeman magnetic field. Computing the Berry phase

in this example is a nice exercise for the reader, and also physically useful: in making a path integral
for a quantum spin, one needs to include a term that reflects the Berry phase of the path in time

(either real or imaginary), and we will use this in Section 1.4. A pedagogical derivation of this path

integral including the Berry phase is in the book of Auerbach [2].
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the initial wavefunction is equal to the reference state at the corresponding value of
parameters,

〈ψ̃(λi(t))|ψ(t)〉 = exp
[
− i

�

∫ t

0

E(t′) dt′
]
eiγ ≡ eiθ(t), (1.26)

i.e. the Berry phase appears as an extra contribution, beyond the expected contribution
related to the energy, when comparing the actual time-dependent evolved state ψ(t)
with the reference state at the same point in parameter space λi(t). We write θ(t)
for the total phase including both energetic and Berry contributions. We can take the
time derivative using the time-dependent Schrödinger equation

i�
∂ψ

∂t
= H(t)ψ. (1.27)

The first two quantities in (1.26) agree initially from our choice of the phase of ψ(ti).
The time derivative of the leftmost is

〈ψ̃(λi(t))|
−iE(t)

�
|ψ(t)〉+

dλj
dt
〈∂λj

ψ̃(λi(t))|ψ(t)〉, (1.28)

Since eiθ(t) = 〈ψ(λi(t))|ψ(t)〉, this gives

i∂tθ(t) = i

(
d

dt
eiθ(t)

)
(−ie−iθ(t))

=
[
−iE(t)

�
〈ψ̃(λi(t))|+

dλj
dt
〈∂λj

|ψ̃(λi(t))|
]
|ψ(t)〉〈ψ(t)|ψ̃(λi(t))〉,

(1.29)

and this is satisfied if we set (note that for E we do not need to distinguish between
time and λ dependence)

∂tθ(t) = −E(t)
�

− idλj
dt
〈∂λj

ψ̃(λi(t))|ψ̃(λi(t))〉, (1.30)

which is our desired conclusion. We have used the fact that ψ and ψ̃ differ only by a
phase factor, since they describe the same non-degenerate state, to eliminate |ψ〉〈ψ|.

The ‘Berry connection’ or ‘Berry vector potential’ Aj = i〈ψ(λi)|∂λj
ψ(λi)〉 is real,

which follows from noting that ∂λj
〈ψ̃((λi)|ψ̃(λi)〉 = 0 by constancy of normalization. It

is required for a non-zero Berry phase that H evolve in such a way that the wavefunc-
tion changes by more than just a phase, so that that the evolution of the wavefunction
is more than just a simple phase factor, even though the actual rate of change in H
drops out and only the path taken by H enters the Berry phase.

Now one can ask whether the Berry connection A is independent of how we
chose the reference wavefunctions (in this case, the U(1) degree of freedom in the
wavefunction at each λ). While for an open path the Berry phase is clearly not phase-
independent, it is so for a closed path—for exactly the same reasons as a closed line
integral of A is gauge-independent in electrodynamics: we can integrate the ‘Berry
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flux’ or ‘Berry curvature’ εij∂iAj (which you can check is phase-independent, just like
Fμν in electrodynamics) on the surface bounded by the path. Alternatively, we can
note that a phase change changes A by the gradient of a scalar, so that on a closed
loop there is no change.

Independent of Berry’s work and at roughly the same time, condensed matter
physicists such as Thouless were realizing that Berry phases of wavefunctions on the
Brillouin zone have the same mathematical structure as gauge fields in parameter
space, even though there is no longer a notion of time evolution. The Berry vector
potential A is a way to compare or ‘connect’ the Hilbert spaces at neighbouring
points in parameter space. The gauge-invariant or nearly gauge-invariant quantities
constructed from A and its derivatives control a variety of physical quantities. For the
specific case of wavefunctions on the Brillouin zone, we will see that A is intimately
related to the location of the wavefunctions within the unit cell in real space.

To get some geometric intuition for what the Berry phase means in general, we
explain why the Berry connection A is called a connection, and the flux F is sometimes
called a curvature. A connection is a way to compare vector spaces that are attached
to different points of a manifold, forming a ‘vector bundle’. In our case, there is a one-
dimensional complex vector space attached at each point in parameter space, spanned
by the local eigenstate. The inner product lets us compare vectors at the same point
in parameter space, but the Berry connection appears when we try to compare two
vectors from slightly different points.

An example we used above of a real vector bundle is the ‘tangent bundle’ to a
Riemannian manifold (say, a sphere), made up of tangent vectors at each point, which
have a dot product corresponding to the inner product in quantum mechanics. The
connection in this case, which gives rise to ‘parallel transport’ of tangent vectors, is
related to the same curvature that we previously discussed with the Gauss–Bonnet
theorem. Consider an aeroplane moving around the surface of the Earth and carrying
a gyroscope that is fixed to lie in the tangent plane to the Earth’s surface (i.e. free to
rotate around the normal axis to the tangent plane). If the aeroplane follows a great
circle, then it will appear to be going straight ahead to a passenger on board, and the
gyroscope will not rotate relative to the plane’s axis.

However, if the aeroplane follows a line of latitude other than the equator, or any
other path that is not a ‘geodesic’ (see a differential geometry text for details), it will
feel constantly as though it is turning, and the gyroscope will appear to rotate relative
to the aeroplane’s direction. After going around a closed path in the aeroplane, the
gyroscope may have rotated compared with a stationary gyroscope (the same physics
that underlies Foucault’s pendulum). As an exercise, you can work out that the total
angle of rotation in circling a line of latitude is 2π sin(φ), where φ is the latitude. At
the equator this gives no rotation, while at the north pole it gives a 2π rotation. This
is a geometrical version of the same idea of holonomy (failure of a gyroscope to return
to its initial direction) that underlies the Berry phase.

Note that a vector potential in a gauge theory and the associated Wilson loop are
also examples of the concept of holonomy in a (now complex) vector bundle. The U(1)
Berry phase described above generalizes immediately to a non-Abelian U(N) Berry
phase when there are degenerate states or the energy differences between states are
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irrelevant, which has some important applications in condensed matter physics that
have only recently been discovered. Our primary mathematical objects later in this
chapter will be properties of the wavefunctions on the Brillouin zone, which form a
Hermitian bundle (a smoothly varying Hilbert space) on the d-dimensional torus.

One reason for introducing the idea of cohomology above was to give a sense of the
mathematical structures hiding in the background of the simple calculations we do:
to pick one example, the integral physicists do to calculate the Chern number, which
determines the contribution of a filled 2D band to the quantum Hall effect, would be
viewed by a mathematician as using the first Chern form to classify smooth complex
line bundles on the Brillouin zone, and the group of line bundles under tensor products
is isomorphic to the second cohomology class with integer coefficients. However, our
hope is that the physical examples we discuss will be readily comprehensible even for
readers not terribly excited about algebraic technology.

1.3 Topological phases: Thouless phases arising from Berry phases

The integer quantum Hall effect (IQHE) has the remarkable property that, even at
finite temperature in a disordered material, a transport quantity is quantized to re-
markable precision: the transverse (a.k.a. Hall) conductivity is σxy = ne2/h, where n
is integral to 1 part in 109. This quantization results because the transport is deter-
mined by a topological invariant, as stated most clearly in the work of Thouless and
collaborators. Consequently, we use the term ‘Thouless phases’ for phases where a
response function is determined by a topological invariant.

In the cases we discuss, including the recently discovered ‘topological insulators’
and quantum spin Hall effect (QSHE), this topological invariant results from integra-
tion of an underlying Berry phase. It turns out that the Berry phase can be rather
important even when it is not part of a topological invariant. In crystalline solids, the
electrical polarization, the anomalous Hall effect, and the magnetoelectric polarizabil-
ity all derive from Berry phases of the Bloch electron states, which are introduced in
the following subsection. We will avoid the conventional textbook presentation of the
IQHE in terms of Landau levels of a continuum electron. As we will use Landau levels
when we discuss the fractional quantum Hall effect later, readers who are unfamiliar
with the IQHE may wish to learn the standard treatment (see e.g. [14]) and compare
it with the approach using Bloch electrons below. The connection between the two
can be made precise in the limit of small flux per unit cell, when a flat magnetic Bloch
band becomes equivalent to a Landau level.

1.3.1 Bloch states

One of the cornerstones of the theory of crystalline solids is Bloch’s theorem for elec-
trons in a periodic potential. We will demonstrate this in the following form: given a
potential invariant under a set of lattice vectors R, V (r + R) = V (r), the electronic
eigenstates can be labelled by a ‘crystal momentum’ k and written in the form

ψk(r) = eik·ruk(r), (1.31)
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where the function u has the periodicity of the lattice. Note that the crystal momentum
k is only defined up to addition of reciprocal lattice vectors, i.e. vectors whose dot
product with any of the original lattice vectors is a multiple of 2π.

We give a quick proof of Bloch’s theorem in one spatial dimension, then consider
the Berry phase of the resulting wavefunctions. A standard fact from quantum mech-
anics tells us that, given two Hermitian operators that commute, we can find a basis of
simultaneous wavefunctions. In the problem at hand, we have a non-Hermitian oper-
ator (lattice translations by the lattice spacing a: (Tψ)(x) = ψ(x+ a)) that commutes
with the Hamiltonian. It turns out that only one of the two operators needs to be Her-
mitian for simultaneous eigenstates to exist, and therefore we can find wavefunctions
that are energy eigenstates and satisfy

(Tψ)(x) = λψ(x). (1.32)

Now if the magnitude of λ is not 1, repeated application of this formula will give a
wavefunction that either blows up at spatial positive infinity or negative infinity. We
would like to find wavefunctions that can extend throughout an infinite solid with
bounded probability density, and hence require |λ| = 1. From this, it follows that
λ = eiθ, and we define k = θ/a, where we need to specify an interval of width 2π to
uniquely define θ, say [−π, π). In other words, k is ambiguous by addition of a multiple
of 2π/a, as expected. So we have shown

ψk(x+ a) = eikaψk(x). (1.33)

The last step is to define uk(x) = ψk(x)e−ikx; then (1.33) shows that uk is periodic
with period a, and ψk(x) = eikxuk(x). 7

While the energetics of Bloch wavefunctions underlies many properties of solids,
there is also Berry-phase physics arising from the dependence of uk on k that was
understood only rather recently. Note that, even though this is one-dimensional, there
is a non-trivial ‘closed loop’ in the parameter k that can be defined because of the
periodicity of the ‘Brillouin zone’ k ∈ [−π/a, π/a):

γ =
∮ π/a

−π/a
〈uk|i∂k|uk〉 dk. (1.34)

How are we to interpret this Berry phase physically, and is it even gauge-invariant?
We will derive it from scratch below, but an intuitive clue is provided if we make the
replacement i∂k by x, as would be appropriate if we consider the action on a plane
wave. This suggests, correctly, that the Berry phase may have something to do with
the spatial location of the electrons, but evaluating the position operator in a Bloch
state gives an ill-defined answer; for this real-space approach to work, we would need
to introduce localized ‘Wannier orbitals’ in place of the extended Bloch states.

7 Readers interested in more information and the 3D case can consult any solid state physics text,

e.g. Ashcroft and Mermin [1].
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Another clue to what the phase γ might mean physically is provided by asking if
it is gauge-invariant. Before, gauge-invariance resulted from assuming that the wave-
function could be continuously defined on the interior of the closed path. Here we have
a closed path on a noncontractible manifold; the path in the integral winds around the
Brillouin zone, which has the topology of the circle. What happens to the Berry phase
if we introduce a phase change φ(k) in the wavefunctions, |uk〉 → e−iφ(k)|uk〉, with
φ(π/a) = φ(−π/a) + 2πn, n ∈ Z? Under this transformation, the integral shifts as

γ → γ +
∮ π/a

−π/a
(∂kφ) dk = γ + 2πn. (1.35)

So, redefinition of the wavefunctions shifts the Berry phase. This corresponds to
changing the polarization by a multiple of the ‘polarization quantum’, which in one
dimension is just the electron charge. (In higher dimensions, the polarization quan-
tum is one electron charge per transverse unit-cell area.) Physically, the ambiguity of
polarization corresponds to the following idea: given a system with a certain bulk unit
cell, there is an ambiguity in how that system is terminated and how much surface
charge is at the boundary; adding an integer number of charges to one allowed termin-
ation gives another allowed termination [37]. The Berry phase is not gauge-invariant,
but any fractional part it had in units of a is gauge-invariant. However, the above
calculation suggests that, to obtain a gauge-invariant quantity, we need to consider a
two-dimensional crystal rather than a one-dimensional one. Then integrating the Berry
curvature, rather than the Berry connection, has to give a well-defined gauge-invariant
quantity.

We will give a physical interpretation of γ in the next section as a 1D polarization
by relating changes in γ to electrical currents. (A generalization of this Berry phase is
remarkably useful for the theory of polarization in real, 3D materials.) In the next sec-
tion, we will understand how this 1D example is related to the 2D IQHE. Historically,
the understanding of Berry phases in the latter came first, in a paper by Thouless,
Kohmoto, den Nijs, and Nightingale [39]. They found that when a lattice is put in
a commensurate magnetic field (one with rational flux per unit cell, in units of the
flux quantum so that Bloch’s theorem applies), each occupied band j contributes an
integer

nj =
i

2π

∫
dkx dky

(
〈∂kxuj |∂kyuj〉 − 〈∂kyuj |∂kxuj〉

)
(1.36)

to the total Hall conductance:

σxy =
e2

h

∑
j

nj . (1.37)

Now we derive this topological quantity (the ‘Chern number’, expressed as an integral
over the Berry flux, which is the curl of the Berry connection Aj = i〈uj |∇kuj〉) for
the case of 1D polarization, then explain its mathematical significance.
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1.3.2 1D polarization and 2D IQHE

We start with the question of 1D polarization mentioned earlier. More precisely, we
attempt to compute the change in polarization by computing the integral of current
through a bulk unit cell under an adiabatic change:

ΔP =
∫ 1

0

dλ
dP

dλ
=
∫ t1

t0

dt
dP

dλ

dλ

dt
=
∫ t1

t0

j(t) dt. (1.38)

In writing this formula, we are assuming implicitly that there will be some definition
of dP in terms of a parameter λ of the bulk Hamiltonian. Our treatment will follow
that of Resta [37], but with a few more mathematical details in the derivation. (We
write q for 1D momentum and kx, ky for 2D momenta in the following.) We will use
Bloch’s theorem in the following form: the periodic single-particle orbitals un(q, r) are
eigenstates of

H(q, λ) =
1

2m
(p+ �q)2 + V (λ)(r). (1.39)

The current operator is

j(q) = ev(q) =
ie

�
[H(q, λ), r] =

e

m
(p+ �q) =

e

�
∂qH(q, λ). (1.40)

The current at any fixed λ in the ground state is zero, but changing λ adiabatically
in time drives a current that generates the change in polarization. To compute this
current, we need to use the first correction to the adiabatic theorem (cf. the quantum
mechanics book of Messiah [26]). Following Thouless, we choose locally a gauge in
which the Berry phase is zero (this can only be done locally and is only meaningful if
we obtain a gauge-invariant answer for the instantaneous current) and write for the
many-body wavefunction

|ψ(t)〉 = exp
[
− i

�

∫ t

E0(t′) dt′
]⎡⎣|ψ0(t)〉+ i�

∑
j �=0

|ψj(t)〉(Ej −E0)−1〈ψj(t)|ψ̇0(t)〉

⎤⎦ .
(1.41)

Here Ei(t) are the local eigenvalues and |ψj(t)〉 a local basis of reference states. The
first term is just the adiabatic expression we derived before, but with the Berry phase
eliminated with a phase rotation to ensure 〈ψ0(t)|ψ̇0(t)〉 = 0.

We want to use the above expression to write the expectation value of the current.
The ground state must differ from the excited state by a single action of the (one-
body) current operator, which promotes one valence electron (i.e. an electron in an
occupied state) to a conduction electron. Using the one-particle states, we get

dP

dλ
= 2�e Im

∑
v,c

∫
dq

2π
〈uv(q)|v(q)|uc(q)〉〈uc(q)|∂λuv(q)〉

Ec(q)−Ev(q)
. (1.42)
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For example, we wrote

〈ψj(t)|ψ̇0(t)〉 =
∑
v,c

〈uc|∂λuv〉
dλ

dt
. (1.43)

This sum involves both valence and conduction states. For simplicity, we assume
a single valence state in the following. We can rewrite the sum simply in terms of the
valence state using the first-order time-independent perturbation theory expression
for the wavefunction change under a perturbation Hamiltonian H ′ = dq ∂qH:

|∂quj(q)〉 =
∑
j �=j′

|uj′(q)〉
〈uj′(q)|∂qH(q, λ)|uj(q)〉

Ej(q)− Ej′(q)
. (1.44)

Using this and v(q) = �−1∂qH(q, λ), we obtain

dP

dλ
= 2�e Im

∑
c

∫
dq

2π
〈uv(q)|v(q)|uc(q)〉〈uc(q)|∂λuv(q)〉

Ec(q)− Ev(q)

= 2e Im
∫

dq

2π
〈∂quv(q)|∂λuv(q)〉.

(1.45)

We can convert this to a change in polarization under a finite change in parameter λ:

ΔP = 2e Im
∫ 1

0

dλ

∫
dq

2π
〈∂quv(q)|∂λuv(q)〉. (1.46)

The last expression is in 2D and involves the same type of integrand (a Berry
flux) as in the 2D TKNN formula (1.36). However, in the polarization case, there does
not need to be any periodicity in the parameter λ. If this parameter is periodic, so
that λ = 0 and λ = 1 describe the same system, then the total current run in a closed
cycle that returns to the original Hamiltonian must be an integer number of charges,
consistent with quantization of the TKNN integer in the IQHE.

If we define polarization via the Berry connection,

P = ie

∫
dq

2π
〈uv(q)|∂quv(q)〉, (1.47)

so that its derivative with respect to λ will give the result above with the Berry flux,
we note that a change of gauge changes P by an integer multiple of the charge e. Only
the fractional part of P is gauge-independent. Note that u and the Bloch Hamiltonian
are not generally periodic with the Brillouin zone, even though the energy levels and
Berry curvature are. This does not affect the calculation of topological invariants, but
it does matter for evaluating the polarization via (1.47). The relationship between
polarization in 1D, which has an integer ambiguity, and the IQHE in 2D, which has
an integer quantization, is the simplest example of the relationship between Chern–
Simons forms in odd dimension and Chern forms in even dimension. We will turn soon
to the mathematical properties of these differential forms, which in the case above (and
others to be discussed) came from the Berry phases of a band structure.
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1.3.3 Interactions and disorder: the flux trick

One might worry whether the TKNN integer defined in (1.36) is specific to non-
interacting electrons in perfect crystals. An elegant way to generalize the definition
physically, while keeping the same mathematical structure, was developed by Niu,
Thouless, and Wu [31]. This definition also makes somewhat clearer, together with
our polarization calculation above, why this invariant should describe σxy. First, note
that from the formula for the Bloch Hamiltonian in the polarization calculation above,
we can reinterpret the crystal momentum q as a parameter describing a flux threaded
through a unit cell of size a: the boundary conditions are periodic up to a phase
eiqa = eieΦ/�c. We will start by reinterpreting the non-interacting case in terms of
such fluxes, then move to the interacting case.

The setup is loosely similar to the Laughlin argument for quantization in the IQHE.
Consider adiabatically pumping a flux Φx though one circle of a toroidal system, in
the direction associated with the periodicity x→ x+ Lx, y → y. The change in this
flux in time generates an electric field pointing in the x̂ direction. Treating this flux
as a parameter of the crystal Hamiltonian, we compute the resulting change in ŷ
polarization, which is related to the y current density:

dPy
dt

= jy =
dPy
dΦx

dΦx
dt

=
dPy
dΦx

(cExLx). (1.48)

We are going to treat the polarization Py as an integral over y flux but keep Φx as a
parameter. Then [32]

Py(Φx) =
ie

2π

∫
dΦy 〈u|∂Φy

u〉 (1.49)

and we see that polarization now has units of charge per length, as expected. In
particular, the polarization quantum in the y direction is now one electronic charge
per Lx. The last step to obtain the quantization is to assume that we are justified in
averaging jy over the flux:

〈jy〉 =
〈
dPy
dΦx

〉
(cExLx)→

ΔPy
ΔΦx

(cExLx), (1.50)

where Δ means the change over a single flux quantum, ΔΦx = hc/e. So the aver-
aged current is determined by how many y-polarization quanta change in the periodic
adiabatic process of increasing the x flux by hc/e:

〈jy〉 =
e

hc

ne

Lx
(cExLx) =

ne2

h
Ex. (1.51)

The integer n follows from noting that computing dPy/dΦx and then integrating dΦx
gives just the expression for the TKNN integer (1.36), now in terms of fluxes.
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1.3.4 TKNN integers, Chern numbers, and homotopy

In this subsection, we will give several different ways to understand the TKNN integer
or Chern number described above. First, a useful trick for many purposes is to define
the Berry flux and first Chern number in a manifestly gauge-invariant way, using
projection operators. For the case of a single non-degenerate band, define Pj = |uj〉〈uj |
at each point of the Brillouin zone. This projection operator is clearly invariant under
U(1) transformations of uj . The Chern number can be obtained as

nj =
i

2π

∫
Tr [dPj ∧ Pj dPj ] , (1.52)

where ∧ is the wedge product and dPj = ∂kx
Pj dkx + ∂ky

Pj dky is a differential form
where the coefficients are operators. (Note that the wedge product in the above formula
acts only on dkx and dky.) It is a straightforward exercise to verify that this reproduces
the TKNN definition (1.36).

Then the generalization to degenerate bands, for example, is naturally studied by
using the gauge- and basis-invariant projection operator Pij = |ui〉〈ui|+ |uj〉〈uj | onto
the subspace spanned by |ui〉 and |uj〉: the index of this operator gives the total Chern
number of bands i and j. In general, when two bands come together, only their total
Chern number is defined. The total Chern number of all bands in a finite-dimensional
band structure (i.e. a finite number of bands) is argued to be zero below. Often one
is interested in the total Chern number of all occupied bands because this describes
the IQHE through the TKNN formula; because of this zero-sum rule, the total Chern
number of all unoccupied bands must be equal and opposite.

In the remainder of this subsection, we use a powerful homotopy argument of
Avron, Seiler, and Simon to show indirectly that there is one Chern number per
band, but with a ‘zero-sum rule’ that all the Chern numbers add up to zero. We will
not calculate the Chern number directly, but rather the homotopy groups of Bloch
Hamiltonians. To get some intuition for the result, we first consider the example of
a non-degenerate two-band band structure, then give the general result, which is an
application of the ‘exact sequence of a fibration’.

The Bloch Hamiltonian for a two-band non-degenerate band structure can be
written in terms of the Pauli matrices and the two-by-two identity as

H(kx, ky) = a0(kx, ky)1 + a1(kx, ky)σx + a2(kx, ky)σy + a3(kx, ky)σz. (1.53)

The non-degeneracy constraint is that a1, a2, and a3 are not all simultaneously zero.
Now we first argue that a0 is only a shift in the energy levels and has no topological
significance, i.e. it can be smoothly taken to zero without a phase transition. Similarly,
we can deform the other a functions to describe a unit vector on Z2: just as the
punctured plane R2 \ (0, 0) can be taken to the circle, we are taking punctured 3-space
to the 2-sphere via

(a1, a2, a3)→
(a1, a2, a3)√

a1
2 + a2

2 + a3
2

(1.54)

at each point in k-space.
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Now we have a map from T 2 to S2. We need to use one somewhat deep fact: under
some assumptions, if π1(M) = 0 for some target space M , then maps from the torus
T 2 →M are contractible to maps from the sphere S2 →M . Intuitively, this is because
the images of the non-contractible circles of the torus, which make it different from
the sphere, can be contracted on M . By this logic, the two-band non-degenerate band
structure in 2D is characterized by a single integer, which can be viewed as the Chern
number of the occupied band.

What is the Chern number, intuitively? For simplicity let’s consider maps from S2

to the non-degenerate two-band Hamiltonians described above. One picture is in terms
of π2(S2). An alternative picture is that a non-zero Chern number is an ‘obstruction’
to globally defining wavefunctions, in the following sense. F , the first Chern form, is
a 2-form. Let’s consider a constant non-zero F , which for the case S2 → S2 can be
viewed as the field of a monopole located at the centre of the target sphere. Locally,
it is possible to find wavefunctions giving a vector potential A with F = dA, but not
globally. (There has to be a ‘Dirac string’ passing through the surface of the sphere
somewhere.) In other words, states with non-zero Chern number have Chern forms
that are non-trivial elements of the second cohomology class: they are closed 2-forms
that are not globally exact.

The one subtle thing about this two-band model is that there is a non-trivial
invariant in three spatial dimensions, since π3(S2) = Z (the ‘Hopf invariant’). In other
words, even if the Chern numbers for the three 2D planes in this 3D structure are
zero, there can still be an integer-valued invariant.8 This map is familiar to physicists
from the fact that the Pauli matrices can be used to map a normalized complex 2-
component spinor, i.e. an element of S3, to a real unit vector, i.e. an element of S2:
ni = z†σiz. This ‘Hopf map’ is an example of a map that cannot be deformed to the
trivial (constant) map. The Hopf invariant does not generalize naturally to more than
two bands, but the Chern number does, as we now see.

Now we consider the case of a non-degenerate 2D band structure with multiple
bands, which we study using a method of Avron, Seiler, and Simon [3]. By the same
argument as in the two-band case, we would like to understand π1 and π2 of the target
space Hn×n, non-degenerate n× n Hermitian matrices. As before, we will find that π1

is zero, so maps from T 2 are equivalent to maps from S2, but the latter will be quite
non-trivial. We first diagonalize H at each point in k-space:

H(k) = U(k)D(k)U−1(k). (1.55)

Here U(k) is unitary and D(k) is real diagonal and non-degenerate. We can smoothly
distort D everywhere in the Brillouin zone to a reference matrix with eigenvalues
1, 2, . . . because of the non-degeneracy: if we plot the jth eigenvalue of D as a function
of kx and ky, then this distortion corresponds to smoothing out ripples in this plot to
obtain a constant plane.

8 The nature of this fourth invariant changes when the Chern numbers are non-zero, as shown by

Pontryagin in 1941: it becomes an element of a finite group rather than of the integers.
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The non-trivial topology is contained in U(k). The key is to note that U(k) in
the above is ambiguous: right multiplication by any diagonal unitary matrix, an elem-
ent of DU(N), will give the same H(k). So we need to understand the topology
of M = U(N)/DU(N) = SU(N)/SDU(N), where SDU(N) means diagonal unitary
matrices with determinant 1. We can compute π2 of this quotient by using the exact se-
quence of a fibration and the following facts: π2(SU(N)) = π1(SU(N)) = 0 for N ≥ 2.
These imply that π2(M) ∼= π1(SDU(N)) = Zn−1, i.e. n− 1 copies of the integers. This
follows from viewing SDU(N) as N circles connected only by the requirement that the
determinant be 1. Similarly, we obtain π1(M) = 0. We interpret these n− 1 integers
that arise in homotopy theory as just the Chern numbers of the bands, together with
a constraint that the Chern numbers sum to zero.

1.3.5 Time-reversal invariance in Fermi systems

Now we jump to 2004–2005, when it was noted that imposing time-reversal symmetry
in 2D electronic systems leads to new topological invariants. While non-zero Chern
numbers cannot be realized with time-reversal invariance, the zero-Chern-number class
gets subdivided into two pieces: ‘ordinary’ insulators that do not in general have an
edge state, and a QSHE or ‘topological insulator’ where a bulk topological invariant
forces an edge state. The topological invariant is not an integer here but rather a
two-valued or Z2 invariant.

The idea that triggered this development started from considering two copies of the
quantum Hall effect, one for spin-up electrons and one for spin-down, with opposite
effective magnetic fields for the two spins. This combination, studied early on by
Murakami, Nagaosa, and Zhang [28], for example, is time-reversal-invariant because
acting with the time-reversal operator T changes both the magnetic field direction and
the spin. Note that in a model such as this, Sz is a conserved quantum number even
though SU(2) (spin-rotation invariance) is clearly broken, as up and down spins behave
differently. Heuristically, think of the spin–orbit coupling as arising from intra-atomic
terms like L · S, and consider specifically LzSz. For an electron of fixed spin, this
coupling to the orbital motion described by Lz is just like the coupling in a constant
magnetic field, since the orbital motion Lz generates a magnetic dipole moment. In
the simplest case of a Chern number +1 state of up electrons and a Chern number −1
state of down electrons, the edge will have counterpropagating modes: for example,
up spin moves clockwise along the edge and down spin moves counterclockwise. This
turns out to be not a bad caricature of the quantum spin Hall phase in a more realistic
system: one can tell by symmetry arguments that it will have no quantum Hall effect
(i.e. αc = 0 in Ji = αcεijkEjBk), but it will have a spin Hall effect

J ij = αsεijkEk, (1.56)

where αc and αs are some numerical constants and J ij is a spin current (a current of
angular momentum i in spatial direction j.9 The appearance of the electric field rather

9 There are some challenges that arise in trying to define a spin current in a realistic physical system,

chiefly because spin is not a conserved quantity. Spin currents are certainly real and measurable in
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than the magnetic field in the quantum spin Hall equation results from the goal of
having a potentially dissipationless current equation. If dissipation provides no ‘arrow
of time’, then both sides should transform in the same way under the time-reversal
operation, which fixes the field on the right side to be E rather than B.

As an example of this ‘two copies of the IQHE’ generated by spin–orbit coupling,
consider the model of graphene introduced by Kane and Mele [19]. This is a tight-
binding model for independent electrons on the honeycomb lattice (Fig. 1.1). The
spin-independent part of the Hamiltonian consists of a nearest-neighbour hopping,
which alone would give a semimetallic spectrum with Dirac nodes at certain points in
the 2D Brillouin zone, plus a staggered sublattice potential whose effect is to introduce
a gap:

H0 = t
∑
〈ij〉σ

c†iσcjσ + λv
∑
iσ

ξic
†
iσciσ. (1.57)

Here 〈ij〉 denotes nearest-neighbour pairs of sites, σ is a spin index, ξi alternates sign
between sublattices of the honeycomb, and t and λv are parameters.

The insulator created by increasing λv is an unremarkable band insulator. However,
the symmetries of graphene also permit an ‘intrinsic’ spin–orbit coupling of the form

HSO = iλSO
∑

〈〈ij〉〉σ1σ2

νijc
†
iσ1
szσ1σ2

cjσ2 . (1.58)

ψeiφx +  iφy

ψeiφx

ψeiφy

Lx

Ly

ψ

d2

d1

Fig. 1.1 The honeycomb lattice on which the tight-binding Hamiltonian resides. For the two
sites depicted, the factor νij of equation (1.58) is νij = −1. The phases φx,y describe twisted

boundary conditions that are used in the text to give a pumping definition of the Z2 invariant.

(Reprinted with permission from [9]. Copyright 2007 by the American Physical Society.)

various situations, but the fundamental definition we give of the quantum spin Hall phase will actually

be in terms of charge; ‘two-dimensional topological insulator’ is another term for the same phase.
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Here νij = (2/
√

3)d̂1 × d̂2 = ±1, where i and j are next-nearest neighbours and d̂1

and d̂2 are unit vectors along the two bonds that connect i to j. Including this type of
spin–orbit coupling alone would not be a realistic model. For example, the Hamiltonian
H0 +HSO conserves sz, the distinguished component of electron spin, and reduces for
fixed spin (up or down) to Haldane’s model [15]. Generic spin–orbit coupling in solids
should not conserve any component of electron spin.

This model with Sz conservation is mathematically treatable using the Chern num-
ber above, since it just reduces to two copies of the IQHE. It is therefore not all that
interesting, in addition to not being very physical, because of the requirement of Sz
conservation. In particular, the stability of the phase is dependent on a subtle prop-
erty of spin- 1

2
particles (here we use the terms spin- 1

2
and Fermi interchangeably). The

surprise is that the quantum spin Hall phase survives, with interesting modifications,
once we allow more realistic spin–orbit coupling, as long as time-reversal symmetry
remains unbroken.

The time-reversal operator T acts differently in Fermi and Bose systems, or, more
precisely, in half-integer versus integer spin systems. Kramers showed long ago that
the square of the time-reversal operator is connected to a 2π rotation, which implies
that

T 2 = (−1)2S , (1.59)

where S is the total spin quantum number of a state: half-integer-spin systems pick
up a minus sign under two time-reversal operations.

An immediate consequence of this is the existence of ‘Kramers pairs’: every eigen-
state of a time-reversal-invariant spin-1

2 system is at least twofold-degenerate. We will
argue this perturbatively, by showing that a time-reversal-invariant perturbation H ′

cannot mix members of a Kramers pair (a state ψ and its time-reversal conjugate
φ = Tψ). To see this, note that

〈Tψ|H ′|ψ〉 = 〈Tψ|H ′|T 2ψ〉 = −〈Tψ|H ′|ψ〉 = 0, (1.60)

where in the first step we have used the antiunitarity of T and the time-reversal
symmetry of H ′ and in the second step the fact that T 2 = −1, while the last step is
just to note that if x = −x, then x = 0.

Combining Kramers pairs with what is known about the edge state, we can say a
bit about why a odd–even or Z2 invariant might be physical here. If there is only a
single Kramers pair of edge states and we consider low-energy elastic scattering, then
a right-moving excitation can only backscatter into its time-reversal conjugate, which
is forbidden by the Kramers result above if the perturbation inducing scattering is
time-reversal-invariant. However, if we have two Kramers pairs of edge modes, then a
right-mover can backscatter to the left-mover that is not its time-reversal conjugate.
This process will, in general, eliminate these two Kramers pairs from the low-energy
theory.

Our general belief based on this argument is that a system with an even number
of Kramers pairs will, under time-reversal-invariant backscattering, localize in pairs
down to zero Kramers pairs, while a system with an odd number of Kramers pairs
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will wind up with a single stable Kramers pair. Additional support for this odd–even
argument will be provided by our next approach. We would like, rather than just trying
to understand whether the edge is stable, to predict from bulk properties whether the
edge will have an even or odd number of Kramers pairs. Since deriving the bulk–edge
correspondence directly is quite difficult, what we will show is that, starting from the
bulk T -invariant system, there are two topological classes. These correspond in the
example above (of separated up and down spins) to paired IQHE states with even or
odd Chern number for one spin. Then the known connection between Chern number
and number of edge states is good evidence for the statements above about Kramers
pairs of edge modes.

A direct Abelian Berry-phase approach for the 2D Z2 invariant is provided in
Appendix 1.A, along with an introduction to Wess–Zumino (WZ) terms in (1 + 1)-
dimensional field theory and a physical interpretation of the invariant in terms of
pumping cycles. The common aspect between these two is that in both cases the
‘physical’ manifold (either the 2-sphere in the WZ case, or the 2-torus in the QSHE
case) is extended in a certain way, with the proviso that the resulting physics must be
independent of the precise nature of the extension. When we later go to 3D, it turns
out that there is a very nice 3D non-Abelian Berry-phase expression for the 3D Z2

invariant; while in practice it is harder to compute than the original expression based
on applying the 2D invariant, it is much more elegant mathematically, so we will focus
on that. Actually, for practical calculations, a very important simplification for the
case of inversion symmetry (in both d = 2 and d = 3) was made by Fu and Kane [12]:
the topological invariant is determined by the product of eigenvalues of the inversion
operator at the 2d time-reversal-symmetric points of the Brillouin zone.

1.3.6 Experimental status of 2D insulating systems

This completes our discussion of 1D and 2D insulating systems. The 2D topological
insulator was observed by a transport measurement in (Hg, Cd)Te quantum wells [21],
following theoretical predictions [5]. A simplified description of this experiment is that
it observed, in zero magnetic field, a two-terminal conductance 2e2/h, consistent with
the expected conductance e2/h for each edge if each edge has a single mode, with no
spin degeneracy. More recent work has observed some of the predicted spin transport
signatures as well, although, as expected, the amount of spin transported for a given
applied voltage is not quantized, unlike the amount of charge.

In the next subsection, we start with the 3D topological insulator and its remark-
able surface and magnetoelectric properties. We then turn to metallic systems in order
to understand another consequence of Berry phases of Bloch electrons.

1.3.7 3D band structure invariants and topological insulators

We will give a very quick introduction to the band structure invariants that allowed
generalization of the previous discussion of topological insulators to 3D. However, most
of our discussion of the 3D topological insulator will be in terms of emergent properties
that are difficult to perceive directly from the bulk band structure invariant. We start
by asking to what extent the 2D IQHE can be generalized to 3D. A generalization of
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the previous homotopy argument [3] can be used to show that there are three Chern
numbers per band in 3D, associated with the xy, yz, and xz planes of the Brillouin
zone. A more physical way to view this is that a 3D integer quantum Hall system
consists of a single Chern number and a reciprocal lattice vector that describes the
‘stacking’ of integer quantum Hall layers. The edge of this 3D IQHE is quite interesting:
it can form a 2D chiral metal, as the chiral modes from each IQHE combine and point
in the same direction.

Consider the Brillouin zone of a 3D time-reversal-invariant material. Our approach
will be to build on our understanding of the 2D case: concentrating on a single band
pair, there is a Z2 topological invariant defined in the 2D problem with time-reversal
invariance. Taking the Brillouin zone to be a torus, there are two inequivalent xy
planes that are distinguished from others by the way time-reversal acts: the kz = 0
and kz = ±π/a planes are taken to themselves by time reversal (note that ±π/a
are equivalent because of the periodic boundary conditions). These special planes
are essentially copies of the 2D problem, and we can label them by Z2 invariants
z0 = ±1, z±1 = ±1, where +1 denotes ‘even Chern parity’ or ordinary 2D insulator
and −1 denotes ‘odd Chern parity’ or topological 2D insulator. Other xy planes are
not constrained by time reversal and hence do not have to have a Z2 invariant.

The most interesting 3D topological insulator phase (the ‘strong topological insu-
lator’) results when the z0 and z±1 planes are in different 2D classes. This can occur
if, moving in the z direction between these two planes, one has a series of 2D problems
that interpolate between ordinary and topological insulators by breaking time reversal
invariance. We will concentrate on this type of 3D topological insulator here. Another
way to make a 3D topological insulator is to stack 2D topological insulators, but con-
sidering the edge of such a system shows that it will not be very stable: since two ‘odd’
edges combine to make an ‘even’ edge, which is unstable in the presence of T -invariant
backscattering, we call such a stacked system a ‘weak topological insulator’.

Above we found two xy planes with 2D Z2 invariants. By the same logic, we could
identify four other such invariants: x0, x±1, y0, y±1. However, not all six of these
invariants are independent: some geometry (an exercise for the reader) shows that
there are two relations, reducing the number of independent invariants to four:10

x0x±1 = y0y±1 = z0z±1. (1.61)

We can take these four invariants in 3D as (x0, y0, z0, x0x±1), where the first three
describe layered ‘weak’ topological insulators and the last describes the genuinely
3D invariant that distinguishes ‘strong’ topological insulators. (Note that one mater-
ial can hence be both a strong and a weak topological insulator by this definition.)

10 Sketch of geometry: To establish the first of these equalities, consider evaluating the Fu-Kane 2D
formula on the four effective Brillouin zones (EBZs, see Section 1.A.2) described by the four invariants

x0, x+1, y0, y+1. These define a torus, on whose interior the Chern 2-form F is well defined. Arranging
the four invariants so that all have the same orientation, the A terms drop out, and the F integral

vanishes since the torus can be shrunk to a loop. In other words, for some gauge choice, the difference

x0 − x+1 is equal to y0 − y+1.
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Alternatively, the ‘axion electrodynamics’ field theory in the next subsection can be
viewed as suggesting that there should be only one genuinely 3D Z2 invariant.

For example, the strong topological insulator cannot be realized in any model with
Sz conservation, while, as explained earlier, a useful example of the 2D topological
insulator (a.k.a. QSHE) can be obtained from combining IQHE phases of up and
down electrons. The impossibility of making a strong topological insulator with Sz
conservation follows from noting that all planes normal to z have the same Chern
number, since the Chern number is a topological invariant whether or not the plane
is preserved by time- reversal. In particular, the kz = 0 and kz = ±π/a phases have
the same Chern number for up electrons, say, which means that these two planes are
either both 2D ordinary or both 2D topological insulators.

While the above argument is valid and useful for connecting the 3D topological
insulators to the 2D case, it doesn’t give much insight into what sort of gapless surface
states we should expect at the surface of a strong topological insulator. The answer
can be obtained by other means (some properties can be found via the field-theory
approach given in the next section): the spin-resolved Fermi surface encloses an odd
number of Dirac points. In the simplest case of a single Dirac point, believed to be
realized in Bi2Se3, the surface state can be pictured as ‘one-quarter of graphene’.
Graphene, a single layer of carbon atoms that form a honeycomb lattice, has two
Dirac points and two spin states at each k; spin–orbit coupling is quite weak, since
carbon is a relatively light element. The surface state of a 3D topological insulator can
have a single Dirac point and a single spin state at each k. As in the edge of the 2D
topological insulator, time-reversal invariance implies that the spin state at k must be
the T conjugate of the spin state at −k.

1.3.8 Axion electrodynamics, second Chern number,
and magnetoelectric polarizability

The 3D topological insulator turns out to be connected to a basic electromagnetic
property of solids. We know that in an insulating solid, Maxwell’s equations can be
modified because the dielectric constant ε and magnetic permeability μ need not take
their vacuum values. Another effect is that solids can generate the electromagnetic
term

ΔLEM =
θe2

2πh
E ·B =

θe2

16πh
εαβγδFαβFγδ. (1.62)

This term describes a magnetoelectric polarizability: an applied electrical field gen-
erates a magnetic dipole, and vice versa. An essential feature of the above ‘axion
electrodynamics’ theory (cf. Wilczek [42]) is that when the axion field θ(x , t) is con-
stant, it plays no role in electrodynamics; this follows because θ couples to a total
derivative, εαβγδFαβFγδ = 2εαβγδ∂α(AβFγδ) (here we have used that F is closed, i.e.
dF = 0), and so does not modify the equations of motion. However, the presence of the
axion field can have profound consequences at surfaces and interfaces, where gradients
in θ(x) appear.
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A bit of work shows that at a surface where θ changes, there is a surface quantum
Hall layer of magnitude

σxy =
e2(Δθ)

2πh
. (1.63)

(This can be obtained by moving the derivative from one of the A fields to act on
θ, leading to a Chern–Simons term for the electromagnetic field at the surface. The
connection between Chern–Simons terms and the quantum Hall effect will be a major
subject of the last part of this chapter.) The magnetoelectric polarizability described
above can be obtained from these layers: for example, an applied electric field gener-
ates circulating surface currents, which in turn generate a magnetic dipole moment.
In a sense, σxy is what accumulates at surfaces because of the magnetoelectric polariz-
ability, in the same way as charge is what accumulates at surfaces because of ordinary
polarization.

We are jumping ahead a bit in writing θ as an angle: we will see that, like polar-
ization, θ is only well defined as a bulk property modulo 2π (for an alternative picture
showing why θ is periodic that is more appropriate for electroweak symmetry break-
ing, see [42]). The integer multiple of 2π is only specified once we specify a particular
way to make the boundary. How does this connect to the 3D topological insulator?
At first glance, θ = 0 in any time-reversal-invariant system, since θ → −θ under time
reversal. However, as θ is periodic, θ = π also works, since −θ and θ are equivalent
because of the periodicity, and is inequivalent to θ = 0.

Here we will not give a microscopic derivation of how θ includes, for a band
structure of non-interacting electrons, a part that is an integral of the Chern–Simons
form:

θ =
1
2π

∫
BZ

d3k εijk Tr
[
Ai∂jAk − i

2
3
AiAjAk

]
, (1.64)

which can be done by imitating our previous derivation of the polarization for-
mula [10, 34]. In general, unlike for the electrical polarization, there are additional
non-geometrical contributions as well [11, 24]. Instead, we will focus on understanding
the physical and mathematical meaning of the Chern–Simons form that constitutes the
integrand, chiefly by discussing analogies with our previous treatment of polarization
in 1D and the IQHE in 2D. These analogies are summarized in Table 1.1.

Throughout this subsection,

Fij = ∂iAj − ∂jAi − i[Ai,Aj ] (1.65)

is the (generally non-Abelian) Berry curvature tensor (Aλ = i〈u|∂λ|u〉), and the trace
and commutator refer to band indices. We can gain an understanding of the above
Chern–Simons form K = Tr[Ai∂jAk − i23AiAjAk] by starting from the second Chern
form Tr[F ∧ F ]; the relationship between the two is

dK = Tr[F ∧ F ], (1.66)
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Table 1.1 Comparison of Berry-phase theories of polarization and magnetoelectric
polarizability

POLARIZATION MAGNETOELECTRIC

POLARIZABILITY

dmin 1 3

Observable P =
∂〈H〉
∂E

Mij =
∂〈H〉

∂Ei ∂Bj
=
δijθe

2

2πh

Quantum ΔP =
eR
Ω

ΔM =
e2

h
Surface q = (P1 −P2) · n̂ σxy = M1 −M2

Electromagnetic coupling P ·E ME ·B
Chern–Simons form Ai εijk

(
AiFjk + i 13AiAjAk

)
Chern form εij∂iAj εijklFijFkl

just as A is related to the first Chern form: d(TrA) = TrF . These relationships hold
locally (this is known as Poincaré’s lemma—that, given a closed form, it is locally an
exact form) but not globally, unless the first or second Chern form generates the trivial
cohomology class. For example, we saw that the existence of a non-zero first Chern
number on the sphere prevented us from finding globally defined wavefunctions that
would give an A with dA = F . We are assuming in even writing the Chern–Simons
formula for θ that the ordinary Chern numbers are zero, so that an A can be defined
in the 3D Brillouin zone. We would run into trouble if we assumed that an A could
be defined in the 4D Brillouin zone if the first or second Chern number were non-
zero. Note that the electromagnetic action above is just the second Chern form of the
(Abelian) electromagnetic field.

The second Chern form is closed and hence generates an element of the de Rham
cohomology we studied earlier. There are higher Chern forms as well: the key is that
symmetric polynomials can be used to construct closed forms, by the antisymmetry
properties of the exterior derivative. In physics, we typically keep the manifold fixed (in
our Brillouin zone examples, it is usually a torus Tn), and are interested in classifying
different fibre bundles on the manifold. In mathematical language, we want to use
a properly normalized cohomology form to compute a homotopy invariant (i.e. with
respect to changing the connection, not the manifold). This is exactly what we did with
the Chern number in the IQHE, which was argued to compute certain integer-valued
homotopy π2 invariants of non-degenerate Hermitian matrices.

More precisely, we saw that the U(1) gauge dependence of polarization was con-
nected to the homotopy group π1(U(1)) = Z, but that this is connected also to the
existence of integer-valued Chern numbers, which we explained in terms of π2. (These
statements are not as inconsistent as they might seem, because our calculation of
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π2 came down to π1 of the diagonal unitary group.) We can understand the second
Chern and Chern–Simons form similarly, using the homotopy invariants π3 (gauge
transformation in d = 3) and π4 (quantized state in d = 4). The Chern–Simons in-
tegral for θ given above, in the non-Abelian case, has a 2πn ambiguity under gauge
transformations, and this ambiguity counts the integer-valued homotopy invariant

π3(SU(N)) = Z, N ≥ 2. (1.67)

In other words, there are ‘large’ (non-null-homotopic) gauge transformations. Note
that the Abelian Chern–Simons integral is completely gauge-invariant, consistent with
π3(U(1)) = 0.

The quantized state in d = 4 was originally discussed in the context of time-
reversal-symmetric systems. The set Q has one integer-valued π4 invariant for each
band pair, with a zero-sum rule. These invariants survive even once T is broken, but
realizing the non-zero value requires that two bands touch somewhere in the 4D Bril-
louin zone. In this sense, the ‘4D quantum Hall effect’ is a property of how pairs of
bands interact with each other, rather than of individual bands. Even if this 4D QHE
is not directly measurable, it is mathematically connected to the 3D magnetoelectric
polarizability in the same way as 1D polarization and the 2D IQHE are connected.

The above Chern–Simons formula for θ works, in general, only for a non-interacting
electron system. This is not true for the first Chern formula for the IQHE, or the
polarization formula, so what is different here? The key is to remember that the 3D
Chern formula behaves very differently in the Abelian and non-Abelian cases; for
example, in the Abelian case, θ is no longer periodic as the integral is fully gauge-
invariant. Taking the ground state many-body wavefunction and inserting it into the
Chern–Simons formula is not guaranteed to give the same result as using the multiple
one-particle wavefunctions.

However, we can give a many-body understanding of θ that clarifies the geometric
reason for its periodicity even in a many-particle system. Consider evaluating dP/dB
by applying the 3D polarization formula

Pi = e

∫
BZ

d3k

(2π)3
TrAi . (1.68)

to a rectangular-prism unit cell. The minimum magnetic field normal to one of the
faces that can be applied to the cell without destroying the periodicity is one flux
quantum per unit cell, or a field strength h/(eΩ), where Ω is the area of that face.
The ambiguity of polarization (1.68) in this direction is one charge per transverse unit
cell area, i.e. e/Ω. Then the ambiguity in dP/dB is

Δ
Px
Bx

=
e/Ω

h/(eΩ)
=
e2

h
= 2π

e2

2πh
. (1.69)

So the periodicity of 2π in θ is really a consequence of the geometry of polarization,
and is independent of the single-electron assumption that leads to the microscopic
Chern–Simons formula.
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1.3.9 Anomalous Hall effect and Karplus–Luttinger anomalous velocity

Our previous examples of Berry phases in solids have concentrated on insulators,
but one of the most direct probes of the Berry phase of Bloch electrons is found
in metals that break time-reversal symmetry. The breaking of T allows a non-zero
transverse conductivity σxy to exist along with the metallic diagonal conductivity σxx.
This ‘anomalous Hall effect’ (AHE) can originate from several different microscopic
processes. The most interesting from a geometric point of view is the intrinsic AHE
that results from Berry phases of a time-reversal-breaking band structure when the
Fermi level is in the middle of a band. We will not attempt to discuss this interesting
physics here but refer the reader to a comprehensive review by Nagaosa et al. [29]
and note that there are an increasing number of other examples of Berry-phase effects
in metals. There are similar effects related to the orbital moment of Bloch electrons,
which is similar in some ways but not purely geometric since it arises from both
the wavefunctions and the Hamiltonian, unlike the Berry phase, which is purely a
wavefunction property.

1.4 Introduction to topological order

Now we consider strongly interacting topological phases, defined as those that cannot
be understood in terms of free particles. In contrast, the IQHE and topological insu-
lators can be understood in terms of free particles, although these phases are stable
in the sense that they survive over a finite region of interaction strength until a phase
transition occurs. Our main tool will be quantum field theory, which is a powerful
language to describe the long-wavelength physics of interacting systems. After giving
some microscopic motivation from the fractional quantum Hall effect (FQHE), we give
a first example of field theory applied to spin chains as an example of how an analysis
of topological terms in a simple field theory led to a clear experimental prediction (the
‘Haldane gap’) regarding antiferromagnetic integer-spin Heisenberg chains.

We then return to the quantum Hall effect and develop Abelian Chern–Simons
theory, an example of a truly topological field theory. Although it is written in terms
of one or more U(1) gauge fields, similar to ordinary electromagnetism, its behav-
iour is strikingly different from that of the conventional field theories with which the
reader may already be familiar. In lieu of a microscopic derivation, which has been
carried out but is somewhat tedious, we show that it unifies properties such as ground-
state degeneracy, braiding statistics, and edge excitations. We will follow increasingly
standard parlance and use the term ‘topological order’ specifically for phases of matter
described by a non-trivial topological field theory, hence having ground-state degen-
eracy, fractional statistics, etc. Thus the IQHE, which is certainly a topological phase
of matter and well described by the Abelian Chern–Simons theory given below with
k = 1, does not have topological order in the sense introduced by Wen.

1.4.1 FQHE background

We give quickly some standard background on the FQHE in order to motivate the
Chern–Simons field theory introduced below. The goal of that field theory is to give a
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compact universal description of the key features of the topological order in quantum
Hall states, similar in spirit to the Ginzburg–Landau field theory of symmetry-breaking
phases. Most of this material is standard and can be found in a number of edited
volumes and textbooks on the quantum Hall effects [6, 18, 33].

Our discussion centres on the Laughlin wavefunction for 2D electrons (zj =xj + iyj
describes the jth electron, j = 1, . . . , N)

Ψm =

⎡⎣∏
i<j

(zi − zj)m
⎤⎦ exp

(
−
∑
i

|zi|2/4�2
)
. (1.70)

The magnetic length is � =
√

�c/eB and the wavefunction is not normalized. This
wavefunction clearly can be expanded over the single-electron lowest-Landau-level
wavefunctions in the rotational gauge,

ψm = zme−|z|
2/42 . (1.71)

where m = 0, 1, . . . labels angular momentum. For m = 1, the Laughlin state is just a
Slater determinant for the filled lowest Landau level, but for higher m, it is believed
not to be a sum of any finite number of Slater determinants in the N →∞ limit.

This wavefunction can be justified using the pseudopotential approach introduced
by Haldane: it is the maximum-density zero-energy state of a repulsive interaction
that vanishes for relative angular momentum greater than or equal to m. We checked
that its density is ν = 1/m by looking at the degree of the polynomial factor, which is
directly related to 〈r2〉, and argued that it contains ‘quasihole’ excitations of charge
−q/m, where q is the charge of the electrons. The wavefunction for a quasihole at z0 is

Ψquasihole =

[∏
i

(zi − z0)
]

Ψm. (1.72)

The fractional charge can be understood by noting that m copies of the extra factor
here would lead to a wavefunction with an electron at z0, but without treating z0 as
an electron coordinate; in other words, a wavefunction with a ‘hole’ added at z0. It
has edge states that at first glance are loosely similar to those in the filled Landau
level.

1.4.2 Topological terms in field theories: the Haldane gap
and Wess–Zumino–Witten models

As a warm-up for fully topological field theories, we give an example of how topo-
logical terms can have profound consequences in ‘ordinary’ field theories (i.e. theories
without gauge fields). By a topological term, we mean loosely one whose value in
any specific configuration (a path in the path integral) is a topological invariant, so
that the set of all paths can be divided into topological sectors by the value of the
topological term. A famous example of this phenomenon found by Haldane led to the
first understanding of the gapped spin-1 Heisenberg antiferromagnet in one spatial
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dimension, which has recently been interpreted as a symmetry-protected topological
phase of interacting particles because it can be smoothly connected to a trivial phase
by breaking spatial symmetries such as inversion. We will focus on topological terms
that appear in nonlinear σ-models, which, despite their unwieldy name, are a very ba-
sic type of field theory for systems in or near an ordered phase breaking a continuous
symmetry.

We first present Haldane’s example (following closely the treatment of
Auerbach [2]), and then discuss a different kind of topological term that appears
in Wess–Zumino–Witten models, again in one spatial dimension; details of the latter
are provided in Appendix 1.A. The nonlinear σ-model (NLSM) is an example of an
effective theory, a simplified description of the low-energy degrees of freedom of a com-
plicated system. Ginzburg–Landau theory is another such effective theory, and one use
of the NLSM is as a further simplification of Ginzburg–Landau theory where we have
thrown away the ‘hard’ or ‘massive’ fluctuations of the magnitude of the order par-
ameter, keeping only the ‘soft’ or ‘massless’ fluctuations within the order-parameter
manifold.

For definiteness, we consider a d-dimensional XY model, which would be described
in Ginzburg–Landau theory by a 2-component real or 1-component complex order
parameter. The mean-field physics in the ordered phase as a function of the order
parameter is as follows: the order-parameter manifold of symmetry-related ground
states is a circle, and we can expect that fluctuations along this circle are ‘soft’ in
the sense of requiring little energy (since this is a flat direction of the energy), while
those perpendicular to the circle are more costly. This order-parameter manifold is
the same as that considered in the discussion of topological defects in Section 1.2,
where defects were classified using maps from surfaces enclosing the defect in real
space to the order-parameter manifold. At low temperature, we might expect that a
reasonable description of the system is therefore obtained just from fluctuations of
the order parameter’s direction, leading to a functional integral for the coarse-grained
classical partition function:

ZNLSM =
∫
Dθ(x) exp

[
−βc

∫
(∇θ)2

2
ddx

]
. (1.73)

Here c is a coupling constant with units of energy if d = 2; one could estimate c
simply from the coupling strength in a lattice XY model. The NLSM it is called
nonlinear because the circle is defined by a hard constraint on the n̂ field, which in more
complicated target manifolds such as the sphere leads to interaction (i.e. nonlinear)
terms in the fields obtained in a perturbative expansion; it is called a σ-model because
of its first appearance in particle physics.

For a quantum-mechanical model at zero temperature, we might expect on
general grounds that imaginary time will become an extra dimension in any Euclid-
ean path-integral representation of the partition function, in the same way as the
Dirac–Feynman path integral for quantum mechanics involves integration of the La-
grangian over time (a (0 + 1)-dimensional theory). Now we will obtain a NLSM for
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a quantum-mechanical problem in one spatial dimension. Heuristically, we might ex-
pect an NLSM to be a reasonable description for a quantum model that is ‘close to’
having symmetry-breaking order.

Our approach is to derive a connection between the low-energy, long-wavelength
degrees of freedom of the spin path integral of the Heisenberg antiferromagnet. This
process is known as Haldane’s mapping in the context of spin systems: we will use
it to show that there is a topological term present for half-integer spin but not for
integer spin, which is believed to explain the different behaviour seen numerically and
experimentally in these two cases.

First we look for a more general way of writing the Berry -phase term for a spin
that results from setting up a coherent-state path integral for spin. In order to make
a path integral, we should set up an integral over ‘classical’ trajectories—what is the
classical trajectory of a spin? One answer is to use the overcomplete basis of coherent
states for the spin-S Hilbert space [2], which are labelled by a unit vector Ω̂. As S
increases, the spin wavefunction becomes more and more concentrated around Ω̂:

ω[Ω̂] = −
∫ β

0

dτ φ̇ cos θ. (1.74)

For a closed path on the sphere, this corresponds to the signed spherical area enclosed
by the path. An overall ambiguity of ±4π in this area does not affect the physics, since
the area ω appears in the path-integral action with a coefficient −iS. For a many-spin
system, the full action is

S[Ω̂] = −iS
∑
i

ω[Ω̂i] +
∫ β

0

dτ
S2J

2

∑
ij

Ω̂i · Ω̂j . (1.75)

For now, we return to a single spin to set up an improved way of writing the Berry-
phase term.

Let the vector potential A(Ω̂) be assumed to have the property that its line integral
over a closed orbit on the sphere should give the area enclosed by the orbit:

ω =
∫ β

0

dτ A(Ω̂) · ˙̂Ω. (1.76)

Then Stokes’s theorem fixes curl A to be the magnetic field of a magnetic monopole
(a vector with uniform outward component):

∇×A · Ω̂ = εαβγ
∂Aβ

∂Ω̂α
Ω̂γ = 1. (1.77)

Two explicit examples to check that this can be done are

Aa = −cos θ
sin θ

φ̂, Ab =
1− cos θ

sin θ
φ̂. (1.78)
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Clearly, Aa has singularities at the north and south poles, while Ab has a singularity
only at the south pole.11

Now we can use this representation to write concisely the variation of the Berry-
phase term under a small variation in the path from imaginary time 0 to imaginary
time t. Suppose that we want to calculate

δω[Ω̂] =
∫ t

0

dt′ δ(A · ˙̂Ω)

=
∫ t

0

dt′
(
∂Aα

∂Ω̂β
δΩ̂β ˙̂Ωα + Aα

d

dt
δΩ̂α

)
(1.79)

under a small variation of the path δΩ̂ that is assumed to keep the endpoints fixed.
Now subtract (∂Aα/∂Ω̂β) ˙̂Ωβ δΩ̂α from the first term and add it to the second, to get

δω[Ω̂] =
∫ t

0

dt′
∂Aα

∂Ω̂β
εαβγ( ˙̂Ω× δΩ̂)γ +

∫ t

0

dt′
(
Aα

d

dt
δΩ̂α +

∂Aα

∂Ω̂β
˙̂Ωβ δΩ̂α

)

=
∫ t

0

dt′ Ω̂ · ( ˙̂Ω× δΩ̂) +
∫ t

0

dt′
d

dt′
(A · δΩ̂)

=
∫ t

0

dt′ Ω̂ · ( ˙̂Ω× δΩ̂). (1.80)

Here we have used the condition (1.77) and also, in rewriting the first term, the fact
that the quantity in parentheses ( ˙̂Ω× δΩ̂) ‖ Ω̂ because of the constant length of the
vector Ω̂.

Now, after this prelude, we are ready to rewrite the full path integral for the many-
spin Heisenberg model. The first step is to write the spin Ω̂i in terms of two continuous
fields of spacetime n̂ and L:

Ω̂i = ηin̂(xi)

√
1−

∣∣∣∣L(xi)
S

∣∣∣∣2 +
L(xi)
S

. (1.81)

Here ηi alternates between sublattices, n̂(x) is a unit vector field, sometimes referred to
as the Néel field, and L is constrained to be perpendicular to n̂. Hence a constant value
of n̂ corresponds to a classical Néel state. It seems like we have greatly increased the
degrees of freedom by this rewriting; what we do now is restrict the allowed Fourier
components of the new fields (i.e. the Brillouin zone) to small momenta in such a
way that the total number of degrees of freedom is unchanged (cf. Auerbach [2] for
details). The spirit of this approximation is that we are interested in long-lengthscale

11 Actually, Ab is a good representation of the field of a Dirac monopole: a singular flux (‘Dirac
string’) enters through the south pole and then goes out uniformly over the rest of the sphere.

A small circle around the south pole contains flux 4π, which contributes 4πS to the action, but recall

that this winds up giving zero physical contribution to the path integral.
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physics, so details on the scale of the lattice spacing are unimportant. It turns out
that we assume slow variations in n̂ but only that |L| � S, i.e. that L is small but
not necessarily slowly varying. We now expand the path integral in powers of |L|/S.

A pair of spins gives a contribution

Ω̂i · Ω̂j ≈ ηiηj −
1
2
ηiηj(n̂i − n̂j)2

+
1
S2

[
Li · Lj −

1
2
ηiηj(L2

i + L2
j )
]

+
1
S

(ηjLi · n̂j + ηiLj · n̂i) + . . . (1.82)

Here the neglected terms are of order |L|2(n̂i − n̂j) or smaller. In the first term, use
a Taylor expansion to convert differences of the Néel field into derivatives and keep
only the leading contribution. You can show that the cross-terms (those with both L
and n̂) vanish by the symmetry of the Heisenberg Hamiltonian. The term with two L
factors we rewrite below in Fourier space, where it is much simpler and where we will
be able to ‘integrate it out’.

What we are left with, after going from the lattice to integrals using∑
i

Fi → a−d
∫

ddx
∑
i

δ(x− xi)F (x), (1.83)

is the continuum representation

H = E0 +
1
2

∫
ddx

[
ρs
∑
l

|∂ln̂|2 +
∫

ddx′ (Lx · χ−1
xx′ ·Lx′)

]
. (1.84)

Here E0 is the classical energy

E0 =
S2

2

∑
ij

Jijηiηj . (1.85)

In the first term, the spin stiffness is

ρs = − S2

2dNad
∑
ij

Jijηiηj |xi − xj |2. (1.86)

The second or ‘canting’ term in Fourier space is simply∫
ddq

(2π)d
Lq · L−q

J(q)− J(π, π, . . .)
, J(q) =

∑
j

eiq·(xi−xj)Jij . (1.87)

Now we just need to rewrite the geometric phase

−iS
∑
i

ωi = −iS
∫ β

0

dτ
∑
i

A(Ω̂i) · ˙̂Ωi. (1.88)
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Assume that the vector potential is chosen so that A(Ω̂) = A(−Ω̂), as works for one
of the examples above. Now expanding in terms of the new fields,

−iS
∑
i

ωi = −iS
∑
i

ηiω[n̂i + ηiLi/S]

= −iS
∑
i

ηiω

[
n̂i +

δω

δn̂i
· (Li/S)

]

= −iΥ− i
∫ β

0

dτ
∑
i

(n̂i × ∂τ n̂i · Li). (1.89)

In the last line, we have used our earlier formula for the variation of ω, and defined

Υ = S
∑
i

ηiω[n̂(xi)], (1.90)

switching to the spatial continuum limit.
Now our goal is going to be to combine the classical and geometric terms in order

to obtain a simple long-wavelength action. The key step is to note that the second term
in (1.89) couples one power of L to a combination of n fields. So integrating out the
L degrees of freedom (a Gaussian integral) will give rise to the following: considering
only the terms involving L and doing the integral in Fourier space, we get (ignoring
an unimportant overall constant)

ZL ∝
∫
Dn̂ exp

{
−1

2

∫
dτ

ddq

(2π)d
[J(q)− J(π, π, . . .)](n̂× ∂τ n̂)q · (n̂× ∂τ n̂)−q

}
.

(1.91)

We can simplify this much further: for long wavelengths, we approximate χ(q) ≈ χ(0)
and use

|n̂× ∂τ n̂|2 = |∂τ n̂|2 (1.92)

from the constant length of n̂, to get just the following (the real-space constant
χ0 = a−dχ(0) = a−d[J(0, 0, . . .)− J(π, π, . . .)]):

ZL =
∫
Dn̂ exp

(
−1

2

∫ β

0

dτ

∫
ddxχ0|∂τ n̂|2

)
. (1.93)

So, putting it all together, we have

Z ∝
∫
Dn̂ eiΥ exp

[
−1

2

∫ β

0

dτ

∫
ddx

(
χ0|∂τ n̂|2 + ρs|∂xαn̂|2

)]
. (1.94)
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This now looks much more symmetric between space and time; if desired, one can just
rescale time to make the theory look like it lives in an isotropic (d+ 1)-dimensional
space. This gives

Z ∝
∫
Dn̂ eiΥ exp

(
−
∫
dd+1xLNLSM

)
, LNLSM =

d+1∑
α=1

∂xαn̂ · ∂xαn̂
2

. (1.95)

This NLSM is the simplest field theory of maps from the spaceRd+1 to the unit sphere.
We still need to say a bit about the topological term Υ: in one spatial dimension, this
term fundamentally modifies the physics, for reasons we shall see. We expand it for
slowly varying n̂(x): recall that Υ is defined to include factors ηi, so

Υd=1 = −S
∑
i

{ω[n̂(x2i)]− ω[n̂(x2i−1)]}

=
S

2

∫
dx

a

δω

δn̂
· ∂xn̂a = 2πSΘ[n̂(x, τ)]. (1.96)

Here Θ comes from using our previous variation form for the variation dω:

Θ =
1
4π

∫
dτ

∫
dx (n̂× ∂τ n̂ · ∂xn̂). (1.97)

This form is known as the Pontryagin index, which is a topological invariant like
a winding number. It is an integer and is constant under smooth deformations of n̂.
Essentially, it measures the number of times the map from (−L/2, L/2)× (0, β) ‘wraps’
the sphere S2. You can easily construct examples with Θ = 0 (the constant map) and
Θ = 1 (spherical projection). If you want a sense of why it is a topological invariant
(which is not that hard to show), imagine that someone gives you a sphere wrapped
with paper. The paper can’t be ‘contracted to a point’ without tearing, unlike a loop
drawn on the sphere. So maps S1 → S2 are all contractible, while maps S2 → S2 are
classified by the Pontryagin index.

The important thing to note is that the coefficient in front of this integer is only
2πS, so that there will be a difference between integer and half-integer spins. For
integer spin the topological term doesn’t do anything, while for half-integer spins,
there is interference between terms with odd or even values of the Pontryagin in-
dex. So Haldane’s mapping explains (with a few approximations along the way!) the
profound difference between integer and half-integer spins in one dimension, later con-
firmed experimentally and numerically. It is actually easier just to solve the spin- 1

2
chain using the Bethe ansatz than to explicitly solve its continuum theory with Berry
phases, although a proof has been given that the latter is indeed gapless. The Lieb–
Schultz–Mattis theorem discussed by Chalker in Chapter 3 of this volume provides
a general reason why the half-integer-spin case is gapless. Experimental results by
neutron scattering confirm the existence of a gap and also the existence of spin-1

2
edge states at the end of chains, which are discussed by Regnault in Chapter 4 of this
volume .
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So we have seen how the unusual geometry of spin space, in the path-integral
representation, gives rise to a profound difference between integer-spin and half-integer
spin chains. We can connect the above result to the exact solution by Affleck, Kennedy,
Lieb, and Tasaki (AKLT) of a spin-1 chain with additional biquadratic interactions:

H = J
∑
i

[
Si · Sj + α(Si · Sj)2

]
(1.98)

with J > 0 and α = 1
3 . This value of α is special in that the two terms on each bond

act as projectors onto the total spin-0 and spin-1 subspaces of the two spins, with
equal weight. The full phase diagram of the bilinear–biquadratic phase diagram from
numerical density-matrix renormalization group studies has been computed [22]. We
note that the Haldane problem of the purely bilinear chain is in the same gapped
phase as the AKLT solution, but that there are other phases as well, and there are
also parameter values for which the system is gapless. As the last part of our discussion
of topological terms for now, we explain the existence of two critical points with labels
SU(3)1 and SU(2)2 in the phase diagram found in [22], which combine a Lie group
with a subscripted integer known as the level. These points are examples of field
theories with both conformal invariance and Lie group symmetry known as Wess–
Zumino-Witten (WZW) models.

The NLSM for the XY model in (1.73) can be written in a different way if we
think about the order-parameter manifold (the circle) as the Lie group U(1). Writing
g = eiθ, we note that ∂iθ = g−1∂ig, so

ZNLSM =
∫
Dθ(x) exp

[
−βc

∫
d2x

∑
i

1
2(g−1∂ig)2

]
. (1.99)

In taking the trace here, we are looking ahead to a generalization. There is not a Lie
group structure on the sphere, but we might be tempted to generalize to other Lie
groups, for example by taking g ∈ U(N) or SU(N). Then g−1∂ig is an element of
the Lie algebra, which has an inner product known as the Killing form; for SU(N),
K(X,Y ) = 2N Tr(XY ). Generalizing the kinetic term that is the only term in the
action above to the Lie algebra is straightforward.

However, it turns out that the low-energy physics of this generalization with just
the resulting term is quite different from the U(1) case. As for the NLSM into the
sphere, the manifolds of unitary groups are curved once we go beyond the circle,
leading to interactions that result in a mass gap. If we want instead to obtain a
gapless model with Lie group symmetry, we must add an additional topological term
first written down by Wess and Zumino. This term is quite unusual in that it requires
extending the manifold on which the theory lives into an extra dimension. Assume
N > 1 in what follows, and pick g ∈ SU(N) for definiteness. Let us compactify the
two-dimensional space into S2 as for the Haldane chain above. Given a configuration
of the Lie group field g on the surface of a sphere, we can always find a way to
smoothly deform that configuration to the constant configuration, since π2(SU(N)) is
trivial.
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We will keep writing the generalized models in Euclidean space, although their
primary relevance is to quantum models in one spatial dimension. The action of the
WZW model in the usual notation is then (see Appendix 1.A for a physics motivation)

S = − k

8π

∫
S2

d2xK
(
g−1∂μg, g−1∂μg

)
− k

24π

∫
B3

d3y εijkK
(
g−1∂ig,

[
g−1∂jg, g

−1∂kg
])
. (1.100)

The meaning of upper and lower indices in the first term is that the metric of spacetime
appears. In the second term, in contrast, the ε term appears instead of the metric,
a sign that the term is topological in the sense of being metric-independent. In the
second term, we have chosen a continuation of the field g into the interior B3 of the
sphere S2. While, as mentioned above, those continuations certainly exist, we should
check to make sure that the physics is independent of precisely which continuation we
chose.

This independence is related to another topological fact about SU(N). Consider
two different continuations from S2 into B3. Actually, as a simpler example, consider
two different continuations from S1 into B2. We could combine those into a field
configuration on S2, where one continuation gives the northern hemisphere and the
other gives the southern hemisphere. In the same way, combining our two continuations
from S2 to B3 gives a field configuration on S3. Since π3(SU(N)) = Z, there are
integer-valued classes of such configurations, and in fact the Wess–Zumino term is
defined so as to compute this topological invariant Z: more precisely, the difference
of the above integral for two different continuations into the bulk is k times 2πn,
where n ∈ Z measures the topological invariant of the map S3 → S3 resulting from
combining the two continuations as described above.

When we put this action into a quantum path integral, it therefore leads to a
quantization of the level k to integers. SU(2)k with k = 2 can be viewed as a different
representation of the same symmetry as the SU(2)1 realized in the spin- 1

2
Heisenberg

chain, in the same way as the spins on one site are in different representations of
ordinary SU(2). The full demonstration that the model is gapless is beyond our present
scope, but at least we have a topological understanding of why the Wess–Zumino term
is a natural quantity to consider. One way to tell apart the gapless points associated
with different levels or Lie groups is by computing the central charge c, a measure of
how many degrees of freedom are gapless at the critical point, in units where one free
boson gives c = 1. The WZW model for Lie group g at level k has central charge

c =
k dimSU(N)

k + n
, (1.101)

where dimSU(N) = N(N − 1). Hence, SU(3)1 has c = 2, SU(2)2 has c = 3
2 , and

SU(2)1 has c = 1, consistent with its bosonized representation as a single boson.
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1.4.3 Topologically ordered phases: the FQHE

1.4.3.1 Chern–Simons theory I: flux attachment and statistics change

We will now start the process of developing a more abstract description of the FQHE
that will help us understand what type of order it has. For example, this will define
precisely what it means to say that the physical state is adiabatically connected to
the Laughlin wavefunction. Our main tool will be Chern–Simons theory; we briefly
encountered the Chern–Simons term of the electromagnetic gauge potential when we
discussed quantum Hall layers at the surface of the strong topological insulator, and we
will come to that in a moment. However, a more fundamental use of Chern–Simons
theory is to describe the internal degrees of freedom of the quantum Hall liquid.
In other words, we will have both an ‘internal’ Chern–Simons theory describing the
quantum Hall liquid and a Chern–Simons term induced in the electromagnetic action.

Since that sounds complicated, let’s start by understanding why a Chern–Simons
theory might be useful. To begin, we come up with a picture for the Laughlin state
by noting that since the filled lowest Landau level has one magnetic flux quantum per
electron, the Laughlin state at m = 3 (i.e. ν = 1

3) has three flux quanta per electron.
To get a picture of how the Laughlin state is connected to the ν = 1 state, we imagine
attaching two of these flux quanta to each electron. The resulting ‘composite fermion’
still has fermionic statistics, by the following counting. Interchanging two electrons
gives a −1 factor. The Aharonov–Bohm factor from moving an electron all the way
around a flux quantum is +1, but in this exchange process, each electron moves only
halfway around the flux quanta attached to the other electron. So when one of these
objects is exchanged with another, the wavefunction picks up three factors of −1 and
the statistics is still fermionic.

These composite fermions now can form the integer quantum Hall state in the
remaining field of one flux quantum per composite fermion, leading to a ν = 1

3 incom-
pressible state in terms of the original electrons. More generally, the phase picked up
by a particle of charge q moving completely around a flux Φ is

eiθ = eiqΦ/�c. (1.102)

We will now see how the Chern–Simons term lets us carry out a ‘flux attachment’
related to the above composite fermion idea: in fact, by attaching three flux quanta
rather than two to each electron, we would obtain bosons moving in zero applied
field, and the Laughlin state can be viewed as a Bose–Einstein condensate of these
‘composite bosons’ [36, 44].12

The Abelian Chern–Simons theory we will study is described by the following
Lagrangian density in (2 + 1)-dimensional Minkowski spacetime:

L = 2γεμνλaμ∂νaλ + aμj
μ, (1.103)

12 One feature of the composite fermion picture that is preferable to the composite boson picture

is that the former is naturally described as ‘topological order’, while the latter would lead to a picture

of the phase in terms of the symmetry-breaking order of a Bose–Einstein condensate.
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where γ is a numerical constant that we will interpret later, a is the Chern–Simons
gauge field, and j is a conserved current describing the particles of the theory. Un-
der a gauge transformation aμ → aμ + ∂μχ, the Chern–Simons term (the first one)
transforms as

εμνλaμ∂νaλ → εμνλaμ∂νaλ + εμνλ∂μχ∂νaλ, (1.104)

where the term with two derivatives of χ drops out by antisymmetry. The new term
can be written as

δS = 2γ
∫
d2x dt εμνλ∂μ(χ∂νaλ), (1.105)

where again the term with two derivatives acting on a gives zero by antisymmetry. So,
if we can neglect the boundary, the Abelian Chern–Simons term is gauge-invariant.
(As we discussed previously in the context of magnetoelectric polarizability, the
non-Abelian Chern–Simons term is not gauge-invariant, because ‘large’ (non-null-
homotopic) gauge transformations change the integral; this is related to the third
homotopy group of SU(N).) Later on. we will actually consider a system with a
boundary and see how the boundary term leads to physically important effects.

Consider the equation of motion obtained by varying this action. We get

4γεμνλ∂nuaλ = −jμ. (1.106)

where the 4 rather than a 2 appears because the Chern–Simons term has non-zero
derivative with respect to both a and ∂a. For a particle sitting at rest, the spatial
components of the current vanish, but there must be a flux: writing in components,
we have ∫

d2x (∂1a2 − ∂2a1) = − 1
4γ

∫
d2x j0. (1.107)

Hence a charged particle in the theory gains a flux of the a field (since the left term is
just the integral of a magnetic field). If the charge is localized, then the flux is localized
as well.

What good is this? Well, we know that when one charged particle with respect to
the a field moves around another, it will now pick up an Aharonov–Bohm phase from
the attached flux in addition to any statistics factor. The additional statistics factor is

θ =
1
8γ
, (1.108)

where the 1
2 here results because the particles only move halfway around each other

in an exchange. In other words, if we started with θ = 0 bosonic particles but added
a γ = 1/8π Chern–Simons term, we would obtain fermions, and vice versa. But so far
nothing constrains γ, suggesting that in 2D, ‘braiding’ statistics is not constrained to
be bosonic or fermionic. Particles in 2D that are neither bosonic nor fermionic are
known as ‘anyons’.
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Why is two spatial dimensions so special? It turns out that an argument about
why generalized statistics are possible for point particles in two spatial dimensions
but not higher dimensions was given long ago by Leinaas and Myrheim [23]. The key
observation is that an exchange path that takes one particle around another and back
to its original location is not smoothly contractible in 2D without having the particles
pass through each other, while in higher dimensions, such a path is contractible. The
consequence of this is that in 2D, phase factors are not defined just for permutations
of the particles but rather for any ‘braiding’.13

1.4.3.2 Chern–Simons theory II: integrating out gauge fields and
coupling to electromagnetism

Aside from the composite fermion/composite boson pictures, why might the Chern–
Simons theory with Lagrangian density given by (1.103) describe quantum Hall states?
Without working through a detailed derivation starting from non-relativistic quantum
mechanics of many interacting electrons in a magnetic field (which is still not all that
rigorous—for a discussion, see Zee’s lecture notes [43]) we can note the following.
A conserved electromagnetic current in 2 + 1 dimensions can always be written as the
curl of a gauge field:

Jμ =
1
2π
εμνλ∂νaλ (1.109)

(note that this electromagnetic current might in general be distinct from the particle
current above). Here a is automatically a gauge field since the U(1) gauge transform-
ation does not modify the current. Gauge invariance forbids the mass term aμaμ, so
the lowest-dimension possible term is the Chern–Simons term, which we write for
future use with a normalization different from that used above:

LCS =
k

4π
εμνλaμ∂νaλ. (1.110)

The point of the new normalization k = 8πγ compared with (1.103) is that the boson–
fermion statistics transformation above now corresponds just to k = 1. We will argue
later that k should be an integer for the electron to appear somewhere in the spectrum
of excitations of the theory.

Does this term need to appear? No—for example, in a system that has P or T
symmetry, it cannot appear. However, if it does appear, then, since there is only
one spatial derivative, it dominates the Maxwell term at large distances. Effectively,
we define the quantum Hall phase as one in which LCS appears in the low-energy
Lagrangian; for example, this is true in both the Laughlin state and the physical state
with Coulomb interactions, even though the overlap between those two ground-state
wavefunctions is presumably zero in the thermodynamic limit.

13 Even non-Abelian statistics are possible if there are multiple ground states: the phase factor

associated with a particular braid is then a matrix acting on the set of ground states, and two such

matrices need not commute.
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What if we added the aμJμ coupling and integrated out the gauge field? Well, the
main reason not to do so is that we then obtain a nonlocal current–current coupling.
Since the original action is quadratic in the fields, this integration is not too difficult,
but an alternative, equivalent way to do it is to solve for a in terms of J . Given a
general Lagrangian

L = φQφ+ φJ, (1.111)

whereQ denotes some operator, we have the formal equation of motion from varying φ,

2Qφ = −J, (1.112)

which is solved by

φ =
−1
2QJ. (1.113)

Then substituting this into the Lagrangian (and ignoring some subtleties about
ordering of operators), we obtain

L =
1
4
J

1
QJ − J

1
2QJ = −J 1

4QJ. (1.114)

So, for the Chern–Simons term, we need to define the inverse of the operator εμνλ∂ν
that appears between the a fields. This is a bit subtle because there is a zero mode
of the original operator, related to gauge invariance: for any smooth function g,
εμνλ∂ν(∂λg) = 0. To define the inverse, we fix the Lorentz gauge ∂μaμ = 0. In this
gauge, we look for an inverse using

(εμνλ∂ν)(ελαβ∂αaβ) = εμνλελαβ(∂ν∂αaβ). (1.115)

We can combine the ε tensors by noting that εμνλ = ελμν , so there are two types of
non-zero terms in the above: either μ = α and ν = β or vice versa, with a minus sign
in the second case. From the first type of term, we obtain ∂α(∂βaβ), which is zero by
our gauge choice. From the second type, we obtain

−∂2
νaμ. (1.116)

So the inverse of the operator appearing in the Chern–Simons term in this gauge is
−εμνλ∂ν/∂2, and the Lagrangian (1.103) with the gauge field integrated out is just

L =
1
8γ
jμ

(
εμνλ∂ν
∂2

)
jλ. (1.117)

Aside from showing another interesting difference between the Chern–Simons term
and the Maxwell term, we can use this inverse to couple the Chern–Simons theory to
an external electromagnetic gauge potential Aμ. We will set e = � = 1 except when
otherwise noted. We do not include the Maxwell term to give this field dynamics, but
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rather view it as an imposed field beyond the magnetic field producing the phase. For
example, we could use this additional field to add an electrical field, and we should
find a Hall response. Let’s try this:

L =
k

4π
εμνλaμ∂νaλ −

1
2π
εμνλAμ∂νaλ

=
k

4π
εμνλaμ∂νaλ −

1
2π
εμνλaμ∂νAλ, (1.118)

where in the second step we have dropped a boundary term and used the antisymmetry
property of the ε tensor. Note that to obtain the second term, we have just rewritten
AμJ

μ using (1.109).
Now we can integrate out aμ using equation (1.117) above, recalling γ = k/8π, and

obtain

Leff =
π

k
Jμε

μνλ∂ν
1
∂2
Jλ

=
1

4πk
εμαβ∂αAβε

μνλ∂ν
1
∂2
ελγδ∂γAδ., (1.119)

where in the second step we have used the rewritten Lagrangian in (1.118) to identify
Jμ = (1/2π)εμνλ∂νAλ. As above, the non-zero possibilities are α = ν and β = λ (+1)
or vice versa (−1), and also γ = μ and δ = ν (+1) or vice versa (−1). Working through
these, we are left with the γ = ν and δ = μ terms:

Leff =
1

4πk
εμνλAμ∂νAλ. (1.120)

This is the electromagnetic Chern–Simons term. The electromagnetic current is
obtained by varying A:

Jμ = −δLeff

δAμ
=

1
2πk

εμνλ∂νAλ. (1.121)

where the factor of 2 is obtained because the variation can act on either A.
We can see immediately that this predicts a Hall effect: in response to an electrical

field along x, we obtain a current along y. What about the factor 1/2π? That is here
just so that the response, once we restore factors of e and �, is

σxy =
e2

(2π)k�
=

1
k

e2

h
. (1.122)

Here we get a clue about the physical significance of k. Another clue is to consider
the electromagnetic charge J0 induced by a change in the magnetic field δB (i.e. an
additional field beyond the one producing the FQHE):

J0 = δn =
1

2πk
δB. (1.123)
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where we have written J0 = δn to indicate that this electromagnetic density describes
the change in electron density from the ground state without the additional field. For
the IQHE, a change of one flux quantum corresponds to one additional electron, while
we can see that the k = 3 Chern–Simons theory predicts a change in density e/3,
consistent with the quasihole and quasiparticle excitations.

To summarize what we have learned so far, we now see that Chern–Simons theory
predicts a connection between the Hall quantum, the statistics of quasiparticles in
the theory (from the previous section), and the effective density induced by a local
change in the magnetic field. Here, a ‘quasiparticle’, which we will discuss later, means
whatever particle couples to the Chern–Simons theory as in Section 1.4.3.1.1, which
need not be an electron.

1.4.3.3 Chern–Simons theory III: topological aspects and gapless edge
excitations

One obvious respect in which the Chern–Simons theory is topological is that, because
ε rather than the metric tensor g was used to raise the indices, there is no dependence
on the metric. In Zee’s language, it describes a world without rulers or clocks. Since the
stress–energy tensor in a relativistic theory is determined by varying the Lagrangian
with respect to the metric, the stress–energy tensor is identically zero.

How can a theory be interesting if all its states have zero energy, as in the pure
Chern–Simons theory? Well, one interesting fact is that the number of zero-energy
states is dependent on the manifold where the theory is defined. We will not try to
compute this in general but will solve the theory for the case of the torus. It is quite
surprising that we can solve this (2 + 1)-dimensional field theory exactly; the key will
be that there are very few physical degrees of freedom once the U(1) gauge invariance
is taken into account.

We wish to solve the pure Chern–Simons theory with action

LCS =
k

4π
εμνλaμ∂νaλ (1.124)

on the manifold R(time)× T 2(space). The gauge invariance is under aμ → aμ + ∂μχ,
with χ an arbitrary scalar function. Given an arbitrary configuration of the gauge field
aμ, we first fix a0 = 0 by the gauge transformation aμ → aμ + ∂μχ with χ = −

∫
a0 dt.

The Lagrangian is then

L = − k

4π
εijaiȧj , (1.125)

where i, j = 1, 2. The equation of motion from varying the original Lagrangian with
respect to a0 now gives a constraint

εij∂iaj = 0. (1.126)

There is still some gauge invariance remaining in a1, a2: we can add a purely spatially
dependent χ, so that a0 remains 0, to make ∂iai = 0 (an exercise for the reader).
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Then (ai(t), aj(t)) have zero spatial derivatives and hence are purely functions of time.
The Lagrangian (1.125) is now just the minimal coupling of a particle moving in a
position-dependent vector potential; thinking of (a1, a2) as the coordinates of a particle
moving in the plane, and noting that a constant magnetic field can be described by the
vector potential (1

2By,−
1
2Bx) = (1

2Ba2,−1
2Ba1), we see that this is the interaction

term of a particle in a constant magnetic field.
So far, using gauge invariance, we can reduce the degrees of freedom from a (2 + 1)-

dimensional field theory to the path integral for the quantum mechanics of a particle
moving in 2D. There is one last bit of gauge invariance we need to use. This will
reduce the space on which our particle moves, which so far is R2 because the gauge
fields are non-compact, to the torus T 2 on which the theory is defined. We consider
a gauge transformation of the form aj → aj − iu−1∂ju, where u is purely a function
of space. Note that if we can write u = eiθ, then this becomes a conventional gauge
transformation aj → aj + ∂jθ. This gauge transformation will not break the previous
two gauge constraints if ∇2θ = 0.

However, the periodicity of the torus means that we might not be able to define
θ periodically, even if u is defined globally and the gauge transformation is indeed
periodic. Taking the torus to be L1 × L2, the following θ has zero Laplacian everywhere
and gives rise to a periodic u and hence a periodic gauge transformation, even if θ is
not itself periodic:

θ =
2πn1x

L1
+

2πn2y

L2
. (1.127)

The effect of this gauge transformation is that we can shift the particle’s trajectory by
an arbitrary constant integer multiple of L1 in the x direction and L2 in the y direction.
To make the torus equivalent to the unit torus, we can rescale ai(t) = (2π/Li)qi(t).
So, finally, we have shown

S =
∫

d2x dt
k

4π
εμνλaμ∂νaλ

= −kL1L2

4π

∫
dt

(2π)2

L1L2
εijqiq̇j . (1.128)

Here one L1L2 factor is from the spatial integrals and one is from the change of
variable from ai to qi. We still haven’t done anything quantum-mechanical to solve
the path integral. However, we can temporarily add a term mq̇2i /2 to the Lagrangian
and recognize it as the path integral for a particle moving on the torus in a constant
magnetic field. The gauge potential is Ai = kπεijqj , which corresponds to a magnetic
field B = 2πk (this factor of 2 always appears in the rotational gauge). This is in our
theorist’s units with � = e = 1; it means that there are a total of k flux quanta through
the torus.

The limit we care about for pure Chern–Simons theory is m→ 0, which takes all
states not in the lowest Landau level to infinite energy. This makes sense because in a
topological theory there can be no energy scale—the states either have some constant
energy (the lowest Landau level here), which can be taken to zero, or infinite energy
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(the other Landau levels here). A quick calculation shows that there are exactly k
states in the lowest Landau level on the torus pierced by k flux quanta; note that the
‘shift’ of one extra level on the sphere is absent. For example, the lowest Landau level
with one flux quantum through the sphere corresponds to the coherent-state path
integral for a s = 1

2 particle (see [2]), with two degenerate states.
The conclusion is that the parameter k also controls the ground-state degeneracy

on the torus. An argument by Wen and Niu [41] (regrettably, direct calculation seems
to be more difficult) shows that the general degeneracy of the pure Abelian Chern–
Simons theory on a 2-manifold of genus g is kg. So, for a topological theory, the physical
content of the model is determined not just by explicit parameters in the action, such
as k, but also by the topology of the manifold where the theory is defined. In this sense,
topological theories are sensitive to global or ‘long-ranged’ properties, even though the
theory is massive/gapped. (Of course, in the pure Chern–Simons theory, there is no
notion of length, so the distinction between local and global doesn’t mean much, but
adding a Maxwell term or something like that would not modify the long-distance
properties—it would just mean that the other Landau levels were no longer at infinite
energy.)

1.4.3.4 Bulk–edge correspondence

We noted above that the Chern–Simons term has different gauge-invariance properties
from the Maxwell term: in particular, in a system with a boundary, it is not gauge-
invariant by itself, because the boundary term we found above need not vanish. Our
last goal in this section is to see that this gauge invariance leads to the free massless
chiral boson theory at the edge:

Sedge =
k

4π

∫
dt dx (∂t + v∂x)φ∂xφ. (1.129)

Here k is exactly the same integer coefficient as in the bulk Chern–Simons theory,
while v is a non-universal velocity that depends on the confining potential and other
details. Note that the kinetic term here is ‘topological’ in the sense that it does not
contribute to the Hamiltonian, because it is first-order in time. The second term is
not topological and hence shouldn’t be directly obtainable from the bulk theory.

The theory of the bulk and boundary is certainly invariant under ‘restricted’ gauge
transformations that vanish at the boundary: aμ → aμ + ∂μχ with χ = 0 on the bound-
ary. From (1.105), the boundary term vanishes if χ = 0 there. This constraint means
that degrees of freedom that were previously gauge degrees of freedom now become
dynamical degrees of freedom. We will revisit this idea later.

To start, choose the gauge condition a0 = 0 as in Section 1.4.3.3 and again use the
equation of motion for a0 as a constraint.14 Then εijaj = 0 and we can write ai = ∂iφ.
Substituting this into the bulk Chern–Simons Lagrangian, we have

14 Here and before, we are assuming that the Jacobians from our gauge-fixings and changes of
variables are trivial. That this is the case is argued in Elitzur et al. [8]. Another nice discussion in this

paper is how, for the non-Abelian case, the bulk can be understood as providing the Wess–Zumino

term that keeps the edge theory gapless.
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S = − k

4π

∫
εijai∂0aj d

2x dt

= − k

4π

∫
(∂xφ∂0∂yφ− ∂yφ∂0∂xφ) d2x dt

= − k

4π

∫
[∂x(φ∂0∂yφ)− ∂y(φ∂0∂xφ)] d2x dt

= − k

4π

∫
(∇× v)z d2x dt = − k

4π

∫
v · dl dt, (1.130)

where v is the vector field

v = (φ∂0∂xφ, φ∂0∂yφ). (1.131)

(You might wonder why this doesn’t let us transform the action simply to zero in the
case of the torus studied in Section 1.4.3.3. The reason is that when using Stokes’s
theorem in the final line, we have assumed the disk topology—since the torus has
non-trivial topology, we are not allowed to use Stokes’s theorem to obtain zero, cf. Sec-
tion 1.2.1.) So at the boundary, which we will assume to run along x for compactness,
the resulting action is, after an integration by parts,

Sedge =
k

4π

∫
∂tφ∂xφdx dt. (1.132)

We’re now almost done—this predicts a ‘topological’ edge theory determined by
the bulk physics, and this edge theory is topological in that the Hamiltonian is zero.
However, in order to obtain an accurate physical description, we need to include non-
universal, non-topological physics arising from the details of how the Hall droplet is
confined. One approach to this is to start from a hydrodynamical theory of the edge
and then recognize one term in that theory as Sedge above. The other term in that
theory is a non-universal velocity term, and the combined action is

Sedge =
k

4π

∫
(∂tφ− v∂xφ) ∂xφdx dt. (1.133)

Here the non-universal parameter v clearly has units of a velocity, and in the correlation
functions of the theory discussed below indeed appears as a velocity. The Hamiltonian
density is

H =
kv

4π
(∂xφ)2. (1.134)

Note that for the Hamiltonian to be positive-definite, the product kv needs to be
positive: in other words, the sign of the velocity is determined by the bulk parameter
k even thought the magnitude is not, and the edge is indeed chiral. (The density at the
edge is found from the hydrodynamical argument to be proportional to ∂xφ/2π, so the
above interaction term corresponds to a short-ranged density–density interaction; as
usual, we will neglect the differences that arise if the long-ranged Coulomb interaction
is retained instead.)
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1.4.3.5 Chern–Simons theory IV: connecting edge theory to observables

We give a quick overview of how the above theory leads to detailed predictions of
several edge properties. The general approach to treating 1D electronic systems via
free-boson theories is known as ‘bosonization’, and is the subject of several books
(e.g. [38]). While we will not calculate the main results in detail, it turns out that
there is a close similarity between the 1D free (chiral or non-chiral) boson Lagrangian
and the theory of the algebraic phase of the XY model studied previously.

The reason such a connection exists is simple: the Euclidean version of the non-
chiral version of the above free-boson theory is just the 2D Gaussian theory. However,
we know from the study of the XY model that subtleties such as the Berezinskii–
Kosterlitz–Thouless transition arise when the variable appearing in the Gaussian
theory is taken to be periodic, as when it describes an angular variable in that model.
One of the surprising results we found was a power-law phase with continuously vari-
able exponents: the correlations of spin operators Sx + iSy = eiθ go as a power law
with the coefficient depending on the prefactor of the Gaussian.

The connection between the edge theory above and physical quantities is that the
electron correlation function is represented in the bosonized theory as eikφ: effectively,
φ describes a single quasiparticle and k quasiparticles make up the electron. The
electron propagator in momentum space is likewise here found to have an exponent
that depends on k: there is a factor of k2 from the k’s in the electron operator, and a
factor of k−1 from the quasiparticle propagator since k appears as a coefficient in the
Lagrangian. The result is

G(q, ω) ∝ (vq + ω)k−1

vq − ω . (1.135)

This describes an electron density of states N(ω) ∝ |ω|k−1, and this exponent can be
measured in tunnelling exponents: dI/dV ∝ V k−1. As a sanity check, the k = 1 case
describes a constant density of states and the predicted conduction is Ohmic: I ∝ V .

Experimental agreement is reasonable but hardly perfect; at ν = 1
3 , the observed

tunnelling exponent I ∝ V α satisfies α ≈ 2.7, which is far from the Ohmic value (α= 1)
but reasonably close to the predicted value α = 3. The tunnelling exponent also does
not appear to be perfectly constant when one is on a Hall plateau, as the theory
would predict. Other measurements include ‘noise’ measurements that attempt to see
the quasiparticle charge directly and, in recent years, interferometry measurements
that try to check more subtle aspects of the theory.

In closing, we comment briefly on the generalization of the above Chern–Simons
and edge theories to more complicated (but still Abelian) quantum Hall states. These
states, as suggested by the hierarchy picture, have multiple types of ‘particles’, and
two particles can have non-trivial statistics whether or not they belong to the same
species. These statistics are defined by a universal integer ‘K matrix’ that can be
taken as a fundamental aspect of the topological order in the state. (Information must
also be provided about the allowed quasiparticle types.) The resulting Chern–Simons
theory is

L =
1
4π
KIJaIμ∂νa

J
λ . (1.136)
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This effective theory works for all but a few of the many quantum Hall states observed
in experiment. It is hoped that this chapter has clarified how a few geometrical struc-
tures (the Berry phase, Chern and Chern–Simons forms, etc.) underlie a remarkable
diversity of physics.

1.A Topological invariants in 2D with time-reversal invariance

The point of this appendix is to provide additional details on the topological invariants
in the 2D case, which are more difficult to write down explicitly in terms of the Berry
phase than in the 3D case. One way of doing this is educational since it builds on the
classic work of Wess and Zumino that was alluded to earlier in the discussion of spin
chains.

1.A.1 An interlude: Wess–Zumino terms in 1D
nonlinear σ-models

A mathematical strategy similar to what we will need for the QSHE was developed by
Wess and Zumino in the context of (1 + 1)-dimensional field theory. The free boson is
described by the action

S0 = −K
2

∫
R2

(∇φ)2, (1.137)

which for a compact boson field φ is the nonlinear sigma model into the circle S1,
which is the manifold of the Lie group U(1). The direct generalization of this to a
more complicated Lie group such as SU(N) is written as

S0 = − k

8π

∫
S2
K
(
g−1∂μg, g−1∂μg

)
, (1.138)

where we have compactified the plane to the sphere, changed the prefactor, and written
the interaction in terms of the ‘Killing form’ K on the Lie algebra associated with g.
(This Killing form is a symmetric bilinear form that, in the U(1) case above, is just the
identity matrix.) Unfortunately, this action behaves quite differently from the U(1)
case: it does not describe a critical theory (in particle physics language, it develops a
mass).

To fix this problem, Wess and Zumino wrote a term that is quite remarkable:

SWZ = − 2πk
48π2

∫
B3
εμνλK

(
g−1∂μg,

[
g−1∂νg, g

−1∂λg
])
. (1.139)

Even writing this term depends on being able to take an original configuration of g on
the sphere S2 and extend it into the sphere’s interior B3. (We will not show here that
this term accomplishes the desired purpose, just that it is topologically well defined.)
At least one contraction into the ball exists, because π2(G) = 0. Different contractions
exist, because π3(G) = Z, and the coefficient of the second term is chosen so that, if k
(the ‘level’ of the resulting WZW theory) is an integer, the different topological classes
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differ by a multiple of 2πi in the action, so that the path integral is independent of
what contraction is chosen. The reason that π3(G) is relevant here is that two different
contractions into the interior B3 can be joined together at their common boundary to
form a 3-sphere, in the same way as two disks with the same boundary can be joined
together to form the top and bottom hemispheres of a 2-sphere.

1.A.2 Topological invariants in time-reversal-invariant Fermi systems

The main subtlety in finding a topological invariant for time-reversal-invariant band
structures will be in keeping track of the time-reversal requirements. We introduce
Q as the space of time-reversal-invariant Bloch Hamiltonians. This is a subset of the
space of Bloch Hamiltonians with at most pairwise degeneracies (the generalization
of the non-degenerate case we described above; we need to allow pairwise degen-
eracies because bands come in Kramers-degenerate pairs). In general, a T -invariant
system need not have Bloch Hamiltonians in Q except at the four special points where
k = −k. The homotopy groups of Q follow from similar methods to those used above:
π1 = π2 = π3 = 0, π4 = Z. T -invariance requires an even number of bands 2n, so
Q consists of 2n× 2n Hermitian matrices for which H commutes with Θ, the
representation of T in the Bloch Hilbert space:

ΘH(k)Θ−1 = H(−k). (1.140)

Our goal in this subsection is to give a geometric derivation of a formula, first
obtained by Fu and Kane [12] via a different approach, for the Z2 topological invariant
in terms of the Berry phase of Bloch functions:

D =
1
2π

[∮
∂(EBZ)

dk ·A−
∫

EBZ

d2kF
]

mod 2. (1.141)

Here EBZ stands for ‘effective Brillouin zone’ [27], which describes one half of the
Brillouin zone together with appropriate boundary conditions. Since the Brillouin zone
is a torus (see Fig. 1.2(a)), the EBZ can be viewed as a cylinder, and its boundary
∂(EBZ) as two circles, as in Fig. 1.2(b). While F is gauge-invariant, A is not, and
different (time-reversal-invariant) gauges, in a sense made precise below, can change
the boundary integral by an even amount. The formula (1.141) was not the first
definition of the 2D Z2 invariant, as the original Kane–Mele paper [20] gave a definition
based on counting of zeros of the ‘Pfaffian bundle’ of wavefunctions. However, (1.141)
is both easier to connect to the IQHE and easier to implement numerically.

The way to understand this integral is as follows. Since the EBZ has boundaries,
unlike the torus, there is no obvious way to define Chern integers for it; put another
way, the F integral above is not guaranteed to be an integer. However, given a map
from the EBZ to Bloch Hamiltonians, we can imitate the Wess–Zumino approach
above and consider ‘contracting’ or ‘extending’ the map to be one defined on the
sphere (Fig. 1.3), by finding a smooth way to take all elements on the boundary to
some constant element Q0 ∈ Q. The geometric interpretation of the line integrals of A
in (1.141) is that these are the integrals of F over the boundaries, and the requirement
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Fig. 1.2 (a) A 2D Brillouin zone; note that any such Brillouin zone, including that for graphene,
can be smoothly deformed into a torus. The labelled points are time-reversal-invariant momenta.
(b) The effective Brillouin zone (EBZ). The horizontal lines on the boundary circles ∂(EBZ)

connect time-reversal-conjugate points, where the Hamiltonians are related by time reversal and
therefore cannot be specified independently. (Reprinted with permission from [27]. Copyright
2007 by the American Physical Society.)
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Fig. 1.3 (a) Contracting the extended Brillouin zone to a sphere. (b) Two contractions can be
combined to give a mapping from the sphere, but this sphere has a special property: points in
the northern hemisphere are conjugate under T to those in the southern, in such a way that
overall every band pair’s Chern number must be even. (Reprinted with permission from [27].
Copyright 2007 by the American Physical Society.)

on the gauge used to define the two A integrals is that each extends smoothly in the
associated cap. The condition on the cap is that each vertical slice satisfy the same
time-reversal-invariance condition as an EBZ boundary; this means that a cap can
alternatively be viewed as a way to smoothly deform the boundary to a constant
while maintaining the time-reversal condition at each step.

The two mathematical steps, as in the Wess–Zumino term, are showing that
such contractions always exist and that the invariant D in (1.141) is invariant un-
der the choice of contraction. The first step is rather straightforward and follows from
π1(H) = π1(Q) = 0. The second step is more subtle and gives an understanding of why
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only a Z2 invariant or ‘Chern parity’ survives, rather than an integer-valued invariant
as in the IQHE. We can combine two different contractions of the same boundary into
a sphere, and the Chern number of each band pair on this sphere gives the difference
between the Chern numbers of the band pair obtained using the two contractions
(Fig. 1.3).

The next step is to show that the Chern number of any band pair on the sphere
is even. To accomplish this, we note that Chern number is a homotopy invariant and
that it is possible to deform the Bloch Hamiltonians on the sphere so that the equator
is the constant element Q0 (here the equator came from the time-reversal-invariant
elements at the top and bottom of each allowed boundary circle.) The possibility of
deforming the equator follows from π1(Q) = 0, and the equivalence of different ways
of deforming the equator follows from π2(Q) = 0. Then the sphere can be separated
into two spheres, related by time reversal, and the Chern numbers of the two spheres
are equal, so the total Chern number is zero.

The above argument establishes that the two values of the Z2 invariant are related
to even or odd Chern number of a band pair on half the Brillouin zone. Note that
the lack of an integer-valued invariant means, for example, that we can smoothly go
from an Sz-conserved model with ν = 1 for spin ↑, ν = −1 for spin ↓ to a model with
ν = ±3 by breaking Sz conservation in between. This can be viewed as justification
for the physical argument given above in terms of edge states annihilating in pairs,
once we define the Z2 invariant for disordered systems in the following subsection.

1.A.3 Pumping interpretation of Z2 invariant

We expect that, as for the IQHE, it should be possible to reinterpret the Z2 invariant
as an invariant that describes the response of a finite toroidal system to some per-
turbation. In the IQHE, the response is the amount of charge that is pumped around
one circle of the torus as a 2π flux (i.e. a flux hc/e) is pumped adiabatically through
the other circle.15 Here, the response will again be a pumped charge, but the cyclic
process that pumps the charge is more subtle.

Instead of inserting a 2π flux through a circle of the toroidal system, we insert a
π flux, adiabatically (Fig. 1.4); this is consistent with the part of D in (1.141) that
is obtained by integration over half the Brillouin zone. However, while a π flux is
compatible with T invariance, it is physically distinct from zero flux, and hence this
process is not a closed cycle. We need to find some way to return the system to its
initial conditions. We allow this return process to be anything that does not close
the gap, but require that the Hamiltonians in the return process not break time-
reversal symmetry. Since the forward process, insertion of a π flux, definitely breaks
time-reversal symmetry, this means that the whole closed cycle is a non-trivial loop
in Hamiltonian space. The Z2 invariant then describes whether the charge pumped by
this closed cycle through the other circle of the torus is an odd or even multiple of the

15 A previous pumping definition that involves a π flux but considers pumping of ‘Z2’ from one

boundary to another of a large cylinder was given by Fu and Kane [12].
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Γ Γ

Fig. 1.4 Graphical representation of charge pumping cycle for Chern parities. The first stage
takes place as the flux φx increases adiabatically from 0 to π. In the second stage, the Hamilton-
ian at (φx = π, φy) is adiabatically transported through the space of Hamiltonians to return to
the Hamiltonian at (φx = 0, φy). The difference between the second stage and the first is that
at every step of the second stage, the Hamiltonians obey the time-reversal conditions required
at φx = 0 or φx = π. The bold lines indicate paths along which all Hamiltonians are time-
reversal-invariant, and the disk with horizontal lines indicates, as before, how pairs of points in
the second stage are related by time reversal. (Reprinted with permission from [9]. Copyright
2007 by the American Physical Society.)

electron charge; while the precise charge pumped depends on how the cycle is closed,
the parity of the pumped charge (i.e. whether it is odd or even) does not.

This time-reversal-invariant closure is one way to understand the physical origin of
theA integrals in (1.141), although here, by requiring a closed cycle, we have effectively
closed the EBZ to a torus rather than a sphere. One weakness of the above pumping
definition, compared with the IQHE, is that obtaining the Z2 invariant depends on
Fermi statistics, so that this definition cannot be directly applied to the many-body
wavefunction as in the IQHE case. The problem of a pumping-like definition of the
3D topological insulator for many electrons is solved (aside from possible exotic states
with fractional charge) by the ‘axion electrodynamics’ discussed in Section 1.3.8.
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[22] A. Läuchli, G. Schmid, and S. Trebst. Spin nematics correlations in bilinear–
biquadratic s = 1 spin chains. Phys. Rev. B, 74, 144426 (2006).

[23] J. M. Leinaas, and J. Myrheim. On the theory of identical particles. Nuovo Cim.
B, 37, 1 (1977).

[24] A. Malashevich, I. Souza, S. Coh, and D. Vanderbilt. Theory of orbital magne-
toelectric response. New J. Phys., 12, 053032 (2010).



References 61

[25] N. D. Mermin. The topological theory of defects in ordered media. Rev. Mod.
Phys., 51, 591 (1979).

[26] A. Messiah. Quantum Mechanics. Wiley, New York, 1958 (republished Dover,
New York, 2014).

[27] J. E. Moore and L. Balents. Topological invariants of time-reversal-invariant band
structures. Phys. Rev. B, 75, 121306(R) (2007).

[28] S. Murakami, N. Nagaosa, and S.-C. Zhang. Dissipationless spin current at room
temperature. Science, 301, 1348 (2003).

[29] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong. Anomalous
Hall effect. Rev. Mod. Phys., 82, 1539 (2010).

[30] M. Nakahara. Geometry, Topology and Physics, 2nd edn. Taylor & Francis, New
York, 2003.

[31] Q. Niu, D. J. Thouless, and Y.-S. Wu. Quantized Hall conductance as a
topological invariant. Phys. Rev. B, 31, 3372 (1985).

[32] G. Ortiz and R. M. Martin. Macroscopic polarization as a geometric quantum
phase: many-body formulation. Phys. Rev. B, 49, 14202 (1994).

[33] R. E. Prange and S. M. Girvin (eds.). The Quantum Hall Effect. Springer-Verlag,
New York, 1990.

[34] X.-L. Qi, T. L. Hughes, and S.-C. Zhang. Topological field theory of time-reversal
invariant insulators. Phys. Rev. B, 78, 195424 (2008).

[35] X.-L. Qi and S.-C. Zhang. Topological insulators and superconductors. Rev. Mod.
Phys., 83, 1057 (2011).

[36] N. Read. Order parameter and Ginzburg–Landau theory for the fractional
quantum Hall effect. Phys. Rev. Lett., 62, 86 (1989).

[37] R. Resta. Theory of the electric polarization in crystals. Ferroelectrics, 136, 51
(1992).

[38] M. Stone (ed.). Bosonization. World Scientific, Singapore, 1994.
[39] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized Hall

conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49, 405
(1982).

[40] X.-G. Wen. Theory of the edge states in fractional quantum Hall effects. Int. J.
Mod. Phys. B, 6, 1711 (1992).

[41] X. G. Wen and Q. Niu. Ground-state degeneracy of the fractional quantum Hall
states in the presence of a random potential and on high-genus Riemann surfaces.
Phys. Rev. B, 41, 9377 (1990).

[42] F. Wilczek. Two applications of axion electrodynamics. Phys. Rev. Lett., 58, 1799
(1987).

[43] A. Zee. Quantum Hall fluids. In H. B. Geyer (ed.). Field Theory, Topology and
Condensed Matter Physics. Proceedings of the Ninth Chris Engelbrecht Summer
School in Theoretical Physics Held at Storms River Mouth, Tsitsikamma Na-
tional Park, South Africa, 17–28 January 1994, p. 99. Lecture Notes in Physics,
Vol. 456. Springer-Verlag, Berlin, 1995.

[44] S. C. Zhang, T. H. Hansson, and S. Kivelson. Effective-field-theory model for the
fractional quantum Hall effect. Phys. Rev. Lett., 62, 82 (1989).





2

Topological superconductors
and category theory

Andrei Bernevig and Titus Neupert

Department of Physics,
Princeton University,
Princeton, NJ 08544,

USA
Princeton Center for Theoretical Science,

Princeton University,
Princeton, NJ 08544,

USA

Topological Aspects of Condensed Matter Physics. First Edition. C. Chamon et al.
c© Oxford University Press 2017. Published in 2017 by Oxford University Press.



Chapter Contents

2 Topological superconductors and category
theory 63

Andrei BERNEVIG and Titus NEUPERT

Preface 65

2.1 Introduction to topological phases in condensed
matter 65
2.1.1 The notion of topology 65
2.1.2 Classification of non-interacting fermion

Hamiltonians: the 10-fold way 67
2.1.3 The Su–Schrieffer–Heeger model 75
2.1.4 The 1D p-wave superconductor 77
2.1.5 Reduction of the 10-fold way classification by

interactions: Z → Z8 in class BDI 80
2.2 Examples of topological order 82

2.2.1 The toric code 83
2.2.2 The 2D p-wave superconductor 90

2.3 Category theory 102
2.3.1 Fusion category 102
2.3.2 Braiding category 110
2.3.3 Modular matrices 114
2.3.4 Examples: the 16-fold way revisited 118

Acknowledgements 120
References 121

Colour figures. For those figures in this chapter that use colour, please see the ver-

sion of these lecture notes at http://topo-houches.pks.mpg.de. and arXiv: 1506.05805

[cond-mat.str-el]. These figures are indicated by ‘[Colour online]’ at the start of the caption.



Introduction to topological phases in condensed matter 65

Preface

We give a pedagogical introduction to topologically ordered states of matter, with the
aim of familiarizing the reader with their axiomatic topological quantum field theory
description. We introduce basic non-interacting topological phases of matter protected
by symmetries, including the Su–Schrieffer–Heeger model and the one-dimensional
p-wave superconductor. The defining properties of topologically ordered states are
illustrated explicitly using the toric code and—on a more abstract level—Kitaev’s 16-
fold classification of two-dimensional topological superconductors. Subsequently, we
present a short review of category theory as an axiomatic description of topological
order in two dimensions. Equipped with this structure, we revisit Kitaev’s 16-fold way.

Thee lectures on which this chapter is based were also presented in part at:

• XVIII Training Course in the Physics of Strongly Correlated Systems, 6–17 Octo-
ber 2014, International Institute for Advanced Scientific Studies, Vietri sul Mare,
Italy

• 7th School on Mathematical Physics, ‘Topological Quantum Matter: From Theory
to Applications’, 25–29 May 2015, Universidad de los Andes, Bogotá, Colombia

2.1 Introduction to topological phases in condensed matter

2.1.1 The notion of topology

In these lectures, we will learn how to categorize and characterize some phases of
matter that have topological attributes. A topological property of a phase, such as
boundary modes (in an open geometry), topological response functions, or the char-
acter of its excitations, is described by a set of quantized numbers, related to so-called
topological invariants of the phase. The quantization immediately implies that topo-
logical properties are universal (they can be used to label the topological phase) and
in some sense protected, because they cannot change smoothly when infinitesimal per-
turbations are added. Topological properties, in the sense that we want to discuss
them here, can only be defined for

• spectrally gapped ground states on a manifold without boundary of
• local Hamiltonians at
• zero temperature.

The spectral gap allows us to define an equivalence class of states, i.e. a phase, with
the help of the adiabatic theorem. Two gapped ground states are in the same phase
if there exists an adiabatic interpolation between their respective Hamiltonians, such
that the spectral gap above the ground state as well as the locality are preserved for
all Hamiltonians along the interpolation.

Often it is useful to further modify these rules to define topological phases that
are subject to symmetry constraints. We refer to topological states as being pro-
tected/enriched by a symmetry group G if the Hamiltonian has a symmetry G and
only G-preserving interpolations are allowed. Since the G-preserving interpolations
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are a subset of all local interpolations, it is clear that symmetries make a topological
classification of Hamiltonians more refined.

The locality of a Hamiltonian is required to guarantee the quantization of topo-
logical response functions and to distinguish topological characterizations depending
on the dimensionality of space. If we were not to impose locality, any system could in
essence be zero-dimensional and there would be no notion of boundary states (which
are localized over short distances) or point-like and line-like excitations, etc.

Equipped with this definition of a topological phase, the exploration of topological
states of matter above all poses a classification problem. We would like to know how
many phases of quantum systems exist that can be distinguished by their topological
properties. We would like to obtain such a classification while imposing any sym-
metry G that is physically relevant, such as time-reversal symmetry, space-group or
point-group symmetries of a crystal, particle number conservation, etc. To identify
the right mathematical tools that allow for such a classification and to guarantee its
completeness is a subject of ongoing research. Here, we shall focus on aspects of this
classification problem, which are well established and understood.

Most fundamental is a distinction between two types of topological states of matter:
those with intrinsic (long-range entangled) topological order [1] and those without.
This notion is also core to the structure of these lectures. In this section, we only
discuss phases without intrinsic topological order, while the following two sections are
devoted to states with intrinsic topological order. A definition of intrinsic topological
order can be based on several equivalent characterizations of such a phase, of which
we give three:

• Topological ground-state degeneracy. On a manifold without boundary, the degen-
eracy of gapped topologically degenerate ground states depends on the topological
properties of the manifold. There are no topologically degenerate ground states
if the system is defined on a sphere. The matrix elements of any local operator
taken between two distinct topologically degenerate ground states vanishes.

• Fractionalized excitations. There exist low-energy excitations that are point-like
(in two dimensions (2D) or above) or line-like (in three dimensions (3D) or above).
These excitations carry a fractional quantum number (e.g. a fractional charge) as
compared with the microscopic degrees of freedom that enter the Hamiltonian and
are deconfined and dynamical (i.e. free to move in the low-energy excited states).

• Topological entanglement entropy. The entanglement entropy between two parts
of a system that is in a gapped zero-temperature ground state typically scales
with the size of the line or surface that separates the two regions (‘area-law en-
tanglement’). Topologically ordered, long-range entangled states have a universal
subleading correction to this scaling that is characteristic of the type of topological
order.

(Note that these statements, like many universal properties we discuss, are only strictly
true in the thermodynamic limit of infinite system size. For example, in a finite system,
the ground-state degeneracy is lifted by an amount that scales exponentially with
system size.) As fractionalized excitations in the above sense may only exist in two
or higher dimensions, intrinsic topological order cannot be found in one-dimensional
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(1D) phases of matter. Further, for intrinsic topological order to occur, interactions
are needed in the system.

Examples of topologically non-trivial phases (both with and without intrinsic topo-
logical order) exist in the absence of any symmetry. However, most phases without
intrinsic topological order belong to the so-called symmetry-protected topological
(SPT) phases. In these cases, the topology is protected by a symmetry. These phases
almost always possess topologically protected boundary modes when defined on a
manifold with boundary, except if the boundary itself breaks the protecting symmetry
(as could be the case with inversion symmetry, for example).

In contrast, phases with intrinsic topological order are not necessarily equipped
with boundary modes, even if the boundary of the manifold preserves the defining
symmetries of the phase. If the definition of a phase with intrinsic topological order
relies on symmetries, it is called a symmetry-enriched topological (SET) phase.

An alternative characterization of topological properties of a phase uses the en-
tanglement between different subsystems. While we opt not to touch upon this concept
here, we want to make contact with the ensuing terminology: All phases with intrinsic
topological order are called long-range entangled (LRE). The term ‘short-range en-
tangled (SRE) phase’ is often used synonymously with ‘no intrinsic topological order’.
(Some authors also count 2D phases with non-vanishing thermal Hall conductivity,
such as the p+ ip superconductors, but no intrinsic topological order unless gauged
as LRE.)

In these lectures, we will encounter two classifications of a subset of topo-
logical phases. The following subsection introduces the complete classification of
non-interacting fermionic Hamiltonians with certain symmetries (which have no in-
trinsic topological order). Section 2.3 is concerned with the unified description of 2D
phases with intrinsic topological order in the absence of any symmetries.

2.1.2 Classification of non-interacting fermion Hamiltonians:
the 10-fold way

We have stated that SPT order in SRE states manifests itself via the presence of gap-
less boundary states in an open geometry. In fact, there exists a intimate connection
between the topological character of the gapped bulk state and its boundary modes.
The latter are protected against local perturbations on the boundary that (i) preserve
the bulk symmetry and (ii) induce no intrinsic topological order or spontaneous sym-
metry breaking in the boundary modes. This bulk–boundary correspondence can be
used to classify SPT phases. Two short-range entangled phases with the same sym-
metries belong to a different topological class, if the interface between the two phases
hosts a state in the bulk gap and this state cannot be moved into the continuum
of excited states by any local perturbation that obeys (i) and (ii). Equivalently, to
change the topological attribute of a gapped bulk state via any smooth changes in the
Hamiltonian, the bulk energy gap has to close and reopen.

Schnyder et al. [2]use this bulk–boundary correspondence to classify all
non-interacting fermionic Hamiltonians. For the topological phases that they discuss,
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two fundamental symmetries, particle–hole symmetry (PHS) and time-reversal sym-
metry (TRS), are considered. In the following, we will review the essential results of
this classification [2–4].

2.1.2.1 Classification with respect to time-reversal and particle–hole
symmetry

Symmetries in quantum mechanics are operators that have to preserve the absolute
value of the scalar product of any two vectors in Hilbert space. They can thus be either
unitary operators, preserving the scalar product, or antiunitary operators, turning the
scalar product into its complex conjugate (up to a phase). For a unitary operator to
be a symmetry of a given Hamiltonian H, the operator has to commute with H. Con-
sequently, the Hamiltonian can be block-diagonalized, where each block acts on one
eigenspace of the unitary symmetry. IfH has a unitary symmetry, we block-diagonalize
it and then consider the topological properties of each block individually. This way, we
do not have to include unitary symmetries (except for the product of TRS and PHS
and the omnipresent particle number conservation) in our further considerations, as
we will not focus on the burgeoning field of crystalline topological insulators.

A fundamental antiunitary operator in quantum mechanics is the reversal of
time T . Let us begin by recalling its elementary properties. If a given Hamiltonian H
is TRS, that is,

T HT −1 = +H, (2.1a)

then the time-evolution operator at time t should be mapped to the time-evolution
operator at −t by the operator T :

T e−itHT −1 = e−T iT −1tH

= e−i(−t)H .
(2.1b)

We conclude that the reversal of time is indeed an antiunitary operator T iT −1 = −i.
It can be represented as T = TK, where K denotes complex conjugation and T is a
unitary operator. Applying the reversal of time twice on any state must return the
same state up to an overall phase factor eiφ:

eiφ != T 2 = T (TT)−1

⇒ T = eiφTT, TT = eiφT.
(2.1c)

Inserting the last two equations into one another, we obtain T = e2iφT ; that is, e2iφ

has to equal +1. We conclude that the time-reversal operator squares either to +1 or
to −1:

T 2 = +1, T 2 = −1. (2.1d)

The second fundamental antiunitary symmetry considered here is charge conjuga-
tion P . Its most important incarnation in solid state physics is found in the theory of
superconductivity. In an Andreev reflection process, an electron-like quasiparticle that
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enters a superconductor is reflected as a hole-like quasiparticle. The charge difference
between incident and reflected states is accounted for by adding one Cooper pair to
the superconducting condensate. In the mean-field theory of superconductivity, the
energies of the electron-like state and the hole-like state are equal in magnitude and
opposite in sign, giving rise to the PHS. In this case, rather than being a fundamental
physical symmetry of the system like TRS is, PHS emerges owing to a redundancy in
the mean-field description. We define a (single-particle) Hamiltonian H to be PHS if

PHP−1 = +H. (2.1e)

In order to also reverse the sign of charge, P has to turn the minimal coupling p− ieA
into p + ieA, where p is the momentum operator and A is the electromagnetic gauge
potential. This is achieved by demanding PiP−1 = −i. We conclude that P is indeed
an antiunitary operator that can be decomposed as P = PK, where P is a unitary
operator. As a consequence, the reasoning of (2.1c) also applies to P and we conclude
that the charge conjugation operator squares either to +1 or to −1:

P2 = +1, P2 = −1. (2.1f)

In the case where the operators T and P are both symmetries of H, their product
is also a symmetry of H. We call this product chiral transformation C := T P. It is a
unitary operator. The Hamiltonian H transforms under the chiral symmetry as

CHC−1 = +H. (2.1g)

(It is important to note that both P and C anticommute rather than commute with
the single-particle first-quantized Hamiltonian Hα,α′ that we will introduce below.)
Observe that a Hamiltonian can have a chiral symmetry, even if it possesses neither
PHS nor TRS. We can now enumerate all combinations of the symmetries P, T , and
C that a Hamiltonian can obey, accounting for the different signs of T 2 and P2. There
are in total 10 such symmetry classes, listed in Table 2.1. The main result of Schnyder
et al. [2] is to establish how many distinct phases with protected edge modes exist on
the (d− 1)-dimensional boundary of a phase in d dimensions. We find three possible
cases: if there is only one (topologically trivial) phase, then the entry ∅ is found in
Table 2.1; if there are exactly two distinct phases (one trivial and one topological
phase), then Z2 is listed; finally, if there exists a distinct topological phase for every
integer, then Z is listed.

2.1.2.2 Flatband Hamiltonians and homotopy groups

There are several approaches to obtain the entries Z2 and Z in Table 2.1. For one,
the theory of Anderson localization can be employed to determine in which spatial
dimensions’ boundaries can host localization-protected states (the topological surface
states) under a given symmetry. This was done by Schnyder et al. [2]. Kitaev [4], on
the other hand, derived the table using the algebraic structure of Clifford algebras in
the various dimensions and symmetry classes. In mathematics, this goes under the
name K-theory.
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Table 2.1 Symmetry classes of non-interacting fermionic Hamiltonians from [3] and [4].
The columns contain, from left to right: Cartan’s name for the symmetry class; the squares
of the time-reversal operator, the particle–hole operator, and the chiral operator (∅ means that
the symmetry is not present); the group of topological phases to which a Hamiltonian with the
respective symmetry can belong for the dimensions d = 1, . . . , 8 of space. The first two rows are
called ‘complex classes’, while the lower eight rows are the ‘real classes’. The homotopy groups
of the former show a periodicity with period 2 in d, while those of the latter have a period 8 in
d (Bott periodicity)

T 2 P2 C2 d = 1 2 3 4 5 6 7 8

A ∅ ∅ ∅ ∅ Z ∅ Z ∅ Z ∅ Z
AIII ∅ ∅ + Z ∅ Z ∅ Z ∅ Z ∅

AII − ∅ ∅ ∅ Z2 Z2 Z ∅ ∅ ∅ Z

DIII − + + Z2 Z2 Z ∅ ∅ ∅ Z ∅
D ∅ + ∅ Z2 Z ∅ ∅ ∅ Z ∅ Z2

BDI + + + Z ∅ ∅ ∅ Z ∅ Z2 Z2

AI + ∅ ∅ ∅ ∅ ∅ Z ∅ Z2 Z2 Z

CI + − + ∅ ∅ Z ∅ Z2 Z2 Z ∅
C ∅ − ∅ ∅ Z ∅ Z2 Z2 Z ∅ ∅
CII − − + Z ∅ Z2 Z2 Z ∅ ∅ ∅

Here, we want to give a flavor of the mathematical structure behind the table
by considering two examples. To keep matters simple, we shall restrict ourselves to
the situation where the system is translationally invariant and periodic boundary
conditions are imposed. In second quantization, the Hamiltonian H has the Bloch
representation

H =
∫

ddkψ†α(k)Hα,α′(k)ψα′(k), (2.2a)

where ψ†α(k) creates a fermion of flavor α = 1, . . . , N at momentum k in the Brillouin
zone (BZ) and the summation over α and α′ is implicit. The flavour index may rep-
resent orbital, spin, or sublattice degrees of freedom. Energy bands are obtained by
diagonalizing the N ×N matrix H(k) at every momentum k ∈ BZ with the aid of a
unitary transformation U(k):

U†(k)H(k)U(k) = diag
[
εm+n(k), . . . , εn+1(k), εn(k), . . . , ε1(k)

]
, (2.2b)

where the energies are arranged in descending order on the right-hand side and
n,m∈Z such that n+m = N . So as to start from an insulating ground state, we
assume that there exists an energy gap between the bands n and n+ 1 and that the
chemical potential μ lies in this gap:

εn(k) < μ < εn+1(k) ∀k ∈ BZ. (2.3)
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The presence of the gap allows us to adiabatically deform the Bloch Hamiltonian H(k)
to the flatband Hamiltonian

Q(k) := U(k)
(
1m 0
0 −1n

)
U†(k) (2.4a)

that assigns the energy −1 and +1 to all states in the bands below and above the gap,
respectively. This deformation preserves the eigenstates, but removes the non-universal
information about energy bands from the Hamiltonian.

In other words, the degenerate eigenspaces of the eigenvalues ±1 of Q(k) re-
flect the partitioning of the single-particle Hilbert space introduced by the spectral
gap in the spectrum of H(k). The degeneracy of its eigenspaces equips Q(k) with
an extra U(n)×U(m) gauge symmetry: while the (n+m)× (n+m) matrix U(k)
of Bloch eigenvectors that diagonalizes Q(k) is an element of U(n+m) for every
k ∈ BZ, we are free to change the basis for its lower and upper bands by a U(n)
and U(m) transformation, respectively. Hence Q(k) is an element of the space
C0 := U(n+m)/[U(n)× U(m)] defining a map

Q : BZ→ C0. (2.5)

The group of topologically distinct maps Q, or, equivalently, the number of topologic-
ally distinct Hamiltonians H, is given by the homotopy group

πd(C0) (2.6)

for any dimension d of the BZ. (The homotopy group is the group of equivalence
classes of maps from the d-dimensional sphere to a target space, in this case C0. Even
though the BZ is a d-dimensional torus, it turns out that this difference between torus
and sphere does not affect the classification as discussed here.)

For example, in d = 2, we have π2(C0) = Z. A physical example of a family of
Hamiltonians that exhausts the topological sectors of this group is found in the in-
teger quantum Hall effect. The incompressible ground state with r ∈ N filled Landau
levels is topologically distinct from the ground state with N � r′ �= r filled Lan-
dau levels. Two different patches of space with r and r′ filled Landau levels have
|r − r′| gapless edge modes running at their interface, reflecting the bulk–boundary
correspondence of the topological phases. In contrast, π3 (C0) = Z1 renders all non-
interacting fermionic Hamiltonians in 3D space topologically equivalent to the vacuum,
if no further symmetries besides the U(1) charge conservation are imposed.

As a second example, let us discuss a Hamiltonian that has only chiral symmetry
and hence belongs to the symmetry class AIII. The chiral symmetry implies a spectral
symmetry of H(k). If gapped, H(k) must have an even number of bands N = 2n,
n ∈ Z. When represented in the eigenbasis of the chiral symmetry operator C, the
spectrally flattened Hamiltonian Q(k) and the chiral symmetry operator have the
representations

Q(k) =
(

0 q(k)
q†(k) 0

)
, C =

(
1n 0
0 −1n

)
, (2.7a)
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respectively. From Q(k)2 = 1, one concludes that q(k) can be an arbitrary unitary
matrix. We are thus led to consider the homotopy group πd(C1) of the mapping

q : BZ→ C1 = U(n). (2.7b)

For example, in d = 1 spatial dimensions π3(C1) = Z. A tight-binding model with non-
trivial topology that belongs to this symmetry class will be discussed in Section 2.1.3.

With these examples, we have discussed the two complex classes A and AIII.
In the real classes, which have at least one antiunitary symmetry, it is harder to
obtain the constraints on the spectrally flattened Hamiltonian Q(k). The origin of this
complication is that the antiunitary operators representing time-reversal and particle–
hole symmetry relate Q(k) and Q(−k) rather than acting locally in momentum space.

2.1.2.3 Topological invariants

Given a gapped non-interacting fermionic Hamiltonian with certain symmetry
properties in d-dimensional space, one can use Table 2.1 to conclude whether
the system can potentially be in a topological phase. However, to understand
in which topological sector the system is, we have to do more work. To ob-
tain this information, one computes topological invariants or topological quantum
numbers of the ground state. Such invariants are automatically numbers in the
group of possible topological phases (Z or Z2). For many of them, a variety of
different-looking but equivalent representations are known.

To give concrete examples, we shall discuss the invariants for all Z topological
phases found in Table 2.1. These are called Chern numbers in the symmetry classes
without chiral symmetry and winding numbers in the classes with chiral symmetry.

In physics, topological attributes refer to global properties of a physical system
that is made out of local degrees of freedom and might only have local, i.e. short-
ranged, correlations. The distinction between global and local properties parallels the
distinction between topology and geometry in mathematics, where the former refers to
global structure, while the latter refers to the local structure of objects. In differential
geometry, a bridge between topology and geometry is given by the Gauss–Bonnet
theorem. It states that for compact 2D Riemannian manifolds M without boundary,
the integral over the Gaussian curvature F (x) of the manifold is (i) integer and (ii) a
topological invariant

2(1− g) =
1
2π

∫
M

d2xF (x). (2.8)

Here, g is the genus of M ; for example, g = 0 for a 2D sphere and g = 1 for a 2D
torus. The Gaussian curvature F (x) can be defined as follows. Attach to every point
on M the tangent plane, a 2D vector space. Take some vector from the tangent plane
at a given point on M and parallel-transport it around an infinitesimal closed loop on
M . The angle mismatch of the vector before and after the transport is proportional
to the Gaussian curvature enclosed in the loop.

In the physical systems that we want to describe, the manifold M is the BZ and
the analogue of the tangent plane on M is a space spanned by the Bloch states of the
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occupied bands at a given momentum k ∈ BZ. The Gaussian curvature of differential
geometry is now generalized to a curvature form, called the Berry curvature F. In our
case, it is given by an n× n matrix of differential forms that is defined via the Berry
connection A as

F := Fij(k) dki ∧ dkj (2.9a)

Fij(k) := ∂iAj(k)− ∂jAi(k) + [Ai(k), Aj(k)], i, j = 1, . . . , d, (2.9b)
A := Ai(k) dki , (2.9c)

A
(ab)
i (k) :=

N∑
α=1

U†aα(k)∂iUαb(k), a, b = 1, . . . , n, i = 1, . . . , d. (2.9d)

(Two different conventions for the Berry connection are commonly used: it is either
purely real or purely imaginary. Here we choose the latter option.) The unitary trans-
formation U(k) that diagonalizes the Hamiltonian was defined in (2.2b), both Ai(k)
and Fij(k) are n× n matrices, we write ∂i ≡ ∂/∂ki , and the sum over repeated spatial
coordinate components i, j is implicit.

Under a local U(n) gauge transformation in momentum space that acts on the
states of the lower bands and is parametrized by the n× n matrix G(k),

Uαa(k)→ Uαb(k)Gba(k), α = 1, . . . , N, a = 1, . . . , n, (2.10a)

the Berry connection A changes as

A→ G†AG+G†dG, (2.10b)

while the Berry curvature F changes covariantly,

F → G†FG, (2.10c)

leaving its trace invariant.

Chern numbers For the spatial dimension d = 2, the generalization of the Gauss–
Bonnet theorem (2.8) in algebraic topology was found by Chern to be

2C(1) :=
i

2π

∫
BZ

tr F

= 2
i

2π

∫
BZ

d2k trF12. (2.11)

This defines a gauge-invariant quantity, the first Chern number C(1). Remarkably, C(1)

can take only integer values. In order to obtain a topological invariant for any even
dimension d = 2s of space, we can use the sth power of the local Berry curvature form
F (using the wedge product) to build a gauge invariant d-form that can be integrated
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over the BZ to obtain a scalar. On taking the trace, this scalar is invariant under the
gauge transformation (2.10a) and defines the sth Chern number:

2C(s) :=
1
s!

(
i

2π

)s ∫
BZ

tr[Fs], (2.12)

where Fs = F ∧ · · · ∧ F. As with the case s = 1 that we have exemplified above, C(s)

is an integer for any s = 1, 2, . . .
From inspection of Table 2.1 we see that symmetry classes without chiral symmetry

may have integer topological invariants Z only when the dimension d of space is even.
In fact, all the integer invariants of these classes are given by the Chern number C(d/2)

of the respective dimension.

Winding numbers Let us now consider systems with chiral symmetry C. To con-
struct their topological invariants as a natural extension of the above, we consider a
different representation of the Chern numbers C(s). In terms of the flatland projector
Hamiltonian Q(k) that was defined in (2.4a), we can write

C(s) ∝ εi1...id

∫
BZ

ddk tr
[
Q(k)∂i1Q(k) · · · ∂idQ(k)

]
, d = 2s. (2.13)

The form of (2.13) allows us to interpret C(s) as the winding number of the unitary
transformation Q(k) over the compact BZ. One verifies that C(s) = 0 for symmetry
classes with chiral symmetry by inserting CC† at some point in the expression and
anticommuting C with all Q, using the cyclicity of the trace. After 2s+ 1 anticommu-
tations, we are back to the original expression up to an overall minus sign and have
found C(s) = −C(s). Hence, all systems with chiral symmetry have vanishing Chern
numbers.

In odd dimensions of space, we can define an alternative topological invariant for
systems with chiral symmetry by modifying (2.13) and using the chiral operator C:

W(s) :=
(−1)ss!

2(2s+ 1)!

(
i

2π

)s+1

εi1...id

∫
BZ

ddk tr
[
CQ(k)∂i1Q(k) · · · ∂idQ(k)

]

=
(−1)ss!
(2s+ 1)!

(
i

2π

)s+1

εi1...id

∫
BZ

ddk tr
[
q†(k)∂i1q(k)∂i2q

†(k) · · · ∂idq(k)
]
,

d = 2s+ 1. (2.14)

Upon anticommuting the chiral operator C once with all matrices Q and using the
cyclicity of the trace, one finds that the expression for W(s) vanishes for even dimen-
sions. The second line of (2.14) allows us to interpret W(s) as the winding number of
the unitary off-diagonal part q(k) of the chiral Hamiltonian that was defined in (2.7a).
With (2.14), we have given topological invariants for all entries Z in odd dimensions
d in Table 2.1.
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In summary, we have now given explicit formulas for the topological invariants for
all entries Z in Table 2.1 for systems with translational invariance. It is important to
remember that the classification of Table 2.1 is restricted to systems without inter-
actions. If interactions are allowed, that neither spontaneously nor explicitly break the
defining symmetry of a symmetry class, one of two things can happen: (i) two phases
that are distinguished by a non-interacting invariant like W(0) might—sometimes but
not always—be connected adiabatically (i.e. without a closing of the spectral gap)
by turning on strong interactions; (ii) interactions can enrich the classification of Ta-
ble 2.1 by inducing new phases with topological response functions that are distinct
from those of the non-interacting phases. We will given an example of scenario (i) in
Section 2.1.5.

Besides, interactions can strongly modify the topological boundary modes of
the non-interacting systems to the extent that they can be gapped without break-
ing the protective symmetries, but at the expense of introducing topological order on
the boundary.

2.1.3 The Su–Schrieffer–Heeger model

The first example of a topological band insulator that we consider here is also the
simplest: The Su–Schrieffer–Heeger model [5] describes a 1D chain of atoms with one
(spinless) electronic orbital each at half-filling. The model was originally proposed to
describe the electronic structure of polyacetylene. This 1D organic molecule features
a Peierls instability by which the hopping integral between consecutive sites is alter-
nating between strong and weak. This enlarges the unit cell to contain two sites A
and B. The second-quantized mean-field Hamiltonian reads

H = t
N∑
i=1

[(1− δ)c†A,icB,i + (1 + δ)c†B,icA,i+1 + h.c.]. (2.15)

Here, c†A,i and c†B,i create an electron in the ith unit cell on sublattices A and
B, respectively. If we identify i = N + 1 ≡ 1, periodic boundary conditions are
implemented. The corresponding Bloch Hamiltonian

H = t
∑
k∈BZ

∑
α=A,B

c†α,khαβ,kcβ,k, (2.16a)

hk =

(
0 (1− δ) + (1 + δ)e−ik

(1− δ) + (1 + δ)eik 0

)
(2.16b)

= σx[(1− δ) + (1 + δ) cos k] + σy(1 + δ) sin k, (2.16c)

where σx and σy are the first two Pauli matrices acting on the sublattice index, t is
the nearest-neighbour hopping integral, and δ is a dimensionless parametrization of
the strong–weak dimerization of bonds.

We observe that the Hamiltonian (2.16) has time-reversal symmetry T = K, chiral
symmetry C = σz, and thus also particle–hole symmetry P = σzK. This places it in
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class BDI of Table 2.1 with a Z topological characterization. Observe that breaking
the time-reversal symmetry would not alter the topological properties, as long as the
chiral symmetry was intact. The model would then belong to class AIII, which also
features a Z classification. Hence, it is the chiral symmetry that is crucial to protecting
the topological properties of the Hamiltonian (2.16). Notice that generic longer-range
hopping (between sites of the same sublattice) breaks the chiral symmetry.

What are the different topological sectors that can be accessed by tuning the
parameter δ in the Su–Schrieffer–Heeger model? We observe that the dispersion

ε2k = 2[(1 + δ2) + (1− δ2) cos k] (2.17)

is gapless for δ = 0, hinting that this is the boundary between two distinct phases
δ > 0 and δ < 0. As we are interested in understanding the topological properties of
these phases, we can analyse them for any convenient value of the parameter δ and
then conclude that they are the same in the entire phase by adiabaticity. We con-
sider the Hamiltonian (2.15) with open boundary conditions and choose the following
representative parameters:

• δ = +1: The operators c†1,A and c†N,B do not appear in the Hamiltonian for the
open chain. Hence, there exists a state at either end of the open chain that can
be occupied or unoccupied at no cost of energy. Thus, either end of the chain
supports a localized topological end state (see Fig. 2.1). Away from δ = +1, as
long as δ > 0, the end states start to overlap and split apart in energy by an
amount that is exponentially small in the length N of the chain. We can back up
this observation by evaluating the topological invariant (2.14) for this phase. The
off-diagonal projector is qk = e−ik, and its winding number evaluates to

W(0) =
i

2π

∫
dk eik(−i)e−ik = 1. (2.18)
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Fig. 2.1 Energy spectra for the Su–Schrieffer–Heeger model with open boundary conditions
(a) in the trivial phase and (b) in the non-trivial topological phase with a zero-energy mode on
each boundary point.
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• δ = −1: In this case, strong bonds form between the two sites in every unit cell
and no topological end states appear. Correspondingly, as the off-diagonal pro-
jector qk = 1 is independent of k, we conclude that the winding number vanishes:
W(0) = 0.

One can visualize the winding number of a two-band Hamiltonian that has the
form hk = dk · σ in the following way. If the Hamiltonian has chiral symmetry, we can
choose this symmetry to be represented by C = σz without loss of generality. Then
dk has to lie in the x–y plane for every k and may not be zero if the phase is gapped.
The winding number W(0) measures how often dk winds around the origin in the x–y
plane as k changes from 0 to 2π.

Besides the topological end states, the Su–Schrieffer–Heeger model also features
topological domain wall states between a region with δ > 0 and δ < 0. Such topological
midgap modes have to appear pairwise in any periodic geometry. As the system is
considered at half-filling, each of these modes binds half an electron charge. This is an
example of charge fractionalization at topological defects. It is important to remember
that these defects are not dynamical, but are rigidly fixed external perturbations.
Therefore, this form of fractionalization is not related to intrinsic topological order.

2.1.4 The 1D p-wave superconductor

In the Su–Schrieffer–Heeger model, particle–hole symmetry (and with it chiral sym-
metry) is in some sense fine-tuned, as it is lost if generic longer-range hoppings are
considered. In superconductors, particle–hole symmetry arises more naturally as a
symmetry that is inherent in the redundant description of mean-field Bogoliubov–de
Gennes Hamiltonians.

Here, we want to consider the simplest model for a topological superconductor
that has been studied by Kitaev [6]. The setup is again a 1D chain with one orbital
for spinless fermion on each site. Superconductivity is encoded in pairing terms c†i c

†
i+1

that do not conserve particle number. The Hamiltonian is given by

H =
N∑
i=1

[− t(c†ici+1 + c†i+1ci)− μc
†
i ci + Δc†i+1c

†
i + Δ∗cici+1]. (2.19)

Here, μ is the chemical potential and Δ is the superconducting order parameter, which
we will decompose into its amplitude |Δ| and complex phase θ, that is, Δ = |Δ|eiθ.

The fermionic operators c†i satisfy the algebra

{c†i , cj} = δi,j , (2.20)

with all other anticommutators vanishing. We can chose to trade the operators c†i and
ci on every site i for two other operators ai and bi that are defined by

ai = e−iθ/2ci + eiθ/2c†i , bi =
1
i
(e−iθ/2ci − eiθ/2c†i ). (2.21)
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These so-called Majorana operators obey the algebra

{ai, aj} = {bi, bj} = 2δij , {ai, bj} = 0 ∀i, j. (2.22)

In particular, they square to 1,

a2
i = b2i = 1, (2.23)

and are self-conjugate,

a†i = ai, b†i = bi. (2.24)

In fact, we can always break up a complex fermion operator on a lattice site into
its real and imaginary Majorana components, though this may not always be a useful
representation. As an aside, note that the Majorana anticommutation relation in (2.22)
is the same as that of the generators of a Clifford algebra where the generators all
square to +1. Thus, mathematically, one can think of the operators ai (or bi) as
matrices forming by themselves the representation of Clifford algebra generators.

When rewritten in terms of the Majorana operators, the Hamiltonian (2.19) takes
(up to a constant) the form

H =
i
2

N∑
i=1

[− μai bi + (t+ |Δ|)bi ai+1 + (−t+ |Δ|)ai bi+1]. (2.25)

After imposing periodic boundary conditions, it is again convenient to study the
system in momentum space. When defining the Fourier transform of the Majorana
operators ai =

∑
i e

ikiak, we note that the the self-conjugate property (2.24) that is
local in position space translates into a†k = a−k in momentum space (and likewise for
the bk). The momentum-space representation of the Hamiltonian is

H =
∑
k∈BZ

∑
α=A,B

(ak bk) hk

(
a−k
b−k

)
(2.26a)

hk =

⎛⎜⎝ 0 − iμ
2

+ it cos k + |Δ| sin k
iμ
2
− it cos k + |Δ| sin k 0

⎞⎟⎠ (2.26b)

= σx|Δ| sin k + σy

(μ
2
− t cos k

)
. (2.26c)

While this Bloch Hamiltonian is formally very similar to that of the Su–Schrieffer–
Heeger model (2.16), we have to keep in mind that it acts on entirely different
single-particle degrees of freedom, namely in the space of Majorana operators instead
of complex fermionic operators. As with the case of the Su–Schrieffer–Heeger model,
the Hamiltonian (2.26) has a time-reversal symmetry T = σzK and a particle–hole
symmetry P = K, which combine to give the chiral symmetry C = σz. Hence, it be-
longs to symmetry class BDI as well. For the topological properties that we explore
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below, only the particle–hole symmetry is crucial. If time-reversal symmetry is broken,
the model changes to symmetry class D, which still supports a Z2 topological grading.

To determine its topological phases, we notice that Hamiltonian (2.26) is gapped
except for |t| = |μ/2|. We specialize again to convenient parameter values on either
side of this potential topological phase transition:

• μ = 0, |Δ| = t. The Bloch matrix hk takes exactly the same form as that of the
Su–Schrieffer–Heeger model (2.16) for the parameter choice δ = +1. We conclude
that the Hamiltonian (2.26) is in a topological phase. The Hamiltonian reduces to

H = it
∑
j

bjaj+1. (2.27)

A pictorial representation of this Hamiltonian is shown in Fig. 2.2(b). With open
boundary conditions, it is clear that the Majorana operators a1 and bN are not
coupled to the rest of the chain and are ‘unpaired’. In this limit, the existence of
two Majorana zero modes localized on the ends of the chain is manifest.

• Δ = t = 0, μ < 0. This is the topologically trivial phase. The Hamiltonian is in-
dependent of k and we conclude that the winding number vanishes W(0) = 0. In
this case, the Hamiltonian reduces to

H = −μ i
2

∑
j

ajbj . (2.28)

In its ground state, the Majorana operators on each physical site are coupled but
the Majorana operators between each physical site are decoupled. In terms of the
physical complex fermions, it is the ground state with either all sites occupied or
all sites empty. A representation of this Hamiltonian is shown in Fig. 2.2(a). The
Hamiltonian in the physical-site basis is in the atomic limit, which is another way

(a)

(b)

a1

cj

aj bj

bN

Fig. 2.2 [Colour online] Schematic illustration of the lattice p-wave superconductor Hamilton-
ian in (a) the trivial limit and (b) the non-trivial limit. The empty [white] and filled [red] circles
represent the Majorana fermions making up each physical site (oval). The fermion operator on
each physical site (cj) is split up into two Majorana operators (aj and bj). In the non-trivial
phase, the unpaired Majorana fermion states at the end of the chain are labelled with a1 and
bN . These are the states that are continuously connected to the zero modes in the non-trivial
topological superconductor phase.
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to see that the ground state is trivial. If the chain has open boundary conditions,
there will be no low-energy states on the end of the chain if the boundaries are cut
between physical sites. That is, we are not allowed to pick boundary conditions
where a physical complex fermionic site is cut in half.

These two limits give the simplest representations of the trivial and non-trivial phases.
By tuning away from these limits, the Hamiltonian will have some mixture of couplings
between Majorana operators on the same physical site, and operators between physical
sites. However, since the two Majorana modes are localized at different ends of a
gapped chain, the coupling between them will be exponentially small in the length of
the wire and they will remain at zero energy. In fact, in the non-trivial phase, the zero
modes will not be destroyed until the bulk gap closes at a critical point.

It is important to note that these zero modes count to a different many-body
ground state degeneracy than the end modes of the Su–Schrieffer–Heeger model. The
difference is rooted in the fact that one cannot build a fermionic Fock space out of
an odd number of Majorana modes, because they are linear combinations of particles
and holes. Rather, we can define a single fermionic operator out of both Majorana end
modes a1 and bN as c† := a1 + ibN . The Hilbert space we can build out of a1 and bN is
hence inherently non-local. This non-local state can be either occupied or empty, giving
rise to a twofold-degenerate ground state of the chain with two open ends. (In contrast,
the topological Su–Schrieffer–Heeger chain has a fourfold-degenerate ground state with
two open ends, because it has one fermionic mode on each end.) The Majorana chain
thus displays a different form of fractionalization than the Su–Schrieffer–Heeger chain.
For the latter, we observed that the topological end modes carry fractional charge. In
the Majorana chain, the end modes are a fractionalization of a fermionic mode into
a superposition of particle and hole (and no longer have a well-defined charge), but
the states |0〉 (with c|0〉 = 0) and c†|0〉 do have distinct fermion parity. The non-local
fermionic mode formed by two Majorana end modes is envisioned to work as a qubit
(a quantum-mechanical two-level system) that stores quantum information (its state)
in a way that is protected against local noise and decoherence.

2.1.5 Reduction of the 10-fold way classification by interactions:
Z → Z8 in class BDI

When time-reversal symmetry T = K is present, the model considered in Section 2.1.4
belongs to class BDI of the classification of non-interacting fermionic Hamiltonians in
Table 2.1 with a Z topological characterization. We want to explore how interactions
alter this classification, following a calculation by Fidkowski and Kitaev [8]. To this
end, we consider a collection of n identical 1D topological Majorana chains in class
BDI and only consider their Majorana end modes on one end, which we denote by
a1, . . . , an. We will take the point of view that if we can gap the edge, we can continue
the bulk to a trivial state (insulator). This is not entirely a correct point of view in
general (see 2D topologically ordered states such as the toric code discussed in Sec-
tion 2.2.1), but works for our purposes. Given some integer n, we ask whether we can
couple the Majorana modes locally on one end such that no gapless degrees of free-
dom are left on that end and the ground state with open boundary conditions becomes
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singly degenerate. To remain in class BDI, we only allow couplings that respect time-
reversal symmetry. Let us first derive the action of T on the Majorana modes. The
complex fermion operators are left invariant under time-reversal T cT −1 = c. Hence,

T (a+ ib)T −1 = T aT −1 − iT bT −1 != a+ ib

=⇒ T aT −1 = a, T bT −1 = −b.
(2.29)

Thus, when acting on the modes localized on the left end of the wire (which transform
like the a’s), time-reversal symmetry leaves the Majorana operators invariant.

The most naive coupling term that would gap out two Majoranas is ia1a2. This is
because two Majoranas can form a local Hilbert space (unlike just one Majorana), and
this local Hilbert space can be split unless some other symmetry prevents it from being
split. However, time-reversal symmetry forbids these hybridization terms, since it sends
ia1a2 → −ia1a2. In spinful systems, another symmetry that can do this is MT , where
M is a mirror operator (which in spinful systems squares to −1 M2 = −1) and T is
the usual time-reversal operator T 2 = −1, such that (MT )2 = M2T 2 = 1 and hence
MT acts like spinless time reversal [7]. Realizing that such a term is not allowed is
the end of the story for non-interacting systems, yielding the classification Z. Let’s
find out what interactions do to this system. The steps that we will now outline are
summarized in Fig. 2.3.

We saw that two Majorana end states cannot be gapped: the only possible inter-
acting or non-interacting Hamiltonian is ia1a2. Three Majoranas clearly cannot be
gapped either, since three is an odd number. Let us thus add two more Majorana end
states into the mix. Any one-body term still is disallowed, but the term

Hint = a1a2a3a4 (2.30)

can be present. We can now form two complex fermions, c1 = (a1 + ia2)/
√

2 and c2 =
(a3 + ia4)/

√
2. In terms of these two fermions, the Hamiltonian reads

Hint = −
(
n1 −

1
2

)(
n2 −

1
2

)
, (2.31)

Hint

H(2)

2 wires 4 wires 8 wires

int

Fig. 2.3 Schematic illustration of the many-body energy levels for 2, 4, and 8 wires with
Majorana end states as well as the (partial) lifting of their degeneracy by the Hamiltonians
in (2.31) and (2.33).
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where n1 = c†1c1 and n2 = c†2c2 are the occupation numbers. The Hamiltonian is di-
agonal in the eigenbasis |n1n2〉 of the occupation number operators, and the states
|11〉, |00〉 are degenerate at energy − 1

4
, while the states |01〉, |10〉 are degenerate at

energy + 1
4 . The original non-interacting system of four Majorana fermions had a de-

generacy of 22 = 4. The interaction, however, has lifted this degeneracy, but not all the
way to a single non-degenerate ground state. Irrespective of the sign of the interaction,
it leaves the states doubly degenerate on one edge, and hence cannot be adiabatic-
ally continued to the trivial state of single degeneracy. However, if we add four more
Majoranas wires so that we have n = 8 Majoranas, we can build an interaction that
creates a singly degenerate ground state. We can understand this as follows. Add two
interactions

H
(1)
int = −α(a1a2a3a4 + a5a6a7a8). (2.32)

These create two doublets, one in c1, c2 defined above, and one in c3 =
(a5 + ia6)/

√
2, c4 = (a7 + ia8)/

√
2. We couple these doublets via the interaction

H
(2)
int =

∑
i=x,y,z

β(c†1 c†2)σi

(
c1
c2

)
(c†3 c†4)σi

(
c3
c4

)
. (2.33)

Representing each of the doublets as a spin-1
2 S, this interaction is nothing but an

S · S term. If we take 0 < β � α, then we can approximate the interaction β by its
action within the two ground-state doublets. As such, this interaction creates a singlet
and a triplet (in that doublet) and for the correct sign of β, we can put the singlet
below the triplet, thereby creating a unique ground state

1√
2

(|0110〉 − |1001〉) , (2.34)

in terms of the occupation number states |n1n2n3n4〉. This unique ground state can
be adiabatically continued to the atomic limit. In this way the non-interacting Z
classification of class BDI breaks down to Z8 if interactions are allowed.

2.2 Examples of topological order

So far, we have been concerned with symmetry-protected topological states and con-
sidered examples that were motivated by the topological classification of free-fermion
Hamiltonians. The topological properties of these systems are manifest by the presence
of protected boundary modes.

In this section, we want to familiarize ourselves with the concept of intrinsic topo-
logical order by ways of two examples. We will study the connections between different
characterizations of topological order, such as fractionalized excitations in the bulk and
the topological ground-state degeneracy. Our examples will be in 2D space, since topo-
logically ordered states do not exist in 1D and are best understood in 2D. Our first
example, the toric code, has Abelian anyon excitations, while the second example, the
chiral p-wave superconductor, features non-Abelian anyons.
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2.2.1 The toric code

The first example of a topologically ordered state is an exactly soluble model with
vanishing correlation length. The significance of having zero correlation length is as
follows. The correlation functions of local operators decay exponentially in gapped
quantum ground states in 1D and 2D with a characteristic lengthscale given by the
correlation length ξ [9]. In contrast, topological properties are encoded in quantized
expectation values of non-local operators (e.g. the Hall conductivity) or the degeneracy
of energy levels (e.g. the end states of the Su–Schrieffer–Heeger model). In finite sys-
tems, such quantizations and degeneracies are generically only exact up to corrections
that are of order e−L/ξ, where L is the linear system size. Models with zero correlation
length are free from such exponential finite-size corrections and thus expose the topo-
logical features already for the smallest possible system sizes. The downside is that
their Hamiltonians are rather contrived.

We define the toric code model [10] on a square lattice with a spin-1
2

degree of
freedom on every bond j (see Fig. 2.4). The four spins that sit on the bonds emanating
from a given site of the lattice are referred to as a star s. The four spins that sit on
the bonds surrounding a square of the lattice are called a plaquette p. We define two
sets of operators

As :=
∏
j∈s

σxj , (2.35a)

Bp :=
∏
j∈p

σzj , (2.35b)

that act on the spins of a given star s and plaquette p, respectively. Here, σx,zj are the
respective Pauli matrices acting on the spin on bond j.

As

Bp

Fig. 2.4 [Colour online] The toric code model is defined on a square lattice with spin- 1
2

degrees
of freedom on every bond (black squares). The operator As acts with σx on all four spins on
the bonds that are connected to a lattice site (a star s) [blue]. The operator Bp acts with σz

on all four spins around a plaquette p [red].
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These operators have two crucial properties that are often used to construct exactly
soluble models for topological states of matter:

1. All of the As and Bp commute with each other. This is trivial for all cases except
for the commutator of As with Bp if s and p have spins in common. However,
any star shares with any plaquette an even number of spins (edges), so that
commuting As with Bp involves commuting an even number of σz with σx, each
of which comes with a minus sign.

2. The operators
1−Bp

2
,

1− As
2

(2.36)

are projectors. The former projects out plaquette states with an even number of
spins polarized in the positive z direction. The latter projects out stars with an
even number of spins in the positive x direction.

2.2.1.1 Ground states

The Hamiltonian is defined as a sum over these commuting projectors:

H = −Je

∑
s

As − Jm

∑
p

Bp, (2.37)

where the sums run over all stars s and plaquettes p of the lattice. Let us assume that
both Je and Jm are positive constants. Then, the ground state is given by a state in
which all stars s and plaquettes p are in an eigenstate with eigenvalue +1 of As and
Bp, respectively. (The fact that all As and Bp commute allows for such a state to
exist, as we can diagonalize each of them separately.) Let us think about the ground
state in the eigenbasis of the σx operators and represent by bold lines those bonds
with spin up and and draw no lines along bonds with spin down. Then, As imposes
on all spin configurations with non-zero amplitude in the ground state the constraint
that an even number of bold lines meet at the star s. In other words, we can think
of the bold lines as connected across the lattice and they may only form closed loops.
Bold lines that end at some star (‘open strings’) are not allowed in the ground-state
configurations; they are excited states. Having found out which spin configurations
are allowed in the ground state, we need to determine their amplitudes. This can be
inferred from the action of the Bp operators on these closed-loop configurations. The
Bp flips all bonds around the plaquette p. Since B2

p = 1, given a spin configuration |c〉
in the σx-basis, we can write an eigenstate of Bp with eigenvalue 1 as

1√
2

(|c〉+Bp|c〉) , (2.38)

for some fixed p. This reasoning can be extended to all plaquettes, and therefore we
can write for the ground state

|GS〉 =

(∏
p

1 +Bp√
2

)
|c〉, (2.39)
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GS = + + + · · ·

(a)

(b) (c) (d) (e)

Fig. 2.5 Visualization of the toric code ground states on the torus. (a) The toric code ground
state is the equal amplitude superposition of all closed-loop configurations. (b)–(e) Four base
configurations |c〉 entering (2.39) that yield topologically distinct ground states on the torus.

where |c〉 is a closed-loop configuration; see Fig. 2.5(a). Is |GS〉 independent of the
choice of |c〉? In other words, is the ground state unique? We will see that the answer
depends on the topological properties of the manifold on which the lattice is defined
and thus reveals the topological order imprinted in |GS〉.

To answer these questions, let us consider the system on two topologically distinct
manifolds: the torus and the sphere. To obtain a torus, we consider a square lattice
with Lx × Ly sites and impose periodic boundary conditions. This lattice hosts 2LxLy
spins (2 per unit cell, since they are centred along the bonds). Thus, the Hilbert space
of the model has dimension 22LxLy . There are LxLy operators As and just as many Bp.
Hence, together, they impose 2LxLy constraints on the ground state in this Hilbert
space. However, not all of these constraints are independent. The relations

1 =
∏
s

As, (2.40a)

1 =
∏
p

Bp (2.40b)

make two of the constraints redundant, yielding 2LxLy − 2 independent constraints.
The ground-state degeneracy (GSD) is obtained as the quotient of the dimension of
the Hilbert space and the dimension of the subspace modded out by the constraints:

GSD =
22LxLy

22LxLy−2
= 4. (2.41)

The four ground states on the torus are distinguished by having an even or an odd
number of loops wrapping the torus in the x and y directions, respectively. Four
configurations |c〉 that can be used to build the four degenerate ground states are
shown in Fig. 2.5(b–e). This constitutes a set of ‘topologically degenerate’ ground
states and is a hallmark of the topological order in the model.

Let us contrast this with the ground-state degeneracy on the sphere. Since we use a
model with zero correlation length, we might as well use the smallest convenient lattice
with the topology of a sphere. We consider the model (2.37) defined on the edges of
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a cube. The same counting as above yields that there are 12 degrees of freedom (the
spins on the 12 edges), 8 constraints from the As operators defined on the corners, and
6 constraints from the Bp operators defined on the faces. Subtracting the 2 redundant
constraints (2.40) yields 12− (8 + 6− 2) = 0 remaining degrees of freedom. Hence,
the model has a unique ground state on the sphere.

On a general manifold, we have

GSD = 2number of non-contractible loops. (2.42)

An important property of the topologically degenerate ground states is that any local
operator has vanishing off-diagonal matrix elements between them in the thermo-
dynamic limit. Similarly, no local operator can be used to distinguish between the
ground states. We can, however, define non-local operators that transform one topo-
logically degenerate ground state into another and that distinguish the ground states
by topological quantum numbers. (Notice that such operators may not appear in any
physical Hamiltonian owing to their non-locality, and hence the degeneracy of the
ground states is protected.) On the torus, we define two pairs of so-called Wilson loop
operators as

W e
x/y :=

∏
j∈lex/y

σzj , (2.43a)

Wm
x/y :=

∏
j∈lm

x/y

σxj . (2.43b)

Here, lex/y are the sets of spins on bonds parallel to a straight line wrapping the torus
once along the x and y directions, respectively. The lmx/y are the sets of spins on bonds
perpendicular to a straight line that connects the centres of plaquettes and wraps the
torus once along the x and y directions, respectively. We note that the W e

x/y and Wm
x/y

commute with all As and Bp,

[W e/m
x/y , As] = [W e/m

x/y , Bp] = 0, (2.44)

and thus also with the Hamiltonian. Furthermore, they obey

W e
xW

m
y = −Wm

y W
e
x . (2.45)

This algebra must be realized in any eigenspace of the Hamiltonian. However, because
of (2.45), it cannot be realized in a 1D subspace. We conclude that all eigenspaces
of the Hamiltonian, including the ground state, must be degenerate. In the σx basis
that we used above, Wm

x/y measures whether the number of loops wrapping the torus
is even or odd in the x and y direction, respectively, giving four degenerate ground
states. In contrast, W e

x/y changes the number of loops wrapping the torus in the x
and y directions between even and odd.
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2.2.1.2 Topological excitations

To find the topological excitations of the system above the ground state, we ask which
are the lowest-energy excitations that we can build. Excitations are a violation of the
rule that all stars s are eigenstates of As and all plaquettes p are eigenstates of Bp. Let
us first focus on star excitations, which we will call e. They appear as the endpoints
of open strings, i.e. if the closed loop condition is violated. Since any string has two
endpoints, the lowest excitation of this type is a pair of e. They can be created by
acting on the ground state with the operator

W e
le :=

∏
j∈le

σzj , (2.46)

where le is a string of bonds connecting the two excitations e1 and e2 (see Fig. 2.6(a)).
The state

|e1, e2〉 := W e
le |GS〉 (2.47)

has energy 4Je above the ground state energy. Similarly, we can define an operator

Wm
lm :=

∏
j∈lm

σxj , (2.48)

that creates a pair of plaquette defects m1 and m2 connected by the string lm of
perpendicular bonds; see Fig. 2.6(b). (Notice that the operator Wm

lm does not flip
spins when the ground state is written in the σx basis. Rather, it gives weight +1/− 1
to the different loop configurations in the ground state, depending on whether an even
or an odd number of loops crosses lm.) The state

|m1,m2〉 := Wm
lm |GS〉 (2.49)

(a) (b)

(c) (d)

e1

e1

e2

e2

m1 m2

m m
e e

Fig. 2.6 Visualization of operations to compute the braiding statistics of toric code anyons.
(a) Two e excitations above the ground state. (b) Two m excitations above the ground state.
(c) Loop created by braiding e1 around e2. (c) Loop created by braiding e around m. A phase of
−1 results for this process because there is a single bond on which both a σx operator (dotted
line) and a σz operator (bold line) act.
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has energy 4Jm above the ground-state energy. Notice that the excited states |e1, e2〉
and |m1,m2〉 depend only on the positions of the excitations and not on the particular
choice of string that connects them. Furthermore, the energy of the excited state
is independent of the separation between the excitations. The excitations are thus
‘deconfined’, i.e. free to move independently of each other.

It is also possible to create a combined defect when a plaquette hosts an m excita-
tion and one of its corners hosts an e excitation. We call this combined defect f and
formalize the relation between these defects in a so-called fusion rule

e×m = f. (2.50a)

When two e-type excitations are moved to the same star, the loop le that connects
them becomes a closed loop and the state returns to the ground state. For this, we
write the fusion rule

e× e = 1, (2.50b)

where 1 stands for the ground state or vacuum. Similarly, moving two m-type exci-
tations to the same plaquette creates a closed loop lm, which can be absorbed in the
ground state, i.e.

m×m = 1. (2.50c)

Superimposing the above processes yields the remaining fusion rules

m× f = e, e× f = m, f × f = 1. (2.50d)

It is now imperative to ask what type of quantum statistics these emergent exci-
tations obey. We recall that quantum statistics are defined as the phase by which a
state changes if two identical particles are exchanged. Rendering the exchange oper-
ation as an adiabatically slow evolution of the state, in three and higher dimensions
only two types of statistics are allowed between point particles: that of bosons with
phase +1 and that of fermions with phase −1. In 2D, richer possibilities exist and the
exchange phase θ can be any complex number on the unit circle, opening the way for
anyons. While the exchange is only defined for quantum particles of the same type,
the double exchange (braiding) is well defined between any two deconfined anyons.
We can compute the braiding phases of the anyons e, m, and f that appear in the
toric code one by one. Let us start with the phase resulting from braiding e1 with e2.
The initial state is W e

le |GS〉 depicted in Fig. 2.6(a). Moving e1 around e2 leaves a loop
of flipped σx bonds around e2; see Fig. 2.6(c). This loop is created by applying Bp to
all plaquettes enclosed by the loop lee1 along which e1 moves. We can thus write the
final state as ⎛⎝ ∏

p∈lee1

Bp

⎞⎠W e
le |GS〉 =W e

le

⎛⎝ ∏
p∈lee1

Bp

⎞⎠ |GS〉

=W e
le |GS〉. (2.51)
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Flipping the spins in a closed loop does not alter the ground state, since it is the equal
amplitude of all loop configurations. We conclude that the braiding of two e particles
gives no phase. Similar considerations can be used to conclude that the braiding of
two m particles is trivial as well. In fact, not only the braiding, but also the exchange
of two e particles and two m particles is trivial. (We have not shown that here.)

More interesting is the braiding of m with e. Let the initial state be Wm
lmW

e
le |GS〉

and move the e particle located on one end of the string lein around the magnetic
particle m on one end of the string lm. Again this is equivalent to applying Bp to all
plaquettes enclosed by the path lee of the e particle, so that the final state is given by⎛⎝∏

p∈lee

Bp

⎞⎠Wm
lmW

e
le |GS〉 = −Wm

lm

⎛⎝∏
p∈lee

Bp

⎞⎠W e
le |GS〉

= −Wm
lmW

e
le |GS〉. (2.52)

The product over Bp operators anticommutes with the path operator Wm
lm , because

there is a single bond on which a single σx and a single σz act at the crossing of lm

and lee; see Fig. 2.6(d). As a result, the initial and final state differ by a −1, which is
the braiding phase of e with m. Particles with this braiding phase are called (mutual)
semions.

Notice that we have moved the particles on contractible loops only. If we create
a pair of e or m particles, move one of them along a non-contractible loop on the
torus, and annihilate the pair, we have effectively applied the operators W e

x/y and
Wm
x/y to the ground state (although, in the process, we have created finite-energy

states). The operation of moving anyons on non-contractible loops thus allows us to
operate on the manifold of topologically degenerate ground states. This exposes the
intimate connection between the presence of fractionalized excitations and topological
ground-state degeneracy in topologically ordered systems.

From the braiding relations of e and m, we can also determine the braiding and
exchange relations of the composite particle f . This is most easily done in a pictor-
ial way by representing the particle worldlines as moving upwards. For example, we
represent the braiding relations of e and m as

e e e

=

e

=

m m m m

ti
m

e

e m e m

=

(2.53)

The exchange of two f , each of which is composed of one e and one m, is then

e m eme m em

=

e m

=

m e

f f (2.54)
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Notice that we have used (2.53) to manipulate the crossing in the dotted rectangles.
Exchange of two f thus gives a phase −1, and we conclude that f is a fermion.

In summary, we have used the toric code model to illustrate topological ground-
state degeneracy and emergent anyonic quasiparticles as hallmarks of topological
order. We note that the toric code model does not support topologically protected
edge states.

2.2.2 The 2D p-wave superconductor

The second example of a 2D system with anyonic excitations that we want to dis-
cuss here is the chiral p-wave superconductor. Unlike the toric code, owing to its
chiral nature, it is a model with non-zero correlation length. The vortices of the
chiral p-wave superconductor exhibit anyon excitations that have exotic non-Abelian
statistics.[12–14] (The anyons in the toric code are Abelian—we will see below what
that distinction refers to.) For the system to be topologically ordered, these vortices
should appear as emergent, dynamical excitations. This requires that we treat the
electromagnetic gauge field quantum-mechanically. (In fact, since the fermion number
conservation is spontaneously broken down to the conservation of the fermion parity
in the superconductor, the relevant gauge theory involves only a Z2 instead of a U(1)
gauge field.) However, the topological properties that we want to discuss here can also
be seen if we model the gauge field and vortices as static defects, rather than within
a fluctuating Z2 gauge theory. This allows us to study a model very similar to the
‘non-interacting” topological superconductor in 1D and still expose the non-Abelian
statistics.

For pedagogy, we will use both lattice and continuum models of the chiral
superconductor. We begin with the lattice Hamiltonian defined on a square lattice:

H =
∑
m,n

{ − t(c†m+1,ncm,n + c†m,n+1cm,n + h.c.)− (μ− 4t)c†m,ncm,n

+ (Δc†m+1,nc
†
m,n + iΔc†m,n+1c

†
m,n + h.c.)}. (2.55)

The fermion operators cm,n annihilate fermions on the lattice site (m,n) and we are
considering spinless (or equivalently spin-polarized) fermions. We set the lattice con-
stant a = 1 for simplicity. The pairing amplitude is anisotropic and has an additional
phase of i in the y direction compared with the pairing in the x direction. Because
the pairing is not on-site, just as in the lattice version of the p-wave wire, the pair-
ing terms will have momentum dependence. We can write this Hamiltonian in the
Bogoliubov–de Gennes form and, assuming that Δ is translationally invariant, we can
Fourier transform the lattice model to get

HBdG = 1
2

∑
p

Ψ†p

(
ε(p) 2iΔ(sin px + i sin py)

−2iΔ∗(sin px − i sin py) −ε(p)

)
Ψp, (2.56)
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where ε(p) = −2t(cos px + cos py)− (μ− 4t) and Ψp = (cp c†−p)T. For convenience,
we have shifted the chemical potential by the constant 4t. As a quick aside, we note
that the model takes a simple familiar form in the continuum limit (p→ 0):

H
(cont)
BdG = 1

2

∑
p

Ψ†p

⎛⎜⎝ p2

2m
− μ 2iΔ(px + ipy)

−2iΔ∗(px − ipy) − p2

2m
+ μ

⎞⎟⎠Ψp, (2.57)

where m ≡ 1/2t and p2 = p2
x + p2

y. We see that the continuum limit has the char-
acteristic px + ipy chiral form for the pairing potential. The quasiparticle spectrum
of H(cont)

BdG is E± = ±
√

(p2/2m− μ)2 + 4|Δ|2p2, which, with a non-vanishing pairing
amplitude, is gapped across the entire BZ as long as μ �= 0. This is unlike some other
types of p-wave pairing terms (e.g. Δ(p) = Δpx), which can have gapless nodal points
or lines in the BZ for μ > 0. In fact, nodal superconductors, having gapless quasipar-
ticle spectra, are not topological superconductors by definition (i.e. a bulk excitation
gap does not exist).

We recognize the form of H(cont)
BdG as a massive 2D Dirac Hamiltonian, and indeed

(2.55) is just a lattice Dirac Hamiltonian, which is what we will consider first. In
the first-quantized notation, the single-particle Hamiltonian for a superconductor is
equivalent to that of an insulator with an additional particle–hole symmetry. It is thus
placed in class D of Table 2.1 and admits a Z topological classification in 2D. Thus, we
can classify the eigenstates of the Hamiltonian (2.55) by a Chern number—but, owing
to the breaking of U(1) symmetry, the Chern number does not have the interpretation
of Hall conductance. However, it is still a topological invariant.

We expect that HBdG will exhibit several phases as a function of Δ and μ
for a fixed t > 0. For simplicity let us set t = 1

2 and make a gauge transformation
cp → eiθ/2cp, c

†
p → e−iθ/2c†p, where Δ = |Δ|eiθ. The Bloch Hamiltonian for the lattice

superconductor is then

HBdG(p) = (2− μ− cos px − cos py)σz − 2|Δ| sin pxσy − 2|Δ| sin pyσx, (2.58)

where σi, i = x, y, z, are the Pauli matrices in the particle/hole basis. Assuming
|Δ| �= 0, this Hamiltonian has several fully gapped superconducting phases separated
by gapless critical points. The quasiparticle spectrum for the lattice model is

E± = ±
√

(2− μ− cos px − cos py)
2 + 4|Δ|2 sin2 px + 4|Δ|2 sin2 py (2.59)

and is gapped (under the assumption that |Δ| �= 0) unless the prefactors of all three
Pauli matrices vanish simultaneously. As a function of (px, py, μ), we find three crit-
ical points. The first occurs at (px, py, μ) = (0, 0, 0). The second has two gap-closings
in the BZ for the same value of μ: (π, 0, 2) and (0, π, 2). The third is again a sin-
gly degenerate point at (π, π, 4). We will show that the phases for μ < 0 and μ > 4
are trivial superconductors, while those for 0 < μ < 2 and 2 < μ < 4 are topological
superconductors with opposite chirality. In principle, one can define a Chern number
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topological invariant constructed from the eigenstates of the lower quasiparticle band
to characterize the phases. We will show this calculation below, but first we make some
physical arguments as to the nature of the phases, following the discussion in [11].

We will first consider the phase transition at μ = 0. The low-energy physics for
this transition occurs around (px, py) = (0, 0) and so we can expand the lattice Ham-
iltonian around this point; this is nothing but (2.57). One way to test the character
of the μ < 0 and μ > 0 phases is to make an interface between them. If we can find a
continuous interpolation between these two regimes that is always gapped, then they
are topologically equivalent phases of matter. If we cannot find such a continuously
gapped interpolation, then they are topologically distinct. A simple geometry to study
is a domain wall where μ = μ(x) such that μ(x) = −μ0 for x < 0 and μ(x) = +μ0 for
x > 0 for a positive constant μ0. This is an interface that is translationally invariant
along the y direction, and thus we can consider the momentum py as a good quantum
number to simplify the calculation. What we will now show is that there exist gap-
less, propagating fermions bound to the interface that prevent us from continuously
connecting the μ < 0 phase to the μ > 0 phase. This is one indication that the two
phases represent topologically distinct classes.

The single-particle Hamiltonian in this geometry is

HBdG(py) =
1
2

⎛⎜⎜⎜⎝
−μ(x) 2i|Δ|

(
−i

d
dx

+ ipy

)
−2i|Δ|

(
−i

d
dx
− ipy

)
μ(x)

⎞⎟⎟⎟⎠ , (2.60)

where we have ignored the quadratic terms in p, and py is a constant parameter, not
an operator. This is a quasi-1D Hamiltonian that can be solved for each value of py
independently. We propose an ansatz for the gapless interface states:

|ψpy
(x, y)〉 = eipyy exp

(
− 1

2|Δ|

∫ x

0

μ(x′) dx′
)
|φ0〉 (2.61)

for a constant, normalized spinor |φ0〉. The secular equation for a zero-energy mode
at py = 0 is

HBdG(py)|ψ0(x, y)〉 = 0 =⇒
(
−μ(x) −μ(x)
μ(x) μ(x)

)
|φ0〉 = 0. (2.62)

The constant spinor that is a solution of this equation is |φ0〉 = 1/
√

2 (1,−1)T. This
form of the constant spinor immediately simplifies the solution of the problem at
finite py. We see that the term proportional to py in (2.60) is −2|Δ|pyσx. Since
σx|φ0〉 = −|φ0〉, i.e. the solution |φ0〉 is an eigenstate of σx, we conclude that |ψpy

(x, y)〉
is an eigenstate of HBdG(py) with energy E(py) = −2|Δ|py. Thus, we have found a
normalizable bound-state solution at the interface of two regions with μ < 0 and μ > 0,
respectively. This set of bound states, parametrized by the conserved quantum number
py, is gapless and chiral, i.e. the group velocity of the quasiparticle dispersion is always
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negative and never changes sign (in this simplified model). The chirality is determined
by the sign of the ‘spectral’ Chern number mentioned above, which we will calculate
below.

These gapless edge states have quite remarkable properties and are not the same
chiral complex fermions that propagate on the edge of integer quantum Hall states, but
chiral real (Majorana) fermions. Using Clifford algebra representation theory, it can
be shown that the so-called chiral Majorana (or Majorana–Weyl) fermions can only
be found in spacetime dimensions (8k + 2), where k = 0, 1, 2, . . . Thus, we can only
find chiral Majorana states in (1 + 1) dimensions or in (9 + 1) dimensions (or higher!).
In condensed matter, we are stuck with (1 + 1) dimensions, where we have now seen
that they appear as the boundary states of chiral topological superconductors. The
simplest interpretation of such chiral Majorana fermions is as half of a conventional
chiral fermion, i.e. its real or imaginary part. To show this, we will consider the edge
state of a Chern number 1 quantum Hall system for a single edge:

H(QH)
edge = �v

∑
p

pη†pηp, (2.63)

where p is the momentum along the edge. The fermion operators satisfy {η†p, ηp′} =
δpp′ . Similar to the discussion on the 1D superconducting wire, we can decompose
these operators into their real and imaginary Majorana parts

ηp =
1
2
(γ1,p + iγ2,p), η†p =

1
2
(γ1,−p − iγ2,−p), (2.64)

where γa,p (a = 1, 2) are Majorana fermion operators satisfying

γ†a,p = γa,−p, {γa,−p, γb,p′ } = 2δabδpp′ . (2.65)

The quantum Hall edge Hamiltonian now becomes

H(QH)
edge = �v

∑
p≥0

p(η†pηp − η
†
−pη−p)

=
�v

4

∑
p≥0

p {(γ1,−p − iγ2,−p)(γ1,p + iγ2,p)− (γ1,p − iγ2,p)(γ1,−p + iγ2,−p)}

=
�v

4

∑
p≥0

p (γ1,−pγ1,p + γ2,−pγ2,p − γ1,pγ1,−p − γ2,pγ2,−p)

=
�v

2

∑
p≥0

p (γ1,−pγ1,p + γ2,−pγ2,p − 2) . (2.66)

Thus,

H(QH)
edge =

�v

2

∑
p≥0

p (γ1,−pγ1,p + γ2,−pγ2,p) , (2.67)
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up to a constant shift of the energy. This Hamiltonian is exactly two copies of a
chiral Majorana Hamiltonian. The edge/domain-wall fermion Hamiltonian of the chiral
p-wave superconductor will be

H(p−wave)
edge =

�v

2

∑
p≥0

pγ−pγp. (2.68)

Finding gapless states on a domain wall of μ is an indicator that the phases with
μ > 0 and μ < 0 are distinct. If they were the same phase of matter, then we should
be able to adiabatically connect these states continuously. However, we have shown a
specific case of the more general result that any interface between a region with μ > 0
and a region with μ < 0 will have gapless states that generate a discontinuity in the
interpolation between the two regions. The question remaining is whether μ > 0 or
μ < 0 is non-trivial. The answer is that we have a trivial superconductor for μ < 0
(adiabatically continued to μ→ −∞) and a topological superconductor for μ > 0.
Remember that for now we are only considering μ in the neighbourhood of 0 and
using the continuum model expanded around (px, py) = (0, 0). We will now define
a bulk topological invariant for 2D superconductors that can distinguish the trivial
superconductor state from the chiral topological superconductor state. For the spinless
Bogoliubov–de Gennes Hamiltonian, which is of the form

HBdG =
1
2

∑
p

Ψ†p [d(p, μ) · σ] Ψp, (2.69a)

d(p, μ) =
(
−2|Δ|py,−2|Δ|px, p2/2m− μ

)
, (2.69b)

the topological invariant is the spectral Chern number defined in (2.11), which
simplifies, for this Hamiltonian, to the winding number

C(1) =
1
8π

∫
d2p εij d̂ · (∂pi

d̂× ∂pj
d̂)

=
1
8π

∫
d2p

εij

|d|3 d ·
(
∂pi

d× ∂pj
d
)
. (2.70)

We defined the unit vector d̂ = d/|d|, which is possible since |d| �= 0 owing to the
existence of a gap. This integral has a special form and is equal to the degree of the
mapping from momentum space onto the 2-sphere S2 given by d̂2

1 + d̂2
2 + d̂2

3 = 1. As
it stands, the degree of the mapping d̂ : R2 → S2 is not well defined, because the
domain is not compact, i.e. (px, py) is only restricted to lie in the Euclidean plane
(R2). However, for our choice of the map d̂, we can define the winding number by
choosing an equivalent, but compact, domain. To understand the necessary choice of
domain, we can simply look at the explicit form of d̂(p):

d̂(p) =

(
−2|Δ|py,−2|Δ|px, p2/2m− μ

)√
4|Δ|2p2 + (p2/2m− μ)2

. (2.71)
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We see that lim|p|→∞ d̂(p) = (0, 0, 1) and it does not depend on the direction in
which we take the limit in the 2D plane. Because of the uniqueness of this limit, we
are free to perform the one-point compactification of R2, which amounts to including
the point at infinity in our domain. The topology of R2 ∪ {∞} is the same as that of
S2 and thus we can consider the degree of our map from the compactified momentum
space (S2) to the unit d̂-vector space (S2). Using the explicit form of the d̂-vector for
this model, we find

C(1) =
1
π

∫
d2p

|Δ|2(p2/2m+ μ)

[4|Δ|2p2 + (p2/2m− μ)2]3/2
. (2.72)

The evaluation of this integral can be easily carried out numerically. The result is
C(1) = 0 for μ < 0 and C(1) = 1 for μ > 0; i.e. there are two different phases separated
by a quantum critical point at μ = 0. Thus we have identified the phase that is in the
chiral superconductor state to be μ > 0.

2.2.2.1 Argument for the existence of Majorana bound states on
vortices

A simple but rigorous argument can show us the presence of zero-energy bound states
in the core of vortices in a superconductor. Assume we have a chiral (p+ ip) super-
conductor in two geometries: a disc with an edge and a cylinder with two edges. Since
it is a topological superconductor, the system will have chiral dispersing (Majorana)
gapless modes along the edges. In Fig. 2.7, the spectra are plotted versus the momen-
tum along the edge, and they are qualitatively very different in the two cases. For
an edge of length L, the smallest difference between two momenta along the edge is
2π/L. The energy difference between two levels is v2π/L, where v is the velocity of
the edge mode.

In a single-particle superconducting Hamiltonian, the number of total single-
particle eigenvalues is always even. This is clear from the fact that whatever the spinor
of the non-superconducting Hamiltonian is, when superconductivity is added, we have
a doubled spectrum, so that every energy state at E > 0 comes with a counterpart at

(a) (b) (c) φ = π
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E
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Fig. 2.7 [Colour online] Spectra of a chiral superconductor in different geometries: (a) disc;
(b) cylinder; (c) disc with flux defect. The spectra of the chiral topological boundary modes are
shown, including their finite-size quantization with level spacing v2π/L. If a π flux is inserted
in the disc geometry (c), it binds an isolated zero-energy state. At the same time, a single
zero-energy state appears on the edge.



96 Topological superconductors and category theory

energy −E. When labelled by momentum quantum number, for a system with just
one edge, like the disc, there cannot be a single state at momentum p = 0 at energy
E = 0. If such a state were there, the spectrum would contain an odd number of states.
Hence the spectrum of the linearized edge mode cannot have a state at E = 0, p = 0
on the disc. The only way to introduce such a state is to have antiperiodic boundary
conditions, with the spectrum of the edge being at momenta π(2n+ 1)/L, n ∈ Z. On
the cylinder, since two edges are present, periodic boundary conditions are allowed (as
are antiperiodic, which can be obtained by threading a flux through the cylinder).

We now add a single vortex inside the disc, far away from the edge of the disc.
What is the influence of the vortex on the edge? The vortex induces a phase 2π in units
of the superconducting quantum hc/2e, which means that the phase of Δ changes by
2π and that of the electronic operators by π upon a full rotation around the edge.
This implies that the antiperiodic boundary conditions on the edge without vortex
change to periodic boundary conditions in the presence of the vortex. The spectrum
on the edge is then translated by π/L compared with the case without the vortex,
making it have an energy level at p = 0, E = 0. This would mean that the spectrum
has an odd number of levels. However, this cannot be true, as we explained above,
since the number of levels is always even. We are hence missing one unpaired level.
Where is it? Since the only difference from the case with no vortex is the vortex itself,
we draw the conclusion that the missing level is associated with the vortex, and is a
bound state on the vortex. We also draw the conclusion that, since it is unpaired and
really bound to the vortex, it has to rest exactly at E = 0, thereby showing that chiral
superconductors have Majorana zero modes in their vortex core.

2.2.2.2 Bound states on vortices in 2D chiral p-wave superconductors

Let us explicitly show that a vortex in a chiral superconductor will contain a zero
mode [12, 13, 15]. For this calculation, which is a variant of our calculation for the
existence of a Majorana mode at the interface between a topological and a trivial
superconductor, we follow the discussion in [11]. For this construction, consider a disc
of radius R that has μ > 0 surrounded by a region with μ < 0 for r > R. We know
from our previous discussion that there will be a single branch of chiral Majorana
states localized near r = R, but no exact zero mode. If we take the limit R→ 0, this
represents a vortex and all the low-energy modes on the interface will be pushed to
higher energies. If we put a π flux inside the trivial region, it will change the boundary
conditions such that even in the R→ 0 limit there will be a zero mode in the spectrum
localized on the vortex.

Now let us take the Bogoliubov–de Gennes Hamiltonian in the Dirac limit (m→∞)
and solve the Bogoliubov–de Gennes equations in the presence of a vortex located at
r = 0 in the disc geometry in polar coordinates. Let Δ(r, θ) = |Δ(r)|eiα(r). The profile
|Δ(r)| for a vortex will depend on the details of the model, but must vanish inside the
vortex core region; for example, for an infinitely thin core, we just need |Δ(0)| = 0.
We take the phase α(r) to be equal to the polar angle at r.

The first step in the solution of the bound state for this vortex profile is to gauge-
transform the phase of Δ(r, θ) into the fermion operators via Ψ(r) → eiα(r)/2Ψ(r).
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This has two effects: (i) it simplifies the solution of the Bogoliubov–de Gennes dif-
ferential equations and (ii) it converts the boundary conditions of Ψ(r) from periodic
to antiperiodic around the vortex position r = 0. In polar coordinates, the remaining
single-particle Bogoliubov–de Gennes Hamiltonian is simply

HBdG =
1
2

⎛⎜⎜⎜⎝
−μ 2|Δ(r)|eiθ

(
∂

∂r
+

i
r

∂

∂θ

)
−2|Δ(r)|e−iθ

(
∂

∂r
− i
r

∂

∂θ

)
μ

⎞⎟⎟⎟⎠ . (2.73)

We want to solve HBdGΨ = EΨ = 0, which we can do with the ansatz

Ψ0(r, θ) =
i√
rN exp

[
−1

2

∫ r

0

μ(r′)
|Δ(r′)| dr

′
](

−eiθ/2

e−iθ/2

)
≡ ig(r)

(
−eiθ/2

e−iθ/2

)
, (2.74)

where N is a normalization constant. The function g(r) is localized at the position
of the vortex. We see that Ψ0(r, θ + 2π) = −Ψ0(r, θ), as required. From an explicit
check, one can see that HBdGΨ0(r, θ) = 0. The field operator that annihilates fermion
quanta in this localized state is

γ =
∫
r dr dθ ig(r)[− eiθ/2c(r, θ) + e−iθ/2c†(r, θ)], (2.75)

from which we can immediately see that γ = γ†. Thus, the vortex traps a single
Majorana bound state at zero energy.

2.2.2.3 Non-Abelian statistics of vortices in chiral p-wave
superconductors

We have just shown that on each vortex in a spinless chiral superconductor, there
exists a single Majorana bound state. If we have a collection of 2N vortices that
are well separated from each other, a low-energy subspace is generated which in the
thermodynamic limit leads to a ground-state degeneracy of 2N [16, 17]. For example,
two vortices give a degeneracy of 2, which can be understood by combining the two
localized Majorana bound states into a single complex fermion state, which can be
occupied or unoccupied, akin to the end states of the superconducting wire. From 2N
vortices, one can form N complex fermion states, giving a degeneracy of 2N , which can
be broken up into the subspace of 2N−1 states with even fermion parity and the 2N−1

states with odd fermion parity. As an aside, since we have operators that mutually
anticommute and square to +1, we can define a Clifford algebra operator structure
using the set of 2N γi.

To illustrate the statistical properties of the vortices under exchanges, we closely
follow the work of Ivanov [14] and the discussion in [11]. Let us begin with a single
pair of vortices which have localized Majorana operators γ1 and γ2 respectively and
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Fig. 2.8 [Colour online] Illustration of the exchange of two vortices in a chiral p-wave supercon-
ductor. The dashed lines represent branch cuts across which the phase of the superconducting
order parameter jumps by 2π.

are assumed to be well separated. We imagine that we adiabatically move the vortices
in order to exchange the two Majorana fermions. If we move them slowly enough, then
the only outcome of exchanging the vortices is a unitary operator acting on the two
degenerate states that make up the ground-state subspace. If we exchange the two
vortices, then we have γ1 → γ2 and γ2 → γ1. However, if we look at Fig. 2.8, we im-
mediately see there is a complication. In this figure, we have illustrated the exchange
of two vortices, and the dashed lines represent branch cuts across which the phase of
the superconductor order parameter jumps by 2π. Since our solution of the Majorana
bound states used the gauge-transformed fermion operators, we see that the bound
state on one vortex [red online], which passes through the branch cut of the other vor-
tex [blue online], picks up an additional minus sign upon exchange. Thus the exchange
of two vortices is effected by

γ1 → γ2, γ2 → −γ1. (2.76)

In general, if we have 2N vortices, we can think of the different exchange operators
Tij(γa), which, for our choice of conventions, send γi → γj , γj → −γi, and γk → γk for
all k �= i, j. We can construct a representation of this exchange process on the Hilbert
space by finding a τ(Tij) such that τ(Tij)γaτ−1(Tij) = Tij(γa). Such a representation
is given by

τ(Tij) = exp
(π

4
γjγi

)
=

1√
2

(1 + γjγi) . (2.77)

Let us prove this by showing an explicit example for T12, which will have the
transformation given in (2.76):

τ(T12)γ1τ
−1(T12) =

1
2

(γ1 − γ1γ2γ1 + γ2 − γ1) = γ2, (2.78a)

τ(T12)γ2τ
−1(T12) =

1
2

(γ2 − γ1 + γ2γ1γ2 − γ2) = −γ1, (2.78b)

τ(T12)γ3τ
−1(T12) = γ3τ(T12)τ−1(T12) = γ3. (2.78c)

Now that we have this representation, we can illustrate the non-Abelian statistics. We
start with four vortices with Majorana operators γ1, γ2, γ3, γ4. To illustrate the action
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of the exchange operators on the fourfold-degenerate ground state space, we need to
pair these Majorana operators into complex fermions

a =
1
2
(γ1 + iγ2), a† =

1
2
(γ1 − iγ2),

b =
1
2
(γ3 + iγ4), b† =

1
2
(γ3 − iγ4). (2.79)

The basis vectors of the ground-state subspace can now be written as

{|0〉a ⊗ |0〉b, |1〉a ⊗ |1〉b, |1〉a ⊗ |0〉b, |0〉a ⊗ |1〉b}, (2.80)

where we have ordered the basis so that states of the same fermion parity are together.
The notation |n〉a,b means a†a|n〉a = n|n〉a and b†b|n〉b = n|n〉b. The set of statistical
exchanges is generated by T12, T23, T34 and we want to understand how these exchanges
act on the ground-state subspace. We can rewrite these three operators as

τ(T12) =
1√
2
(1 + γ2γ1) =

1√
2

[
1− i(aa† − a†a)

]
, (2.81a)

τ(T23) =
1√
2

[
1− i(ba− ba† + b†a− b†a†)

]
, (2.81b)

τ(T34) =
1√
2

[
1− i(bb† − b†b)

]
. (2.81c)

Taking matrix elements in our chosen ground-state basis (2.80), we find

τ(T12) =
1√
2

⎛⎜⎜⎝
1− i 0 0 0

0 1 + i 0 0
0 0 1 + i 0
0 0 0 1− i

⎞⎟⎟⎠ , (2.82a)

τ(T23) =
1√
2

⎛⎜⎜⎝
1 −i 0 0
i 1 0 0
0 0 1 −i
0 0 i 1

⎞⎟⎟⎠ , (2.82b)

τ(T34) =
1√
2

⎛⎜⎜⎝
1 + i 0 0 0

0 1− i 0 0
0 0 1− i 0
0 0 0 1 + i

⎞⎟⎟⎠ . (2.82c)

We see that with our basis choice, T12 and T34 are Abelian phases acting on each
state, while T23 exhibits non-trivial mixing terms between the states with the same
fermion parity. Thus, the form of T23 represents non-Abelian statistics. Given an
initial state |ψin〉 = |0〉a ⊗ |0〉b, if we take vortex 2 around vortex 3, the final state
is |ψf〉 = 1√

2
(|0〉a ⊗ |0〉b + i|1〉a ⊗ |1〉b). In principle, one must also keep track of the

Berry phase contribution to the statistical phase. Here we have only considered the
wavefunction monodromy; however, it can be proved that the Berry phase does not
contribute in this case. The field of topological quantum computation is built on
the idea that such exchange or braiding operations will lead to non-trivial quantum
evolutions of the ground state that can be used for quantum computations.
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2.2.2.4 The 16-fold way

We have now noticed that there are two characterizations of a topological supercon-
ductor, but they are seemingly different. First, the spectral Chern number is an integer
C(1) ∈ Z. Directly related to it is the number of chiral Majorana modes on the edge,
which in turn is related to an experimental observable, the thermal conductivity on the
edge. Hence the system has a Z index, which becomes obvious when an edge exists. We
then saw that a (p+ ip) superconductor (i.e. a topological superconductor with Chern
number equal to 1) with a vortex threaded through it exhibits a Majorana zero-energy
mode at the core of the vortex. A (d+ id) superconductor, with Chern number equal
to 2, would exhibit two Majorana modes in the core of the vortex. However, those
two Majorana modes would be unstable towards single-particle hybridization terms,
which would push them away from zero energy, and leave the core of the vortex with no
states in it. The generalization tells us that an even-Chern-number topological super-
conductor has no Majorana zero modes in the vortex, while an odd-Chern-number
topological superconductor has one Majorana zero mode in its core. This shows that
the defects (vortices) in a topological superconductor are classified by a Z2 number
(C(1) mod 2).

We now show that there is a third classification related to the idea of topological
order [18]. In the absence of an edge and in the absence of vortex defects, there is a Z16

classification of topological superconductors indexed by C(1) mod 16, which can be
put on a solid basis by using the formalism of topological quantum field theory (TQFT)
that we will introduce in Section 2.3. This shows that the edge–bulk correspondence
needs revisiting—the bulk does not know if we add 16 edge modes or not, and hence
that the edge contains more information than the bulk [19]. We first give a simple
argument for the existence of a Z16 classification.

We ask how we can classify the system in the absence of an edge. One way would
be to compute the phases that wavefunctions can acquire upon taking particles or
quasiparticles around each other. However, the system is made out of electrons (it is
a superconductor), so usually nothing special can happen to phases of electrons. The
only ‘special’ excitation of the superconductor is a vortex, so we will look at the phase
that two vortices acquire upon exchange. We can calculate this with an argument.
Take two copies of the (p+ ip) superconductor governed by the Hamiltonian

H =
i
4

∑
j,k

Ajk(γ1,jγ1,k + γ2,jγ2,k), (2.83)

written in terms of Majorana operators γ1,j for one copy and γ2,j for the other. These
operators can be combined into an complex fermion cj = 1

2 (γ1,j + iγ2,j), in terms of
which the Hamiltonian becomes

H = i
∑
j,k

Ajkc
†
jck. (2.84)

This Hamiltonian has a ‘fake’ U(1) symmetry given by our choice of Ajk for both
Hamiltonians. (Since the system is gapped, we expect our universal conclusions to
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hold even when this symmetry is stripped away). Thus, the system is a quantum Hall
state of Hall conductance C(1) (in units of e2/h) if each of the superconductors had
Chern number C(1). We now ask what happens when we thread a superconducting
vortex h/2e, which is equal to π. Threading a flux 2π in a quantum Hall state of
Chern number C(1) pulls C(1) electron charges to the vortex core through the Hall
effect; hence a π flux pulls C(1)/2 electron charges towards the core. We then try to
compute the phase acquired when a vortex is exchanged with another vortex. This
is an exchange process, which is half a braid. A braid of two vortices is equivalent
to C(1)/2 electrons braided with a π vortex, giving rise to a phase πC(1)/2 upon a
braid, and πC(1)/4 under exchange. Since this is the phase for exchange of vortices in
two exactly identical superimposed superconductors, the phase for exchange in one of
them is half that, πC(1)/8 = 2πC(1)/16. This shows that the phase for vortex exchange
is defined only mod 16.

We will show this more rigorously within the framework of TQFT that we will
introduce axiomatically in Section 2.3. Before doing so, let us summarize what we
have learned about the vortices in chiral superconductors with odd Chern number in
a language that anticipates the formalism that we will introduce. We have seen that
well-separated vortices hold a Majorana zero mode at their core. When these vortices
come together, the two Majorana modes hybridize and split, giving rise to two states
that differ by their fermion parity. Let us call the Bogoliubov–de Gennes vacuum 1,
the Bogoliubov quasiparticle ψ, and the Majorana fermion of the vortex σ. We can
then formalize the fusion of two vortices by writing down a fusion rule

σ × σ = 1 + ψ, (2.85)

which basically tells us that combining two Majoranas can go either go to a state
with no fermion or to one with a fermion—the fermion parity (and density) would
be different for the two states. Which one it is depends on the microscopics of the
model. Hence, a quantum state of two Majoranas has to be described by another
quantum number, which describes the ‘fusion channel’ of those two Majoranas—either
the vacuum or the Bogoliubov quasiparticle. The fusion rule (2.85) allows for multiple
fusion channels, unlike the fusion rules (2.50) that we deduced for the toric code. This
difference is a manifestation of the fact that the Majoranas are non-Abelian anyons,
while the toric code anyons are Abelian. When two Bogoliubov quasiparticles fuse,
they condense (forming a Cooper pair) and go to the vacuum,

ψ × ψ = 1, (2.86)

while the fusion of a Bogoliubov and a Majorana quasiparticle basically creates another
Majorana,

ψ × σ = σ. (2.87)

This can be rationalized by thinking of the complex Bogoliubov quasiparticle as made
out of two Majoranas, which then couple to the third Majorana. The Hamiltonian is
a 3× 3 antisymmetric matrix that necessarily has a zero eigenvalue, which is another
Majorana fermion coming as a result of the fusion.
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2.3 Category theory

So far, we have tried to gain some intuition about topologically ordered phases of
matter by ways of examples. In this section, we are going to define a framework that
describes topological order in 2D space in a unified and axiomatic way. At the same
time, our description strips away all non-universal details from the problem. A field
theory with these properties is known as a topological field theory. It does not contain
any information about energy scales of the problem.

The topological field theory that we study is based on the mathematical concepts
of category theory [18, 20, 21]. We will, however, try to keep the description as light
as possible. For our purpose, we can view category theory as a generalization of group
theory that is based on the fusion rules between anyon species that we have already en-
countered in examples. Consistent implementation of fusion defines a fusion category.
Subsequently, we can impose more structure on the fusion category that elevates it
to a braiding category, or a braided tensor fusion category. Our presentation will
follow [18, 21], while giving more examples of the use of the theory.

2.3.1 Fusion category

A fusion category is based on a finite number of topological sectors (also called anyons,
topological charges, or simply particles), which we will label

a, b, c, . . . (2.88)

For every charge a, there exists a unique conjugate charge or antiparticle, which we
denote by ā. It is possible that an anyon is its own antiparticle, a = ā (e.g. the Majo-
rana σ). There exists a unique vacuum sector denoted by 1 (or sometimes by 0). The
fusion category is defined by its fusion rules

a× b =
∑
c

N c
abc, (2.89)

where Nc
ab ∈ Z+ are non-negative integers. We have already encountered two examples

of fusion rules in Section 2.2, namely the toric code with charges 1, e, m, and f ,

1× e = e, 1×m = m, 1× f = f,

e×m = f, e× f = m, m× f = e,

e× e = 1, m×m = 1, f × f = 1, (2.90)

and the so-called Ising anyon theory that we found realized by Majorana fermions in
a chiral p-wave superconductor with charges 1, σ, and Ψ,

1× σ = σ, 1× ψ = ψ

σ × σ = 1 + ψ, σ × ψ = σ, ψ × ψ = 1.
(2.91)

A principal difference between (2.90) and (2.91) is that the former has always only
one fusion product on the right-hand side, while the fusion of two σ in the latter
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produces two outcomes. Hence, the ×-product in the toric code can still be thought
of as a group operation, while this is not possible in the Ising theory. We will see
that this distinction coincides with the notion of an Abelian theory (toric code) and
a non-Abelian theory (Ising).

Does any choice of fusion rules, i.e. N c
ab ∈ Z+, define a permissible fusion cat-

egory? The answer to this question is negative, since we have to impose the following
conditions on a fusion category:

• The fusion rules must be commutative:

a× b = b× a =⇒ N c
ab = N c

ba. (2.92)

• The fusion rules must be associative:

(a× b)× c = a× (b× c) =⇒
∑
m

Nm
abN

n
mc =

∑
m

Nn
amN

m
bc . (2.93)

If we define the matrix Na with matrix elements (Na)bc = N c
ab, this relation

becomes a vanishing commutator:

[Na, Nc] = 0, (2.94)

which implies that all fusion matrices Na are diagonalized by the same eigen-
vectors. We will exploit this fact later.

• Fusion with the identity leaves any anyon unchanged:

a× 1 = a. (2.95)

• The fusion product of a with its antiparticle ā contains the vacuum with
prefactor 1:

a× ā = 1 +
∑
c�=1

N c
aāc. (2.96)

• There exists a solution to the consistency condition called the pentagon equation,
which we will discuss below.

2.3.1.1 Diagrammatics

Before we turn to the pentagon equation, we want to introduce a diagrammatic lan-
guage that will facilitate computations within the fusion and braiding categories. In
this formalism, we denote anyon a travelling forwards in time as an upward-oriented
line. It is the same as the associated antiparticle travelling backwards in time:

a a

ti
m

e

= .

(2.97)
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A diagram with open anyon worldlines at the top and bottom represents a state
in a Hilbert space that depends on the number and types of open anyon worldlines.
A diagram without open worldlines represents an amplitude or complex number. The
simplest non-trivial Hilbert space is the fusion space V cab. Its dimension is given by the
number of ways that anyons a and b can fuse into c, that is, dimV cab = N c

ab. A basis
in V cab is denoted by

b

∈V c
ab.

c

a

μdc

dadb

a,b; c, μ =:
1 4

(2.98)

Here, μ = 1, . . . , Nc
ab labels the fusion multiplicity and the real positive prefactor

(dc/da db)1/4 should be understood as a normalization constant at this stage. We
adopt the normalization of [21]. Likewise, we define the splitting space V abc of the
same dimension dimV abc = N c

ab and write a basis as

∈Vc
ab.

dc

dadb

a,b; c, μ =:

a b

c

μ

1 4

(2.99)

Two propagating particles a and b live in a vector space V abab =
⊕

c V
ab
c ⊗ V cab. The

identity element Iab in V abab is then represented by the completeness relation

Iab =
∑
c,μ

|a, b; c, μ〉〈a, b; c, μ|, (2.100)

which we represent pictorially as

a b

=

a b

c
c,μ μ

a b

μ
.

dc

dadb

∑

(2.101)

The basis vectors in V abc and V cab furthermore satisfy the orthogonality relation

〈a, b; c, μ|a, b; c′, μ′〉 = δc,c′δμμ′ , (2.102)

which we represent pictorially as

c

a b = δc,c ′δμμ′

μ

c′
μ′ c

.
dc

dadb

(2.103)
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In particular, we can choose c = 1 (a dashed worldline) to obtain

a = aa a = .
d1

dada

(2.104)

We can use this relation to determine the normalization constants da, which are called
quantum dimensions. We have the freedom to choose d1 = 1 and note that for all
examples discussed here da = dā. It follows that

da = a.

(2.105)

2.3.1.2 F-moves and the pentagon equation

As noted above, we need to impose a further consistency condition to complete the
definition of a fusion category. For this, we generalize the notion of associativity that
we imposed on the fusion coefficients by imposing associativity on the basis. The
consistency equations basically say that observables only depend on the states of the
particles at the beginning (the fusion channel) and at the end. Nothing in between
can matter, up to phases and rotations in possibly degenerate spaces. We consider the
Hilbert space of particle d splitting into three (not two) particles a, b, c:

V abcd =
∑
e

V abe ⊗ V ecd =
∑
f

V afd ⊗ V bcf . (2.106)

There is hence a unitary transformation F abcd (‘F -move”) between the two vector
spaces,

|a, b; e, α〉 ⊗ |e, c; d, β〉 =
∑
f,μ,ν

[
F abcd

]
(e,α,β),(f,μ,ν)

|b, c; f, μ〉 ⊗ |a, f ; d, ν〉, (2.107)

which reads diagrammatically

a b c

α

β
e

d

=
(e,α,β),(f,μ,ν)

f,μ,ν
F abc μ

a b c

d

f
ν

.d

∑

(2.108)

For a fusion category to be unitary, we require that (F abcd )† = (F abcd )−1 (as a matrix).
Notice that F abcd is trivial if any of a, b, c = 1.
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a b c

e
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f
g

a b c

e

d

f l

a b c

e

d

l
k

a b c

e

d

g

h

a b c

e

d

h
k

Fig. 2.9 The pentagon equation defines a consistency relation that must be imposed on a
fusion category.

The pentagon equation is the consistency condition represented diagrammatically
as in Fig. 2.9. It shows that there are two ways to build the same mapping between
two vector spaces out of F -moves. Each distinct solution, up to gauge freedom, of the
pentagon equation[

F fcde

]
gl

[
F able

]
fk

=
∑
h

[
F abcg

]
fh

[
F ahde

]
gk

[
F bcdk

]
hl

(2.109)

is a distinct fusion category (with the same fusion rules). Here and below, we have
suppressed the Greek indices that correspond to the fusion multiplicities. We will
focus on theories of multiplicity 1 only, i.e. all N c

ab fusion coefficients will be either 0
or 1. As the F -moves relate different basis states, not all of them are gauge-invariant
(see below). However, there are some F -symbols that are gauge-invariant. Those are
related to invariants of the theory called Frobenius–Schur indicators.

2.3.1.3 Gauge freedom and its fixing

Consider a gauge transformation on the basis states |a, b; c〉:

|a, b; c〉′ = uabc |a, b; c〉. (2.110)

We only consider the case without multiplicities, i.e. Nab
c = 0, 1, for which uabc ∈ C

are scalars with |uabc | = 1. Likewise, if N bc
f = 0, 1, the F -symbols are scalars with

|[F abcd ]ef | = 1. In view of the definition (2.107), the F -symbols are not invariant under
the gauge transformation. They transform as

[
F abcd

]′
ef

=
[
F abcd

]
ef

uabe u
ec
d

uafd ubcf
. (2.111)
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Furthermore, we need to set

u1b
c = δbc, (2.112)

since the fusion of the identity particle can be added at any point in time to the
worldline of any particle b without changing the state.

From this, we can conclude that the following F -symbols are gauge-invariant:[
F 1bc
d

]
ef

=
[
F 1bc
d

]
bd
,

[
F a1cd

]
ef

=
[
F a1cd

]
ac
,

[
F ab1d

]
ef

=
[
F ab1d

]
db
. (2.113)

In a theory with no multiplicity, all these F -symbols are equal to unity because they
represent identity maps from spaces |b, c; d〉 into the same space:[

F 1bc
d

]
ef

=
[
F 1bc
d

]
bd

=
[
F a1cd

]
ef

=
[
F a1cd

]
ac

=
[
F ab1d

]
ef

=
[
F ab1d

]
db

= 1. (2.114)

2.3.1.4 Quantum dimensions and Frobenius–Schur indicators

Having completed the definition of a fusion category, we now explore its structure.
First, we shall properly define the quantum dimension da of an anyon a, which has
already entered several relations as a normalization factor. Physically, the definition
of da can be obtained from imposing isotopy invariance, which means the ability to
remove bends in particle worldlines. This should be possible as long as lines are not
crossed and endpoints are not moved. Bending a line slightly (so that the line always
flows upwards) is a trivial allowed move, but a complication arises when a line is bent
so much that it acquires a turning point. The F -move associated with this type of
bending is

a

aa

a

a

a

=

a

a

a

a

a

a.a
a

a

1 1

11

F aaa
1,1 = daa F aaa

1,1a

(2.115)

Notice that the symbol [Faāaa ]11 is gauge-invariant. Hence its value is a topological
invariant. Since we know that the line in the left diagram is isotopically equivalent to
a line going up, it should be, up to a phase, equal to a line going up. We conclude
that [F aāaa ]11 = χa/da, where χa is a phase called the Frobenius–Schur indicator. If
a is its own antiparticle, χa has to equal either +1 or −1. Since it can take different
values, it is a topological invariant characterizing the fusion category. Interestingly,
there are other Frobenius–Schur indicators that characterize the theory as topological
invariants. For example, one on which we will not elaborate further is connected to
the trivalent vertex [21].

We now know how to compute the quantum dimension through the F -symbols.
However, there is another, easier, way of computing the quantum dimensions. This
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is obvious once the space of states has been endowed with a completeness and an
orthonormality relation, which we gave in (2.101) and (2.103), respectively. One can
use them to show the identity

dadb =
∑
c

N c
abdc, (2.116)

for

dadb = a b =
c

b a c =
c

ab c

= N cab dc.N cab c =
c

dadb

dc

dadb

dc
∑∑

∑∑
(2.117)

Equation (2.116) is key to understanding how the quantum dimensions follow from
the fusion rules. It is again useful to render the fusion coefficients in a matrix form
(Na)bc = N c

ab (b and c are the indices of the matrixNa). Then, (2.116) is nothing but an
eigenvalue equation for Na. We see that da is an eigenvalue of Na and its eigenvector is
the vector that contains all quantum dimensions dc. The existence of the real positive
eigenvalue da is a highly non-trivial fact. The Perron–Frobenius theorem, proved by
Oskar Perron (1907) and Georg Frobenius (1912), asserts, in its weak version, that a
real square matrix with non-negative entries has a largest positive eigenvalue and that
the corresponding (possibly degenerate) eigenvector has non-negative components. We
would like to use it to show that the eigenvalue da is the largest eigenvalue of the matrix
Na. By assumption, the vector with entries dc has only strictly positive components.
Suppose we have another eigenvector v of Na with non-negative components vc ≥ 0
and eigenvalue μa. Then the strict equality∑

c

vcdc > 0 (2.118)

holds since all dc are strictly positive and at least one vc is strictly positive as well.
From

da

(∑
c

dcvc

)
=
∑
b,c

dbN
c
abvb = μa

(∑
c

dcvc

)
, (2.119)

it thus follows that the eigenvalues da and μa are equal. In other words, any non-
negative eigenvector of Na has the same eigenvalue da. This includes the eigenvector
of the largest eigenvalue of Na, which is non-negative because of the Perron–Frobenius
theorem. Hence, da is the largest eigenvalue of Na.
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Using the fact that da is the largest eigenvalue, we can now give a more physical
interpretation of the quantum dimension. For that, consider the fusion of some anyon
a with itself n times:

a× a× · · · × a︸ ︷︷ ︸
n

=
∑

c1,c2,...,cn−1

(Na)ac1 (Na)c1c2 × · · · × (Na)cn−2cn−1 cn−1. (2.120)

The right-hand side contains the (n− 1)th power of the matrix Na. Hence, approxi-
mating Na by its highest eigenvalue, we conclude the the dimension of the fusion space
of n anyons of type a is dominated by the quantum dimension dim(

⊕
c V

c
a...a) ∼ dna for

large n. In other words, the quantum dimension tells us how fast the Hilbert space for
a particle grows! Any non-Abelian particle has a quantum dimension strictly larger
than unity (Abelian particles have quantum dimension unity).

2.3.1.5 Examples

Before moving on to impose more structure on the fusion category in order to obtain
a braiding category, we shall briefly follow up on the two examples of semion TQFT
and Ising TQFT.

Semion TQFT The simplest non-trivial TQFT has one particle s besides the
identity and the semion fusion rules

s× s = 1, 1× s = s. (2.121)

The theory is Abelian, i.e. ds = 1. Let us solve the pentagon equation for this theory.
There is only one F -symbol, which is not entirely determined by gauge fixing alone,
namely [F ssss ]11. We can deduce its allowed values from the pentagon equation[

F 1ss
1

]
s1

[
F ss11

]
1s

= [F ssss ]11
[
F s1s1

]
ss

[F ssss ]11 , (2.122)

which, using (2.114), yields the two possibilities

[F ssss ]11 = ±1. (2.123)

In fact, [F ssss ]11 is equal to the Frobenius–Schur indicator mentioned above and the
two values ±1 distinguish two different fusion categories. The choice +1 is trivial,
while the −1 is what is commonly called the semion TQFT. For example, it is realized
in the ν = 1

2 Laughlin state of bosons in the fractional quantum Hall effect.

Ising TQFT We gave the fusion rules of the non-Abelian Ising TQFT in (2.91). We
now want to use (2.116) to compute the quantum dimensions of the anyons. For that,
we note that the fusion matrix (in the basis (1, σ, ψ)) of the σ anyon is given by

Nσ =

⎛⎝0 1 0
1 0 1
0 1 0

⎞⎠. (2.124)
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Its eigenvalues are given by ±
√

2 and 0, the largest of which dσ =
√

2 is the quantum
dimension of the σ particle. Its corresponding eigenvector (d1, dσ, dψ) = (1,

√
2, 1) in-

deed contains the quantum dimensions of all anyons. The quantum dimension
√

2 is
compatible with our explicit calculation of the degeneracy resulting from Majorana
bound states in the vortices of a p-wave superconductor. For example, two vortices
with one Majorana state each gave rise to a degeneracy

√
2
2

= 2 of the state.

2.3.2 Braiding category

A bare fusion category has no means to relate the two fusion spaces V abc and V bac .
The physical operation that corresponds to such a relation is an exchange between
the particles a and b. In a braiding category, exchange is a map Rab : V abc → V bac . A
double exchange is an automorphism in a given fusion space RbaRab : V abc → V abc . For
fusion processes without multiplicities, for which the space is 1D, RbaRab is thus a
phase (it is represented by a matrix if the multiplicity N c

ab is larger than 1). Upon
braiding, the state changes by flipping the particles, by convention,

Rab|a, b; c, μ〉 =
∑
ν

[Rabc ]μν |b, a; c, ν〉. (2.125)

Diagrammatically, this operation (‘R-move’) is represented as

c

a b
= Rc

ab

ab

c

,

(2.126)

in the case without multiplicities.
For this braiding relation to define a consistent braiding category, the R- and F -

symbols have to satisfy two consistency relations called hexagon equations. (The two
hexagon equations differ only in the directions of the braids involved; one uses R, the
other uses R−1. For simplicity, we only present the equation for R here.) As with the
pentagon equation for the F -symbols alone, the hexagon equation represents a way
to mix F and R-moves to get between the same two diagrams in two different ways.
Analytically, it reads

Rabe
[
F bacd

]
eg
Racg =

[
F abcd

]
ef
Rafd

[
F bcad

]
fg

(2.127)

and they are shown diagrammatically in Fig. 2.10. The matrix Rabc is unitary, and if
either of a or b is the identity particle, then the R matrix is unity (braiding with the
vacuum is trivial):

R1b
c = Ra1c = 1. (2.128)
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Fig. 2.10 The hexagon equation defines a consistency relation that has to be imposed on a
braiding category.

2.3.2.1 Topological spin

Every quasiparticle type a in a braiding category carries another topological quantum
number besides its quantum dimension, namely the complex-valued topological spin θa
with |θa| = 1. Physically, the topological spin can be interpreted as the phase resulting
from a rotation of the particle around its own axis by 2π. It is −1 for fermions, but
can be fractional for other particles. Diagrammatically, we can define θa as

a a

=

a

,

a

= θa
*

a

=

a

.= θa

(2.129)

We bend the world line of a particle a, bring it down, then bring it back to itself,
this time braided, then take it to infinity. This corresponds, up to a phase, to the
configuration without bending.

To see how the topological spin is related to the R-symbols, we want to evaluate
a diagram that represents an amplitude, i.e. is closed. For that, we simply connect up
the open worldlines in (2.129) with an ā worldline and obtain the definition

θa := da

1
a a.

(2.130)

We evaluate this diagram by inserting an identity and applying an R-move (by the
definition of the R-symbols, exchange is only defined between worldlines that are in a
definite fusion channel):
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c

dc

a

c

a

=
c c

a a

a a c

c =

a a =
d 2

a

dc

d 2
a

Rc
aa

=
c

dc

d 2
a

Rc
aa a c =

c

dc

d 2
a

Rc
aa a

=
c

Rc
aa

c
Rc

aadc .

∑

∑∑

∑

∑ ∑

(2.131)

Combining (2.130) and (2.131), we obtain the definition of θa in terms of the R-symbol:

θa :=
1
da

∑
c

dcTr[Raac ]. (2.132)

Here, the matrix trace Tr is relevant for theories with multiplicities, in which case
Raac is a square matrix with dimension equal to the multiplicity of the fusion channel
c of a× a.

Another identity, which requires bending to be proved, is

Rāa1 = θ∗aχa (2.133)

where χa is the Frobenius–Schur indicator.

2.3.2.2 Ribbon equation

We are now in good shape to prove an important identity relating topological spin to
the R-matrices that is called the ribbon equation:

Rabc R
ba
c =

θc
θaθb

I, (2.134)

where I is the identity element in the space V abc . Physically, it equates the operation of
twisting each worldline in a splitting diagram by 2π with the operation of braiding the
splitting products. We can prove the ribbon equation via diagrammatic manipulations.
For that, we evaluate the same diagram in two different ways. For one, we can use the
topological spin of the split particle c:
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a b

c

c

=

c

a b

c

c

= θc a b

c

(2.135)

On the other hand, we can use a combination of topological spins and R-moves:

a b

c

c

= θb

c

c

ba

= θb

c

c

ba

= θaθb

c

c

ba

= θaθb Rc
ab

= θaθb Rc
abRc

ba a

ab

c

c

c

b.

c
(2.136)

Together, (2.135) and (2.136) yield the ribbon equation (2.134).

2.3.2.3 Vafa’s theorem

An important theorem relating the topological spin and the structure constants Nc
ab

is Vafa’s theorem [22]. It shows that the topological spin is a rational number. We will
not derive it here, but point the reader to [18] for an easy derivation. Vafa’s theorem
proceeds by writing down in matrix form the two hexagon equations, one for R and
one for R−1, dividing them and using Rabc R

ba
c = θc/(θaθb)I to obtain

∏
c

(
θc
θaθb

)Nc
abN

e
cd ∏

f

(
θf
θaθd

)Ne
bfN

f
ad

=
∏
r

(
θe
θaθr

)Nr
bdN

e
ar

. (2.137)
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As an example, we will later use Vafa’s theorem to deduce the spin of the σ particle
in the Ising TQFT.

2.3.3 Modular matrices

In the preceding subsections, we have constructed the fusion and braiding category
from the F - and R-moves and deduced the universal data (quantum dimensions da
and topological spins θa) that characterizes the anyons in this category.

For TQFT in physical systems, i.e. quantum liquid ground states of matter, it is
important to address how the universal information about the TQFT can in general
be accessed. We know that topological properties cannot be accessed by local meas-
urements. In contrast, it turns out that there is a set of global measurements that can
be used, namely the action of automorphisms on the manifold over which the system
is defined. Automorphisms are transformations that map the manifold back to itself
and form the so-called mapping class group of the manifold. Here, we will explore
the most standard case, namely (2 + 1)-dimensional systems with periodic boundary
conditions, in which case the manifold is a torus. Automorphisms on the torus form
the modular group, which has two generators. The first generator S exchanges the two
coordinate axes. The second generator T changes the angle between the coordinate
axes.

A TQFT on the torus exhibits a topological ground-state degeneracy, where the
number of ground states is equal to the number of anyons in the theory (including
the identity). It is the representation of the S and T operations in this ground-state
manifold that reveals information about the nature of the TQFT. We call these repre-
sentations the S- and T -matrices. Instead of deriving the S- and T -matrices from the
action of the respective transformations, we will simply give their definitions within
the TQFT here and subsequently explore their properties (see [23] for a more complete
discussion of the connection).

2.3.3.1 The S-matrix

In the TQFT, the S-matrix is defined diagrammatically as

Sab := D
ab ,1

(2.138)

where D is the total quantum dimension of the TQFT:

D =
√∑

a

d2
a. (2.139)

(We choose the same convention for the diagrammatic definition of Sab here as in [21],
which is different from that chosen in [18].) We can relate it to the topological spins
and fusion coefficients via the following diagrammatic manipulations:
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ab =
c, μ

a

c

b

μ

μ

Rc
ab

μν νμ
Rc

ba

c

μ

μ

c

μ

μ

Nc
abTr Rc

abRc
ba dc .

a

a

a

b

b

b

dadb

dc

=
c,μ,ν dadb

dc

Rc
ab

μν νμ
Rc

ba=
c,μ,ν 

=
c

dadb

dc

∑

(2.140)

From here, we use the ribbon equation (2.134) and (2.138) to arrive at the final
expression for the S-matrix:

Sab =
1
D

∑
c

Nc
ab

θc
θaθb

dc. (2.141)

2.3.3.2 Verlinde formula

We now derive a fundamental formula in both TQFT and conformal field theory. This
formula relates the S-matrix to the fusion coefficients. It allows us to find the set
of braiding phases among the anyons, but not always the topological spin of every
particle.

We start by showing that

S1x =
dx
D
. (2.142)

To prove this, we first observe that

a

x

=
Sax

S1x

x

(2.143)
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holds, because we can close the x worldlines in this diagram to obtain amplitudes
and an identity loop can be added without changing the value of the diagram. The
relation (2.143) can be used to obtain the line of equalities

D Sax = a

x

x dx ,=
Sax

S1x

=
Sax

S1x

(2.144)

which yields (2.142). Equation (2.142) says that the first column of the S-matrix
contains only positive numbers, the quantum dimensions of the theory.

The next step is to derive the all-important Verlinde formula. Staring from two
copies of (2.143), we can perform the following set of diagrammatic manipulations:

x =

a

b

x

=
c

dc

dadb

=
c

∑

∑

∑ dc

dadb

b a c

x

ab c

x

=
c

c =
c

x

x,

Sax

S1x

Scx

S1x

Sbx

S1x

∑
Nc

abNc
ab

(2.145)

yielding the Verlinde formula

∑
c

N c
abScx = Sbx

Sax
S1x

. (2.146)

This is a remarkable equality, which again takes the form of an eigenvalue equation
for the fusion matrices Na. We have already encountered an eigenvalue equation for
Na when solving for the quantum dimensions, i.e. the first column of the S-matrix.
The Verlinde formula says that the S-matrix contains both the eigenvectors and the
eigenvalues of the (Na)bc matrices. If the S-matrix is unitary (and thus has an inverse),
we call the theory a unitary modular category. In this case, we have a simple relation
between the fusion coefficients and the S-matrix:

Na = SDaS
−1, (2.147)
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where we have defined the diagonal matrices

(Da)mn = Sam/S1mδmn. (2.148)

This also implies that all the Na matrices are commuting (which we already knew
from (2.94)), since they are diagonalized by the same eigenvectors.

2.3.3.3 Obstruction for theories with multiplicities

In this subsection, we want to illustrate how we can use the structure of the braiding
category to discard certain fusion categories as unphysical (or at least not unitary).
As an example, we ask which theories are possible with only two particles, the identity
1 and a particle s. For s to have an inverse, all possible fusion rules

s× s = 1 +ms (2.149)

are labelled by a non-negative integer m. The case m = 0 is the semion TQFT of
(2.121). For m = 1, we have the non-Abelian Fibonacci fusion rules.

We would like to answer the question regarding the values of m > 1 for which we
can define a consistent modular braiding category. Observe that the fusion matrix

Ns =
(

0 1
1 m

)
(2.150)

yields the quantum dimension

ds =
m+

√
m2 + 4
2

. (2.151)

From the definition of the S-matrix, we have

Ss1 =
1
D

∑
c

N c
s1

θc
θs
dc =

1
D
ds = S1s,

S11 =
1
D
,

Sss =
1
D

1
θ2s

(1 +mθsds).

(2.152)

It is already possible to see that something will go wrong for large enough m if we
demand a unitary theory, i.e. a theory with a unitary S-matrix. For a unitary matrix,
all the matrix elements have to be less than or equal to 1. When m is large, ds is
proportional to m (and so is D), but the Sss matrix element has an mds/D that is
proportional to m in the large-m limit. Hence, we forsake unitarity.

Lets us calculate the exact m at which unitarity breaks down. Imposing unitarity
of the S-matrix yields

S†S =
1
D2

⎛⎜⎜⎜⎝
D2 ds

(
1 +

1 +mθsds
θ2
s

)
ds

(
1 +

1 +mθ∗sds

(θ∗s)
2

)
d2
s + (1 +mθ∗sds)(1 +mθsds)

⎞⎟⎟⎟⎠ , (2.153)



118 Topological superconductors and category theory

and we find

(1 +mθ∗sds)(1 +mθsds) = 1, (2.154)

which reduces to

θs + θ∗s +mds = 0, (2.155)

where we have used the fact that the value of ds is positive. Now, mds is a positive
number growing with m, while θs is a phase so the sum with its conjugate cannot be
smaller than −2. Hence,

mds ≤ 2 =⇒ m2 +m
√
m2 + 4 ≤ 4 (2.156)

with the solutions m = 0 and m = 1. We can see that already m = 2 gives a left-hand
side that is too large. We conclude that the semion and the Fibonacci TQFT are the
only allowed modular unitary theories with one non-trivial anyon s.

2.3.3.4 The T -matrix

The T -matrix is diagonal and simply given by

Tab = θaδab. (2.157)

2.3.4 Examples: the 16-fold way revisited

To motivate our study of TQFTs and as an example of topologically ordered phases, we
have studied in Section 2.2.2.4 Kitaev’s 16-fold way of classifying topological super-
conductors as gauge theories from their bulk properties. Equipped with a category
theory understanding of TQFTs, we now want to revisit this classification, since it
provides us with several examples of TQFTs. In particular, we want to characterize
the theories from their S- and T -matrices.

2.3.4.1 Case: C(1) odd

If we couple an odd number of layers of spinless chiral p-wave superconductors, the
core of each vortex still carries an unpaired Majorana state. For that reason, the
vortices will have Ising fusion rules (2.91) in this case. Using the Verlinde formula, we
can compute the S-matrix in the basis (1, σ, ψ):

S =

⎛⎝ 1
√

2 1√
2 0 −

√
2

1 −
√

2 1

⎞⎠. (2.158)

If, in contrast, we compute the S-matrix via its definition (2.141), we find in particular
for the (σ, σ) matrix element,

Sσσ =
1 + θψ
2θ2
σ

. (2.159)
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For this to vanish, we conclude that θψ = −1, that is, ψ is a fermion. We cannot
obtain θσ from similar relations using only the S-matrix. Rather, we can use Vafa’s
theorem (2.137) to deduce the spin of the σ particle. If we take a = b = d = e = σ, we
find

∏
c

(
θc
θσθσ

)Nc
σσN

σ
cσ ∏

f

(
θf
θσθσ

)Nσ
σfN

f
σσ

=
∏
r

(
θσ
θσθr

)Nr
σσN

σ
σr

, (2.160)

or

1
θ2σ

θψ
θ2
σ

1
θ2σ

θψ
θ2σ

=
1
θψ
, (2.161)

which gives

θ8σ = θ3
ψ. (2.162)

Since θψ = −1, we have

θ8σ = θψ = −1, (2.163)

i.e. the phase of the topological spin of the Majorana is an odd-integer multiple of 1
16

.
We can thus discriminate 8 different TQFTs with Ising fusion rules by the values

θσ = e2πiC(1)/16, (2.164)

where C(1) is the (odd, as needed by (2.163)) Chern number or the number of stacked
spinless chiral p-wave superconductors.

2.3.4.2 Case C(1) = 2 mod 4

If we stack C(1) = 2 mod 4 layers of chiral p-wave superconductors, then, as we have
argued before, heuristically, the system can be described as one species of spinless Dirac
fermions with Chern number C̃

(1)
= 1

2C(1). In this system, the 2π flux ψ binds odd-

integer charge C̃
(1)

, that is, the 2π flux is a fermion ψ. However, unlike in the quantum
Hall effect, the superconducting π or −π fluxes are allowed topological excitations that
bind half-integer charge. Let us denote the π flux with charge 1

2 C̃
(1)

by a. Fusing such

a π flux with the fermion (or 2π flux) gives another excitation, a −π flux, with 3
2 C̃

(1)

charge, that we call ã. (We note that 4π flux is identified with zero flux, since this

corresponds to a charge 2C̃
(1)

object, i.e. C̃
(1)

Cooper pairs that can be absorbed by
the condensate.) Two fluxes of either type a or ã thus fuse into ψ. This motivates the
following fusion rules:

a× ã = 1, a× ψ = ã, ã× ψ = a,

a× a = ã× ã = ψ, ψ × ψ = 1.
(2.165)
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These fusion rules are Abelian, so the quantum dimensions are d1 = da = dã = dψ = 1.
Given the fusion matrices, we can compute the S-matrix as the matrix of their
simultaneous eigenvectors. In the basis (1, a, ã, ψ), it can take one of two forms:

S(1) =
1
2

⎛⎜⎜⎝
1 1 1 1
1 −i i −1
1 i −i −1
1 −1 −1 1

⎞⎟⎟⎠, S(2) =
1
2

⎛⎜⎜⎝
1 1 1 1
1 i −i −1
1 −i i −1
1 −1 −1 1

⎞⎟⎟⎠. (2.166)

From Saa = Sãã = ±1
2 i, we conclude

θ2
a = θ2ã = ∓i, (2.167)

while Saψ = Sãψ = −1
2 gives

θa = θã, (2.168)

with the help of (2.141). We conclude that there are four possible theories with
topological spins

θa = θã = e2πiC(1)/16. (2.169)

2.3.4.3 Case C(1) = 0 mod 4

If we couple four layers of chiral p-wave superconductors, the π superconducting vor-
tices (let us denote them by e) bind a full electron charge. However, the electrons
exist also as free fermionic quasiparticles f in the theory. Hence, the fusion of e with
f should yield a new excitation m that is a π vortex stripped of its charge. Together,
e, m, and f obey the toric code fusion rules (2.90). The S-matrix of the theory in the
basis (1, e,m, f) can take one of two forms:

S(1) =
1
2

⎛⎜⎜⎝
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞⎟⎟⎠, S(2) =
1
2

⎛⎜⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎟⎠. (2.170)

If we assume that θf = −1, we find from S(1) that θ2
e = θ2

m = θeθm = −1, while the
theory with S(2) has θ2e = θ2m = θeθm = 1. In total, we have four possibilities

θe = θm = e2πiC(1)/16, (2.171)

with C(1) = 0mod 4, as allowed theories. This concludes Kitaev’s 16-fold way [18].
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3.1 Introduction

Two important markers in the history of research on spin liquids and frustrated mag-
netism are Anderson’s suggestion [1], over 40 years ago, of the resonating valence bond
state as an alternative to Néel order, and Ramirez’ influential review [2], some 20 years
ago, of strongly frustrated magnets. There has been a tremendous amount of progress
since then, but much remains to be done, especially in identifying experimental ex-
amples of spin liquids and understanding their properties. In these lecture notes, I aim
to provide an introduction to the field that links our understanding of the classical
statistical physics of these systems with approaches to their quantum mechanics. Short
complementary introductions can be found in the articles by Lee [3] and by Balents
[4]; more specialized reviews of various aspects of the field can be found in a recent
book [5], and alternative approaches to the one taken in the present notes are outlined
in Section 3.6.

The term spin liquid is presumably intended to draw an analogy between possible
states of a magnet and the conventional three phases of matter, but this analogy fails
to capture some of the most interesting features of spin liquids. More specifically, it
is reasonable to see a paramagnet as being like a gas, since both states occur at high
temperature and are essentially uncorrelated; and it is also appropriate to think of a
Néel state as like a solid, in the sense that both have broken symmetry, characterized
by a local order parameter, and occur at low temperature. But whereas classical fluids
have only local correlations, we shall see that classical spin liquids may have a divergent
correlation length and power-law correlations. And in place of the Fermi surface or
Bose condensate of quantum fluids, quantum spin liquids may have topological order
and fractionalized excitations.

3.1.1 Overview

We will be concerned with the statistical mechanics and quantum mechanics of models
for magnetic degrees of freedom in Mott insulators. These have well-defined local
moments, which we represent using simple spin Hamiltonians such as the Ising and
Heisenberg models. The models are said to be frustrated if different contributions to
the interaction energy have conflicting classical minima. The interest of frustration in
these systems is that it acts to destabilize conventional ordered states. Classically, one
sees this from a large contribution to ground-state degeneracy, which is accidental in
the technical sense that it is not a consequence of symmetry.

The ideas of frustration and accidental degeneracy can be illustrated by considering
a cluster of spins with antiferromagnetic interactions between all pairs in the cluster.
To allow some generality, we take a cluster of q classical spins, represented using
n-component unit vectors Si. The Hamiltonian

H = J
∑
〈ij〉

Si · Sj =
J

2
|L|2 + const, with L =

q∑
i=1

Si (3.1)

(where
∑
〈ij〉 denotes a sum over pairs ij) is minimized in states for which the

total magnetization L of the cluster is zero. When q > 2, no state can minimize the
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interaction energy J Si · Sj of all pairs simultaneously. For example, a set of four Ising
spins with nearest-neighbour antiferromagnetic interactions on a tetrahedron hence
has a ground state in which two spins are up and two are down. This gives a ground-
state degeneracy of six, rather than the generic value of two for Ising systems with
time-reversal symmetry. Replacing these Ising spins with classical Heisenberg spins,
the ground states (as illustrated in Fig. 3.1) have two internal degrees of freedom
in addition to the three that arise from global rotations of any non-collinear spin
arrangement.

Some of the most important lattices for the study of geometrically frustrated mag-
nets can be constructed as corner-sharing arrangements of clusters: examples are the
kagome and pyrochlore lattices, formed in this way from triangles or tetrahedra and
shown in Fig. 3.2.

It is useful for orientation to discuss the some selected examples of geometrically
frustrated magnetic materials, listed in Table 3.1, although we will not attempt any
sort of survey. An important characterization is provided by the dependence of the
magnetic susceptibility χ(T ) on temperature T . At high temperatures, it obeys the
Curie–Weiss law

χ(T ) ∝ 1
T − θCW

(3.2)

β
α

S1 S2

S3S4

Fig. 3.1 Ground states of four antiferromagnetically coupled classical Heisenberg spins: the
two accidental ground-state degrees of freedom are the angle α between spins S1 and S4, and
the angle β between the plane containing S1 and S4 and that containing S2 and S3.

(a) (b)

Fig. 3.2 Two lattices: (a) kagome; (b) pyrochlore. (Part (b) reprinted with permission from [6].
Copyright 2002 by the American Physical Society.)
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Table 3.1 Selected examples of frustrated magnetic materials

SHORT NAME MATERIAL MAGNETIC

LATTICE (SIZE

OF MOMENTS)

SPIN MODEL

(VALUE OF θCW)

SCGO SrCr9−xGa3+xO9 Pyrochlore slabs Heisenberg(
S =

3
2

)
(θCW ≈ −500 K)

Spin ice Ho2Ti2O7 Pyrochlore Ising
Dy2Ti2O7 (θCW ≈ +1.9 K)

Herbertsmithite ZnCu3(OH)6Cl2 Kagome Heisenberg(
S =

1
2

)
(θCW ≈ −300 K)

κ-ET κ-(BEDT-
TTF)2Cu2(CN)3

Triangular Heisenberg(
S =

1
2

)
(θCW ≈ −400 K)

and the magnitude of the Curie–Weiss constant θCW (negative if exchange is antiferro-
magnetic) reflects the energy scale of exchange interactions. Without frustration, one
expects ordering at a temperature scale set by |θCW|. By contrast, highly frustrated
systems remain in the paramagnetic phase to much lower temperatures, and in some
cases to zero temperature. Their low-temperature fate may involve freezing or a struc-
tural, frustration-relieving transition at temperature Tc, and Ramirez introduced the
ratio

f = −θCW

Tc
(3.3)

as a simple measure for the degree of frustration. The state of a system in the tempera-
ture range |θCW| � T > Tc, where spins are highly correlated but strongly fluctuating,
was termed by Villain [7] a cooperative paramagnet. This is the spin-liquid state that
we wish to characterize more thoroughly, at both the classical and the quantum levels.

These ideas are illustrated by the first material in our selection, SCGO. It has a
frustration parameter f � 100 [8] and magnetic neutron scattering shows strong spin
correlations at low temperature (via a peak in scattering at intermediate wavevec-
tor) but no long-range order (from the absence of magnetic Bragg peaks) [9]. To
obtain more detailed information about low-temperature spin correlations using neu-
tron scattering requires single crystals. These are not available for SCGO, but
for spin-ice materials, so-called pinch-point features in the diffuse scattering [10],
which are sharp in reciprocal space, reveal long-range correlations in real space
(see Section 3.4).
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The other listed materials, herbertsmithite and κ-ET, are two of the best can-
didate quantum spin liquids. Neither shows signs of magnetic order, even at the
lowest accessible temperatures. Moreover, in contrast to the sharp response from
magnon excitations in an ordered magnet, single-crystal inelastic neutron scatter-
ing from herbertsmithite has structure broad in wavevector at all energies [11], as
expected if the energy and momentum imparted by scattered neutrons are shared
between multiple fractionalized excitations. Information on excitations can also be
inferred from the dependence on temperature T of the heat capacity Cp, which in
κ-ET at low temperature fits the form Cp = γT + βT 3 [12]. While such behaviour is
familiar in a metal, a contribution linear in T is remarkable in an insulator, suggest-
ing the formation of a spinon Fermi surface in a system that does not have mobile
charges.

3.1.2 Classical ground-state degeneracy

A first step in the discussion of classical frustrated magnets is to understand ground-
state degeneracy. The character of this problem is different according to whether we
treat discrete (e.g. Ising) or continuous (e.g. classical Heisenberg) spin variables, since
we should count discrete ground states for the former and continuous degrees of free-
dom within the ground-state manifold for the latter. In either case, a signature of a
highly frustrated system is that the number we obtain in this way is extensive, suggest-
ing that within ground states there are local fluctuations that take place independently
in different parts of a large sample.

For the discrete case, an illustrative example is provided by the nearest-neighbour
Ising antiferromagnet on the pyrochlore lattice. Here an approximate but remarkably
accurate estimate was provided by Pauling in the context of water ice [13] (see Section
3.4 for details of the link between water ice, spin ice, and the Ising antiferromagnet). As
a start, note for a single tetrahedron that 6 states from a total of 16 are ground states.
A pyrochlore Ising model consisting of NT tetrahedra contains NS = 2NT spins, since
there are four spins per tetrahedron but each spin is shared between two tetrahedra.
It therefore has 22NT states in total. Treating the restriction to ground states as if
it were independent on each tetrahedron, the number of ground states for the entire
system is then estimated to be

22NT ×
(

6
16

)NT

=
(

3
2

)NT

=
(

3
2

)NS/2

, (3.4)

and from this the ground-state entropy per spin is 1
2kB ln 3

2 . Measurements of the low-
temperature entropy in spin ice, obtained from the magnetic contribution to the heat
capacity, are in striking agreement with this estimate [14].

For models with spins that can be rotated continuously, ground-state degrees of
freedom are the ones remaining after respecting all ground-state constraints. We can
estimate their number D using an approach initiated in the context of mechanical
systems by Maxwell [15–17]. Consider NS classical n-component unit spins, constitut-
ing F = NS(n− 1) degrees of freedom. Suppose that these spins form a lattice of NC
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corner-sharing, antiferromagnetically coupled, q-site clusters {α}. Each cluster can be
treated as in (3.1), and NS = qNC/2. Energy is minimized if the total magnetization
Lα of every cluster is zero: a set of K = nNC scalar constraints. If these constraints
can be satisfied simultaneously and are linearly independent, then we have

D = F −K =
[q
2
(n− 1)− n

]
NC . (3.5)

As an example, for Heisenberg spins (n = 3) on the pyrochlore lattice (q = 4), we get
in this way the extensive result F = NC.

3.1.3 Order by disorder

Extensive ground-state degeneracy, in either the discrete or the continuous sense,
is characteristic of many highly frustrated systems and offers a potential route to
understanding suppression of order. However, not being symmetry-protected, this
degeneracy may be lifted by fluctuations, a phenomenon termed order by disorder
[18, 19].

The issues at stake are illustrated schematically in Fig. 3.3, where we consider in
phase space the configurations that are accessible at low temperature and lie close
to the ground state. Introducing coordinates x on the ground-state manifold and y
locally orthogonal to it, by integrating out small-amplitude fluctuations in y, from an
energy H(x,y) at inverse temperature β one induces a probability distribution on the
ground state of the form (before normalization)

Z(x) =
∫
Dy e−βH(x,y) ∝

∏
k

kBT

ωk(x)
, (3.6)

Ground-state manifold

Accessible phase space at low
temperature

x
y

Phase
space

Fig. 3.3 Schematic view of phase space for a geometrically frustrated magnet: the ground-state
manifold forms a high-dimensional subspace, and states accessible at low temperatures (partly
marked by shading) lie close to it. Coordinates in phase space can be separated locally into ones
(x) within the ground-state subspace and others (y) orthogonal to it.
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where the right-hand expression follows from a harmonic approximation for the de-
pendence of H(x,y) on y, under the assumption that the components of y consist of
canonically conjugate pairs of generalized coordinates and momenta. Two alternatives
now arise: this probability distribution may either represent a system that accesses all
ground states at low temperature, or the probability density may be concentrated on
a subset of ground states. For the latter, the states selected by fluctuations are ones
with

∏
k ωk(x) small. In practice, these are likely to be states that are ordered in some

way, in which a subset of ωk(x) vanish.
This point can be illustrated by a toy calculation for four antiferromagnetically

coupled classical XY (n = 2) or Heisenberg (n = 3) spins, with (3.1) as the Hamil-
tonian. The existence of a soft mode for special ground states in which all four spins
are collinear is demonstrated in Fig. 3.4. To examine the consequences of this soft
mode, consider at inverse temperature β the thermal distribution P (θ) of the angle θ
between a pair of these spins, defined via cos θ = S1 · S2. Let

Z(θ) =
∫

dS3 dS4 e−βH . (3.7)

Taking into account the volume factors of dθ and sin θ dθ for n = 2 and n = 3, respect-
ively, one has P (θ) dθ ∝ Z(θ) dθ for n = 2 and P (θ) dθ ∝ Z(θ) sin θ dθ for n = 3. It is
straightforward to evaluate Z(θ) at large β and so obtain

P (θ) ∝
{

(sin θ)−1 XY,
sin 1

2θ Heisenberg.
(3.8)

The non-integrable divergences of P (θ) at θ = 0 and θ = π for XY spins (which are
rounded at finite β) indicates that fluctuations select collinear spin configurations in

θ

(a) (b)

(c) (d)

θ
θ

θ

Fig. 3.4 An illustration of how soft modes arise in selected ground states. Consider two ground
states (a) and (b) for four antiferromagnetically coupled spins and two states (c) and (d)
obtained by rotating pairs of spins through small angles θ. The total magnetization varies
differently with θ in the two cases. It is L ∝ θ2 in the example based on a collinear ground
state, but L ∝ θ in the generic case. The energy cost of the excitation is hence H ∝ θ4 in the
collinear case, but is generically H ∝ θ2.
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the low-temperature limit. Conversely, Heisenberg spins sample all orientations even
at arbitrarily temperature.

Moving from this toy problem to an extended lattice, there exists a catalogue of
well-studied examples and a criterion for whether there is fluctuation-induced order.
Instances of classical order by disorder include the kagome Heisenberg antiferromag-
net (where coplanar spin configurations are selected [20]) and the pyrochlore XY
antiferromagnet (with collinear order [17]), while a converse case is the pyrochlore
Heisenberg antiferromagnet, which is thermally disordered at all temperatures [17].
A sufficient condition for order is that the ground-state probability distribution Z(x)
has non-integrable divergences in the vicinity of the subset of configurations favoured
by fluctuations, and one can assess whether that is the case by comparing the di-
mensionality of the full ground-state manifold with that of the soft subspace. For
n-component spins on a lattice of corner-sharing clusters of q sites, order is expected
if n < (q + 2)/(q − 2) [17].

In Monte Carlo simulations of models with continuous degrees of freedom, the
value of the low-temperature heat capacity C per spin provides a diagnostic for the
presence of soft modes. A simple generalization of the equipartition principle shows
that a dependence of energy H on mode coordinate θ with the form H ∝ |θ|n im-
plies a contribution to C from this mode of kB/n. By this argument, one expects for
unfrustrated classical Heisenberg models (with two degrees of freedom per spin) the
value C = kB at low temperature. In contrast, for the pyrochlore Heisenberg antifer-
romagnet, from (3.5) one-quarter of modes cost no energy. The remaining modes are
conventional, with an energy cost quadratic in displacement, and so C = 3

4kB [17].
For the kagome Heisenberg antiferromagnet, one-sixth of the fluctuation modes from
a coplanar ground state cost an energy quartic in displacement, while the remainder
are quadratic, so that C = 11

12kB [20].
Quantum order by disorder depends on different features of the fluctuation spec-

trum from its thermal counterpart. In the notation of (3.6), the zero-point energy of
quantum fluctuations out of the classical ground-state manifold generates an effective
Hamiltonian

Heff(x) =
1
2

∑
k

�ωk(x) . (3.9)

Suppose Heff(x) has minima for preferred configurations x = x0. There are quantum
fluctuations of x about these configurations, because the set of ground-state coord-
inates includes canonically conjugate pairs of generalized positions and momenta. At
large spin S, the amplitude of these fluctuations is small and one always expects or-
der. Reducing S, we expect within this description that a quantum-disordered ground
state may emerge via delocalization of the ground-state wavefunction in the landscape
Heff(x).

Experimental demonstrations of fluctuation-induced order rely on there being a
good characterization of interactions, so as to show that these do not drive ordering in a
conventional way. For the garnet Ca3Fe2Ge3O12, a material with two interpenetrating
magnetic lattices coupled via zero-point fluctuations, it has been demonstrated that
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a spin-wave gap in the Néel ordered state does indeed arise mainly in this way, by
independent determination of the size of single-ion anisotropy (the other possible origin
for the gap) [21], as well as via the characteristic temperature dependence of the
gap [22]. In the context of highly frustrated systems, Er2Ti2O7 has been thoroughly
investigated as an example of a system with quantum order by disorder [23].

3.2 Classical spin liquids

The problem of finding a good description for the low-temperature states of classical
frustrated magnets presents an obvious challenge. We would like to replace the high-
energy spin degrees of freedom, which have strongly correlated fluctuations at low
temperature, with a new set of low-energy degrees of freedom that are only weakly
correlated. Remarkably, this turns out to be possible for some of the systems of most
interest. Moreover, the emergent low-energy coordinates have simple and appealing
interpretations, which we introduce in the following.

3.2.1 Simple approximations

As context for a discussion of low-temperature states in frustrated magnets, it is useful
to examine what special features these systems present when they are treated using
some of the standard approximations. In particular, it is worthwhile to see how in
some cases the absence of ordering is signalled within mean-field theory, and how an
alternative approach known as the self-consistent Gaussian or large-n approximation
can often give a good description of low-temperature correlations.

Recall the essentials of mean-field theory: thermal averages 〈· · · 〉 with respect to the
full Hamiltonian H are approximated by averages 〈· · · 〉0 using a tractable Hamiltonian
H0. This gives a variational bound

F ≤ 〈H〉0 − TS0 (3.10)

on the free energy F of the system, in terms of the energy 〈H〉0 and entropy S0

computed from H0. Taking a single-site H0, these quantities are parametrized by the
site magnetizations {mi}, leading to an expansion of the form

〈H〉0 − TS0 = const +
∑
〈ij〉

Jijmimj +
1
2
nkBT

∑
i

m2
i +O(m4

i ) , (3.11)

with exchange interactions Jij , where n is the number of spin components. Choosing
the {mi} to minimize this estimate for F , one finds solutions of two types, depending
on temperature: above the mean-field ordering temperature Tc, all mi = 0, while for
T < Tc some mi �= 0. Within the mean-field approximation, the value of Tc and the
ordering pattern below Tc are determined from the eigenvalues and eigenvectors of
the matrix Jij : denoting the minimum eigenvalue (which is negative) by εmin and an
associated eigenvector by ϕi, one has εmin + 1

2nkBTc = 0 and mi ∝ ϕi for T � Tc. The
distinction that arises in this framework between unfrustrated and highly frustrated
systems concerns the degeneracy of εmin. In a conventional system, the minimum
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eigenvalues form a discrete set. For example, in a nearest-neighbour square-lattice an-
tiferromagnet the eigenvalues of the interaction matrix, labelled by a wavevector q, are
J(q) = J(cos qx + cos qy), and so εmin = −2J at q = (π, π). By contrast, a number of
important examples of highly frustrated magnets lead to minima of Jij at all wavevec-
tors, forming dispersionless or ‘flat’ bands across the Brillouin zone. Mean-field theory
fails for these systems by wrongly predicting ordering at a temperature Tc ∼ |θCW|.
A warning of this failure is provided by there being macroscopically many possible
ordering patterns ϕi.

The appearance of flat bands with nearest-neighbour interactions J on lattices
built from corner-sharing clusters of q sites can be understood via the same Maxwell-
counting approach that we employed in (3.5) to discuss ground-state degeneracy of
systems such as the classical Heisenberg model on the same lattices. We start from
the fact that εmin is the minimum of

∑
ij Jijϕiϕj subject to the constraint

∑
i ϕ

2
i = 1.

For corner-sharing clusters, using i, j as site labels and α as a cluster label, we have

∑
ij

Jijϕiϕj = J
∑
α

∣∣∣∣∣∑
i∈α

ϕi

∣∣∣∣∣
2

+ const. (3.12)

Eigenvectors associated with εmin therefore satisfy
∑
i∈α ϕi = 0 for all α. Using the

notation of (3.5), these conditions amount to K = NC constraints on the F = NS =
1
2
qNC degrees of freedom {ϕi}. Omitting sub-extensive terms, the degeneracy of εmin

is therefore

D = F −K =
(

1
2
q − 1

)
NC . (3.13)

For example, on the kagome lattice, one-third of eigenvectors have eigenvalue εmin;
as there are three sites in the unit cell, the matrix Jij has three bands, of which the
lowest is flat. Similarly, for the pyrochlore lattice, there are four bands, of which the
lowest two are degenerate and flat.

A successful treatment of these systems at low temperature must involve an average
over correlated low-energy states. The self-consistent Gaussian approach provides a
simple way of approximating this average, and is widely applicable to systems in
which all sites are symmetry-equivalent. The central idea is to replace an average over
orientations of classical, fixed-length spins by independent Gaussian averages over
the magnitudes of each component, with a variance chosen to maintain the correct
spin length on average. These simplifications are exact in the limit that the number
n of spin components is large, and in many instances they are remarkably accurate
for n = 3 or even for n = 1 [24, 25]. Under this approximation, the trace over spin
configurations is written

∏
i

∫
dSi · · · δ(|Si| − 1) ≈

∏
i

∫
dSi · · · e−

1
2λ|Si|2 , (3.14)
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with the Lagrange multiplier λ determined by the condition 〈|Si|2〉 = 1. Denoting the
partition function by Z, a general thermal average then takes the form

〈· · · 〉 = Z−1

∫
d{Si} · · · e−

1
2

∑
ij Si·(βJij+λδij)Sj . (3.15)

In particular, the spin correlator is

〈Si · Sj〉 = n
[
(βJ + λ)−1

]
ij

(3.16)

and λ satisfies

n
[
(βJ + λ)−1

]
ii
≡ n

NS
Tr

1
βJ + λ

= 1 . (3.17)

If the minimum eigenvalues of J form a flat band, then, in the low-temperature limit,
(βJ + λ)−1 is proportional to the projector P onto this band, so that 〈Si · Sj〉 ∝ Pij .
In many of the systems we are concerned with (those with a Coulomb phase: see
Section 3.4.2), Pij falls off at large separation rij as Pij ∼ r−dij , where d is the spatial
dimension.

3.2.2 The triangular lattice Ising antiferromagnet and height models

Moving beyond these simple approximations, we would like to find a description of
low-energy spin configurations that respects microscopic constraints imposed by the
Hamiltonian but is amenable to coarse-graining. An early and illuminating example
is provided by a mapping that we now describe, from the triangular lattice Ising
antiferromagnet to a height model.

As background, we note that this Ising model (probably the first highly frustrated
magnet to be studied in detail [26]) has a macroscopically degenerate ground state,
and ground-state spin correlations that are known from an exact solution to decay with
distance as r−1/2 . In ground states, every elementary triangle of the lattice has two
spins parallel and one antiparallel. Degeneracy arises because many such configurations
include some spins that are subject to zero net exchange field and can therefore be
reversed at zero energy cost, as illustrated in Fig. 3.5(a). To avoid confusion, we should
point out that the degeneracy on this lattice is specific to the Ising model, and not a
consequence of flat bands.

Spin configurations can be mapped onto a new variable, termed a height field,
in such a way that the ground-state condition in the spin model translates into a
condition that the height field is single-valued. The mapping associates an integer
height hi with each site i [27, 28]. To describe it, we introduce a direction on each
bond of the lattice in such a way that there is (say) anticlockwise circulation around
‘up’ triangles and clockwise circulation around ‘down’ triangles. With the height of an
origin site chosen arbitrarily, the height change on traversing a bond in the positive
direction is +1 if the bond links antiparallel (unfrustrated) spins and −2 if it links
parallel (frustrated) spins, as illustrated in Fig. 3.5(b). A convenient further stage is
to define heights h(r) at the centres of triangles that are averages of the three values
at corners; see Fig. 3.5(c).
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Fig. 3.5 Triangular-lattice Ising antiferromagnet spin configurations. (a) State with a flippable
spin, marked with a circle. (b) Mapping from spins to heights at sites. (c) Mapping from spin
orientations on the three sublattices (marked A, B, and C) to triangle heights in flat states.
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Fig. 3.6 Triangular-lattice Ising antiferromagnet spin configurations and mappings to a height
field. (a) State with flippable spin generating a flat height field (with the value h at all triangle
centres). (b) Spin state without flippable spins that generates a height field with maximum
gradient (heights at triangle centres decrease by 1 on going from any triangle to its right-hand
neighbour).

As demonstrated with examples in Fig. 3.6, configurations with a flippable spin
are locally flat, and those in which the gradient of the height field is maximal have no
flippable spins. These facts motivate a coarse-grained theory in which h(r) is taken
to be a real-valued function of a continuous coordinate, with an entropic weight on
configurations that (in the first approximation) has the form

P [h(r)] = Z−1e−H , (3.18)

where

H =
1
2
K

∫
d2r |∇h(r)|2 (3.19)

and Z is the usual normalization. The inverse mapping between spins and heights
(modulo 6) is shown in Fig. 3.5(c) for the six distinct flat states. It has the algebraic
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form

S(r) � cos
[
1
3
πh(r) + ϕα

]
, (3.20)

where we have omitted higher Fourier components of h(r), and the phase ϕα takes
the values 0,± 2

3
π, depending on the sublattice α.

The height field h(r) has fluctuations that diverge logarithmically with separation,
as we see from an explicit calculation. For a system of size L× L, define the Fourier
transform

hq =
1
L

∫
d2r eiq·rh(r), (3.21)

so that

H =
1
2
K
∑
q

q2|hq|2 . (3.22)

Then, with short-distance cutoff a,

〈[h(0)− h(r)]2〉 =
2
L2

∑
q

(1− cosq · r)〈|hq|2〉

=
1

2π2

∫
d2q

1− cosq · r
Kq2

� 1
πK

ln(r/a) . (3.23)

Putting these ingredients together, we can evaluate the spin correlator using the coarse-
grained theory. For two sites on the same sublattice, we obtain

〈σ(0)σ(r)〉 ∝ 〈ei 13π[h(0)−h(r)]〉 = e−
1
18π

2〈[h(0)−h(r)]2〉 = (r/a)−π/18K . (3.24)

The power-law form illustrates the consequences of large but strongly correlated
ground-state fluctuations, and a comparison with exact results for the Ising model
fixes the value of the height model stiffness as K = 1

9π.
The leading approximation that has been made in using the height model to repre-

sent the triangular-lattice Ising antiferromagnet is to treat h(r) as a real, rather than
integer-valued, field. To correct this, one can consider the replacement

H → H +H1, with H1 = −g
∫

d2r cos 2πh(r), (3.25)

so that values of h(r) close to integers are preferred. One finds that H1 is an irrelevant
perturbation at the renormalization group fixed point represented by H if K < 1

2π,
as is the case for the height model that represents the triangular-lattice Ising antifer-
romagnet. Changes to the Ising model (e.g. higher spin [28]) may increase K so that
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H1 is relevant. The height field than locks to a particular integer value, representing
long-range order of the Ising spins.

Excitations out of the ground state have an attractively simple description in
height-model language. From the rules of Fig. 3.5, we see that if the three Ising spins
of an elementary triangle have the same orientation, the height field is no longer
everywhere single-valued: it changes by ±6 on encircling the triangle that carries
the excitation. A single spin flip can introduce such excitations into a ground-state
configuration only as vortex–antivortex pairs, since a local move leaves the distant
height field unchanged. A vortex and antivortex can be separated by additional spin
flips without further increase in exchange energy, and constitute our first example of
a fractionalized excitation.

Vortices are dilute at low temperature, because they have an energy cost 4J . Their
presence also changes the number of ground states available to the system, and so they
have an entropy cost. This can be calculated within the height description. A vortex
at the origin leads to an average height gradient at radius r of |∇h(r)| = 6/(2πr). In
a system of linear size L, this generates a contribution to H of

1
2
K

∫
d2r |∇h(r)|2 =

9K
π

ln(L/a) . (3.26)

Similarly, the presence of a vortex–antivortex pair at fixed positions with separation
r has an entropy cost that depends on their separation. As a consequence, the pair is
subject to an entropic attractive potential V (r) � (9K/π) ln(r/a).

The entropy cost for vortices should be compared with the entropy gain 2 ln(L/a)
arising from translations: vortex–antivortex pairs are unbound if 9K/π < 2, as is the
case here. In the setting of the Ising model, this means that the power-law correlations
of the ground state are cut off at non-zero temperature by a finite correlation length,
set by the vortex separation. This correlation length is much larger than the lattice
spacing if T � J/kB, and it diverges as T → 0.

In summary, the triangular-lattice Ising antiferromagnet provides an illustration of
a system that, in its ground state, combines finite entropy with long-range correlations.
The height model shows how these features can be captured in a long-wavelength
description. The physics of the triangular-lattice Ising antiferromagnet at low tempera-
ture, including power-law correlations and fractionalized excitations, has important
generalizations to other systems, including most notably spin ices. In addition, some
of the main theoretical tools used in a long-wavelength description of these generalized
problems are extensions of those underlying the height model. Many of these ideas are
exemplified in classical dimer models, which we now introduce.

3.3 Classical dimer models

Classical dimers models [29–31] offer a setting in which to discuss some general features
of the statistical physics of systems that are both highly degenerate and strongly
constrained. They are important in their own right and also serve as the foundation
for a treatment of quantum spin liquids using quantum dimer models.
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Fig. 3.7 States of square-lattice dimer model. (a) Close-packed configuration. (b) Local
rearrangement. (c) Mapping to height model.

3.3.1 Introduction

The configurations of a dimer model are close-packed coverings of a lattice, with
dimers arranged on bonds in such a way that there is, in the simplest case, exactly
one dimer touching each lattice site. Examples are shown in Fig. 3.7. Entropy arises
from rearrangements of dimers. Consider, in an initial covering, a closed loop of bonds
that are alternately empty and occupied by dimers. The configuration on this loop can
be flipped, exchanging empty and occupied bonds, independently of the configurations
on other loops that do not intersect this one.

Close-packed dimer configurations on a planar lattice admit a height representa-
tion, provided that the lattice is bipartite. Let z be the coordination number of the
lattice, and introduce the dual lattice, which has sites at the centres of the plaquettes
of the original lattice and links intersecting the edges of these plaquettes. The height
field is defined at sites of the dual lattice: traversing in (say) an anticlockwise direc-
tion the plaquettes of the dual lattice that enclose A-sublattice sites of the original
lattice, we take the height difference to be Δh = +1 on crossing an empty bond and
Δh = 1− z on crossing the occupied bond, as in Fig. 3.7(c). A simple generalization is
to take dimer configurations in which exactly n dimers touch each site. Then Δh = +n
for empty bonds and n− z for occupied ones. These choices ensure that the height
field is single-valued.

There is in fact an exact correspondence between close-packed dimer configurations
on the hexagonal lattice and ground states of the triangular-lattice Ising antiferromag-
net. To establish this, note that the hexagonal lattice has as its dual the triangular
lattice. Under the correspondence, dimers on the hexagonal lattice lie across frustrated
bonds of the triangular lattice, as in Fig. 3.8. In a ground state of the Ising model, the
exchange interaction on exactly one edge of every elementary triangle is frustrated,
and so, in the corresponding dimer covering, every site of the hexagonal lattice is
touched by exactly one dimer.

3.3.2 General formulation

While the mapping from dimer coverings to a height field is particular to two-
dimensional, bipartite lattices, it can be reformulated in language that generalizes
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Fig. 3.8 Hexagonal-lattice dimer model and its correspondence with ground states of the
triangular-lattice Ising antiferromagnet.

directly to higher dimensions [32]. To do so, we first make use of the bipartite na-
ture of the lattice to define an orientation convention on nearest-neighbour bonds,
taking the direction to be from (say) the A-sublattice to the B-sublattice. We then
define for each dimer configuration a flux in this direction on each link, which
(for a lattice with coordination number z) is 1− z on links occupied by a dimer,
and +1 on unoccupied links.

This flux is constrained by its construction to be divergenceless for a dimer covering
that everywhere obeys the rule of exactly one dimer meeting each site. The constraint
can be resolved in the usual way, by taking the flux to be the curl of a vector potential
�A(r). In the continuum, this is of course familiar for a three-dimensional system. It
also applies to a two-dimensional system: one takes �A(r) = ẑh(x, y), with ẑ the normal
to the plane of the system and h(x, y) a scalar, which we will see is simply the height
field.

The next step is to write a coarse-grained free energy for dimer configurations that
generalizes the height model. In three dimensions as in two, coarse-grained states with
high entropy arise from configurations in which there are many short loops of bonds
alternately occupied and unoccupied by dimers, around which dimer occupations can
be flipped. Those loops correspond roughly to closed flux lines: flux has a constant
direction around each loop, although its magnitude alternates between occupied and
unoccupied bonds. Configurations containing mainly small closed flux loops generate
small values of coarse-grained flux, and conversely there is an entropy penalty attached
to large flux. This motivates the conjecture [32]

H =
1
2
K

∫
d3r |�∇× �A(r)|2 . (3.27)

as a generalization of (3.19), from which the height model is recovered in two
dimensions via the substitution �A(r) = ẑh(x, y).
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Despite the equivalent forms of H in two and three dimensions, there are important
differences. For the two-dimensional model, the value of the stiffness K determines the
location of the theory on a line of fixed points and controls which possible perturbations
are renormalization-group-relevant. By contrast, for the three-dimensional model there
are no symmetry-allowed perturbations that are renormalization-group-relevant, and
the value of K simply sets the amplitude of fluctuations.

Dimer correlations can be evaluated straightforwardly since the theory is Gaussian.
We introduce a dimer number operator στ̂ (r), which takes the value στ̂ (r) = +1 if the
bond in direction τ̂ centred at r is occupied by a dimer, and otherwise has the value
στ̂ (r) = −1. Defining the flux density �B(r) = �∇× �A(r), the connected dimer density
correlation function is

Ckl(r1, r2) ≡ 〈σk̂(r1)σl̂(r2)〉 − 〈σk̂(r1)〉〈σl̂(r2)〉 ∝ 〈Bk(r1)Bl(r2)〉 . (3.28)

In two dimensions, Bi(r) = εij∂jh(r) and we can compute 〈Bi(0)Bj(r)〉 by
differentiating (3.23), with the result

〈Bi(0)Bj(r)〉 =
1

2πK
2xixj − δijr2

r4
. (3.29)

Similarly, in three dimensions, defining Fourier transforms in a system of linear size L
via

�Bq = L−3/2

∫
d3r eiq·r �B(r), �B(r) = L−3/2

∑
q

e−iq·r �Bq , (3.30)

one finds

〈BiqB
j
k〉 =

1
K

(
δij −

qiqj
q2

)
δq,−k , (3.31)

and hence [32]

〈Bi(0)Bj(r)〉 =
1

4πK
3rirj − δijr2

r5
. (3.32)

We see that while dimer coverings of bipartite lattices described by this coarse-
grained theory are disordered, with finite entropy density and no local symmetry
breaking, the constraints of close packing and hard-core exclusion lead to power-law
correlations with a characteristic form. States with these correlations are known as
Coulomb phases [37].
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3.3.3 Flux sectors, and U(1) and Z2 theories

It is an important feature of dimer models on bipartite lattices that the configuration
space divides into sectors that are not connected by any local dimer rearrangements.
For a system with periodic boundary conditions, these sectors are distinguished by
the values of total flux encircling the system in each direction. Dimer rearrangements
around short loops leave these global fluxes unchanged, and the order characterized
by the fluxes is referred to as topological.

This definition of global flux is illustrated in Fig. 3.9. Let N↑ be the number of di-
mers that cross the line A–B on upward-directed links and let N↓ be the number
on downward-directed links. (In d dimensions, this line is replaced by a (d− 1)-
dimensional hypersurface.) Then the net flux across the line (or hypersurface) is
Φ = −z(N↑ −N↓), where the coordination number is z = 4 for the square lattice. The
value of Φ is unchanged by flipping dimers on contractable loops (ones that do not
wrap around the system), as shown in Fig. 3.9(b, c). Moreover, although microscopic
values of the flux Φ are discrete, this restriction is unimportant after coarse-graining:
for a three-dimensional system in the continuum limit, we can view �A(r) as the vector
potential for a continuous-valued flux density �B(r) = �∇× �A(r). Then (3.27) is simply
the action for a U(1) gauge theory.

Dimer models can equally be defined on lattices that are not bipartite, but the long-
distance physics in these cases is very different. For these systems, it is not possible to
define a local divergenceless flux, and sectors of configuration space are labelled by Z2

rather than U(1) quantum numbers. For a d-dimensional system, there are d of these
quantum numbers, giving the parity of the number N of dimers intersecting a set
of (d− 1)-dimensional hypersurfaces. A change in the dimer configuration produced
by flipping dimers on a contractable loop leaves these parities unchanged. To see
this, note that the loop intersects the surface an even number of times, and consider
the contribution to overall parity from two successive interactions. If the length of the
loop between the crossings is even, then both intersections make the same contribution
(both 0 or both 1) to N , and the combined contribution modulo 2 is unchanged when
dimers on the loop are flipped; alternatively, if the length between crossings is odd,
the two interactions make opposite contributions (one 0 and the other 1) to N , and
their individual contributions swap when dimers are flipped.

BA

(a) (b) (c)

Fig. 3.9 Flux sectors in a bipartite lattice dimer model. (a) Orientation convention on edges
of the lattice. (b) A dimer flip on the marked loop changes both N↑ and N↓ by 1. (c) A dimer
flip on a different marked loop changes local contributions to N↑ by ±1 but leaves its net value
unaltered.
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It is known from exact solutions for two-dimensional lattices using Pfaffians [34] and
from Monte Carlo simulations in three dimensions [32] that dimer–dimer correlations
generically decay exponentially with separation for close-packed dimer coverings of
non-bipartite lattices.

3.3.4 Excitations

Vortices in the height representation can arise from defects of more than one type in the
dimer covering. One of these is obvious from the mapping between triangular-lattice
spin configurations and hexagonal-lattice dimer configurations: a triangle in which
three spins have the same orientation maps to a site of the hexagonal lattice at
which three dimers meet. This excitation acts as a source or sink of the flux we have
introduced, depending on which sublattice the site belongs to.

An alternative type of height vortex, which is of interest for the dimer model, is
one in which a dimer is removed, or, equivalently, replaced by two monomers, as in
Fig. 3.10. The two monomers can be separated by subsequent dimer moves, one always
remaining on the A-sublattice and the other on the B-sublattice. The two monomers
are represented by a vortex–antivortex pair in the height model. From the arguments
leading to (3.26), we see that such a pair will be subject to an attractive entropic
potential that increases logarithmically with separation.

This entropic potential is a natural consequence of the fact that a monomer
acts as a source for flux �B(r) if it is on one sublattice, and as a sink if it is on
the other sublattice, and the logarithmic dependence on distance is characteristic of
the Coulomb interaction in two dimensions. Similarly, the entropic potential V (r)
in three dimensions between a pair of monomers on opposite sublattices at separ-
ation r can be evaluated straightforwardly within the continuum description of (3.27).
The presence of the excitations results in an additional contribution to �B(r). Let
�Bsource be the field configuration that minimizes H in the presence of the pair, and
write �B(r) = �Bsource + δ �B. Since H is quadratic in �B(r), integration over fluctuations
δ �B yields a weight that is unaffected by the presence or separation of the pair. We
can therefore determine V (r) simply from �Bsource, and by the usual arguments of
electrostatics we find

V (r) = − K

4πr
. (3.33)

(a) (b)

Fig. 3.10 Monomers in the hexagonal-lattice dimer model. (a) Dimer replaced with two
monomers. (b) Separation of the monomers by dimer flips.
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Since the entropic cost of separating the pair to infinity is bounded, monomer
excitations in a Coulomb phase in three dimensions are deconfined.

In a dimer model that has long-range order, monomers are subject to a potential
that grows much more rapidly with separation. For example, in two dimensions, the
coarse-grained height field steps between different pinned values along a line joining
the vortex–antivortex pair. This generates an interaction that is linear in separation,
and the same result holds in three dimensions.

On non-bipartite lattices in both two and three dimensions, the entropic interaction
potential between a pair of monomers approaches a finite limiting value exponentially
fast with increasing separation, provided the dimer coverings are disordered. The de-
confinement of monomers is an important property distinguishing Z2 from U(1) phases
in two dimensions.

It is characteristic of topologically ordered systems that transitions between ground
states of a system on a torus can be engineered by a sequence of steps, consisting of
the generation of a pair of excitations, followed by transport of one excitation around
the torus, and ending with recombination. For a dimer model, the first of these steps is
the replacement of a dimer by a pair of monomers. The flux quantum number for the
dimer covering is changed if one of these monomers is transported around the torus
by flipping dimers, until the two monomers are again adjacent and can be replaced
with a dimer.

3.4 Spin ices

The spin-ice materials Ho2Ti2O7 and Dy2Ti2O7 provide fascinating realizations of the
Ising antiferromagnet on the pyrochlore lattice, in which both the nearest-neighbour
and the long-range dipolar contributions to spin interactions make very distinctive
contributions to the physical behaviour [35]. In this section, we give an overview of the
resulting physics, making use of some of the general ideas developed in our discussion
of Coulomb phases.

3.4.1 Materials

Isolated Ho3+ and Dy3+ ions have high angular momentum (J = 8 and J = 15
2 , re-

spectively) and large magnetic moments (10μB in both cases). In spin-ice materials,
the effect of the electrostatic environment of the rare-earth ions is to split the 2J + 1
degenerate states of the free ions into crystal field levels.

Approximating the crystal field Hamiltonian by −D(Jz)2, one has for positive D a
ground-state doublet MJ = ±J . Since excited crystal field levels are several hundred
kelvin higher in energy and the scale for interactions between spins is only a few kelvin,
the moments can be represented by Ising pseudospins Si. The easy axis at given a site
is the local 〈111〉 direction joining the centres of the two tetrahedra that share it,
and so moments are directed either into or out of tetrahedra, as shown in Fig. 3.11.
The centres of tetrahedra of the pyrochlore lattice lie on a diamond lattice, which is
bipartite. We take the convention that Si = +1 represents a spin directed out of a
tetrahedron on the A-sublattice.
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(a) (b)

Fig. 3.11 (a) Magnetic moments at sites of a pyrochlore lattice, orientated along local 〈111〉
axes in a ‘two-in two-out’ state. In later figures, for ease of drawing, we represent the tetrahedron
in the flattened way shown in (b).

Strikingly, frustration arises from the combination of this local easy-axis anisotropy
with ferromagnetic nearest-neighbour coupling (θCW � +1.9 K and +0.5 K for the Ho
and Dy compounds, respectively), and energy is minimized for the two-in two-out
states of the type illustrated in Fig. 3.11 [36]. The term spin ice is chosen because
these spin arrangements mimic the proton positions in water ice. As the values of θCW

are relatively small and the magnetic moments are large, long-range dipolar inter-
actions are important in addition to the nearest-neighbour coupling; we discuss their
consequences in Section 3.4.3, but first examine the physics of the nearest-neighbour
model.

3.4.2 Coulomb phase correlations

We would like to develop a description of ground states of the nearest-neighbour model
for spin ice that is analogous to the height representation for the triangular-lattice Ising
antiferromagnet and amenable to coarse-graining. The approach [25, 37] parallels the
one introduced for three-dimensional dimer models in Section 3.3

In order to describe in a general way the ideas that are involved, it is useful to
introduce some terminology. For a given system of corner-sharing frustrated clusters,
we will be concerned with two types of lattice. One is simply the magnetic lattice on
which the moments reside, also known as the medial lattice, and we denote this by L.
The other is the cluster (or simplex) lattice, also known as the pre-medial or parent
lattice, which we denote by B. The sites of L lie at the midpoints of the links of B,
and, in the notation of graph theory, L is the line graph associated with the graph B.
For spin ices, L is the pyrochlore lattice and B is the diamond lattice. Alternatively,
if we take L to be the kagome lattice, then B is the hexagonal lattice.

A key requirement in the following is that B should be a bipartite lattice. We can
then orient the links of B, say from sites of sublattice A to sites of sublattice B. Let
êi be the unit vector in this direction on link i, and note that i also labels a site of L.
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(a) (b) (c)

Fig. 3.12 Ground-state configurations on the two-dimensional pyrochlore lattice. (a) A state
containing short flippable loops of spins. (b) The state obtained from this by flipping four spins
on the marked loop. (c) A state with no flippable spins and maximal flux 
B.

The central idea is to introduce a vector field �B, defined on the links of B, that is a
representation of a configuration of Ising spins {Si} on L and is given by the relation

�Bi = Siêi . (3.34)

The field �B is a useful construction because the ground-state condition for a spin ice—
that two spins are directed into each tetrahedron and two are directed out—translates
into the condition that �B has zero lattice divergence at each node of B. The field �B is
therefore an emergent gauge field.

The next step is to conjecture a probability distribution for a coarse-grained version
of �B. Some ground states contain short loops of flippable spins: closed loops on the B
lattice, around which all spins are directed in the same sense. Further ground states
with a similar coarse-grained �B are obtained by reversing all the spins on one of these
loops, and so entropy favours states with a high density of short loops, as illustrated
in Fig. 3.12 using a two-dimensional version of the pyrochlore lattice. These consider-
ations suggest that states in which �B is large have lower entropy. This motivates for
the probability distribution the form

P [ �B(r)] = Z−1e−H , (3.35)

with

H =
1
2
K

∫
d3r | �B(r)|2 , (3.36)

where �B(r) is a continuum field, subject to the ground-state constraint �∇ · �B = 0,
just as in our earlier discussion of Coulomb phases in dimer models. Indeed, spin-ice
ground states can be represented directly by dimer coverings on the diamond lattice
with two dimers touching every site, simply by using dimers on B to represent spins
Si = +1 on L. Ground-state spin correlations in a spin ice therefore have the dipolar
form given in (3.32).

The angular dependence of this correlator means that a pair of well-separated
spins on sites of the same sublattice of L (and hence with the same orientation for ê
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(a)

0 0

r

r

(b)

Fig. 3.13 Illustration of the origin of dipolar correlations in a spin ice. Spins at 0 and r are
correlated if a flux line of the emergent field 
B(r) passes through both sites. The orientations
of the flux line at the two sites depends on the direction of their spatial separation, so that for
(a) 〈S0Sr〉 > 0 and for (b) 〈S0Sr〉 < 0.

x

y
z
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Fig. 3.14 Choice of axes and sublattice labels for the pyrochlore lattice.

at both sites) are positively correlated if their separation vector r is in the direction
of ê, but are most likely to be anti-aligned if r is perpendicular to ê. Such behaviour
can be understood by considering the geometry of flux lines of the emergent gauge
field �B(r). A spin configuration in which σ0 = +1 is one with a flux line passing
through the origin in the direction ê, and this flux line must close on itself since the
field is divergenceless. The spin σr is correlated with σ0 only in those configurations
in which the same flux line passes through r, and the most likely orientation of this
flux line at r depends on the relative directions of r and ê, as shown in Fig. 3.13. The
reciprocal space signature, (3.31), of these correlations consists of so-called pinch-point
structures, sharp but without divergences, observed in elastic neutron diffraction [10].

It is interesting to connect the results obtained from a continuum treatment of
the emergent gauge field to those arising from the self-consistent Gaussian approxi-
mation of Section 3.2.1. Adopting the sublattice labels and axis orientations shown in
Fig. 3.14, the net Ising moment M and flux components Bx, By, Bz arising from a
spin configuration S1, S2, S3, S4 on the four sublattices are [38]⎛⎜⎜⎜⎝

M

Bx
By

Bz

⎞⎟⎟⎟⎠ =
1
2

⎛⎜⎜⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
S1

S2

S3

S4

⎞⎟⎟⎟⎠ . (3.37)
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The statistical weight of fluctuations is determined within the self-consistent Gaussian
approximation by their energy and by a Lagrange multiplier λ. From (3.1), the energy
per unit cell of a configuration is 1

2
JM2. Moreover, the net Ising moment M is simply

the lattice version of �∇ · �B. In continuum notation, (3.15) therefore amounts to a
Boltzmann factor e−H with

H =
∫

d3r
{

1
2
λ| �B(r)|2 +

1
2
βJM2

}
. (3.38)

In this way, we see that λ sets the value of the stiffness K for fluctuations of �B(r).
We also recover the condition �∇ · �B(r) = 0 in the low-temperature limit βJ →∞.

3.4.3 Monopoles

Some beautiful physics becomes apparent when we examine spin-ice configurations
that do not obey the two-in two-out rule for ground states of the model with nearest-
neighbour interactions [39]. Consider the configuration obtained from a ground state by
reversing a single spin. As illustrated in Fig. 3.15, two separate elementary excitations
are obtained from it through further spin reversals. Because, like vortex excitations
in the triangular-lattice Ising antiferromagnet, these elementary excitations are not
produced singly by local spin flips, they are said to be fractionalized. Moreover, since
one member of the pair is a source for the emergent gauge flux, and the other a sink,
they form a monopole–antimonopole pair.

The energy of a monopole–antimonopole pair arising from exchange interactions
is independent of their separation in a nearest-neighbour model. There is, however,
an entropic interaction between the pair, since the number of ground states available
to the background spins depends on the separation r of the excitations. The entropic
potential V (r), as for monomers in the Coulomb phase of a three-dimensional dimer
model on a bipartite lattice, is given by (3.33). Likewise, since the entropic cost of
separating the pair to infinity is bounded, monopole excitations are deconfined.

Fig. 3.15 Generation of a monopole–antimonopole pair from the ground state of a two-
dimensional spin ice, and their separation, by successive spin flips.
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3.4.4 Dipolar interactions

Our treatment of spin ices to this point has omitted the long-range part of dipolar
interactions. Clearly, its inclusion will lift the high degeneracy of ground states of the
nearest-neighbour model, and one might expect that it would simply set an unwelcome
limit on the physics we have discussed so far. Rather than being just a bug, however,
dipolar interactions turn out to add a spectacular feature to spin-ice physics [39].

A very convenient framework for thinking about dipolar effects is provided by an
approximation known as the dumbbell model (Fig. 3.16). Here, in the first instance,
magnetic dipoles μ of atomic size are replaced by ‘dumbbells’ of positive and negative
magnetic charge 1

2Q at a separation a equal to the distance between the centres of ad-
jacent tetrahedra of the lattice. Setting the dipole moment of the dumbbell equal to the
microscopic moment, the leading contribution to long-range interactions is captured
exactly. The power of this description stems from the fact that for all ground states of
the nearest-neighbour model, the positive and negative magnetic charges at the cen-
tre of each tetrahedron cancel. In turn, this fact is a demonstration that the leading
contribution to the energy from dipolar interactions is the same for all these states.
Subleading terms follow from the multipole expansion and fall off with distance as
r−5. The estimated ordering temperature of spin-ice materials, Tc � 0.2 θCW, is rather
low for that reason [40]. Such ordering is not observed under ordinary experimental
conditions because spin dynamics is very slow at low temperature.

Turning to monopole excitations, the dumbbell model serves to expose a striking
consequence of dipolar couplings, since dumbbell charges fail to cancel in tetrahedra
that contain these quasiparticles. As a result, a well-separated monopole–antimonopole
pair is subject to a Coulomb interaction

U(r) = −μ0Q
2

4πr
(3.39)

of magnetic origin. The charge Q is related to the atomic dipole moment and the
lattice spacing by Q = 2μ/a, and the monopole chemical potential is fixed by the
nearest-neighbour contributions to spin interactions. Note that while the entropic
and dipolar contributions to monopole interactions, (3.33) and (3.39), have the same
dependence on separation, the entropic one makes a temperature-independent contri-
bution to Boltzmann weights and so the dipolar one is dominant at low temperature.
The magnetic Coulomb interaction between monopoles is a remarkable example of an
emergent longer-range interaction (1/r) arising from shorter-range (1/r3) microscopic
interactions. It appears because of the interplay between these microscopic interactions
and the correlations of the Coulomb phase, and it stands in contrast to the familiar
situation (for example, in a plasma) in which correlations serve to screen long-range
microscopic interactions, leaving only a short-range effective potential.

A second, and much more conventional, consequence of atomic dipole moments
is that spins couple to an external magnetic field. To appreciate the form of this
coupling, recall that moments are aligned along local crystal field axes, and that these
are differently orientated on each of the four sublattices, as shown in Fig. 3.11. The
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0 2

(a)

(b) (c)

Fig. 3.16 The dumbbell approximation. Dipoles are replaced with a dumbbell of opposite
charges at finite separation, as shown in (a). If this separation is chosen to be the distance
between tetrahedron centres, then two-in two-out tetrahedra are charge-neutral (b), but one-in
three-out tetrahedra have net charge (c).

H

Fig. 3.17 Spin configurations favoured by a [111] field: magnetic charges ±Q are induced in
tetrahedra on opposite sublattices.

Zeeman contribution to the Hamiltonian in the presence of a field �H is therefore

HZ = −μμ0

∑
i

( �H · êi)Si , (3.40)

and so the strength of coupling to spins on different sublattices depends on the
orientation of �H relative to the crystal axes.

This sublattice-dependent Zeeman coupling can be exploited to control monopole
density in a way that provides rather direct evidence for magnetic Coulomb inter-
actions. Specifically, a field directed along the [111] axis acts as a staggered chemical
potential for monopoles, favouring monopoles of charge Q in the tetrahedra on one
sublattice of B and charge −Q on the other sublattice, as indicated in Fig. 3.17. In
this way, by varying field strength, one can drive a transition between low- and high-
monopole-density phases. Experimentally, this is observed to be of first order. Theory
for a charged system, and simulations including magnetic dipolar interactions, repro-
duce this first-order transition, in contrast to theory and simulations for models with
only nearest-neighbour interactions, where the transition is continuous [39].
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3.5 Quantum spin liquids

We now turn to the quantum physics of frustrated magnets, where frustration is
interesting particularly because it provides a mechanism that suppresses Néel order
and promotes alternative, quantum-disordered phases.

3.5.1 Introduction

To understand that destruction of conventional order is likely in frustrated magnets,
we can examine the reduction of ordered moments in the Néel state by zero-point
fluctuations. Within the framework of harmonic spin-wave theory, we start from a
classical ground state for a spin model and choose axes at each site that have ẑ
oriented along the local ground-state spin direction. Using the Holstein–Primakoff
transformation, spin operators are expressed in terms of bosonic ones via the relation
Szr = S − a†rar. Fluctuations lower the ground-state moment 〈Szr 〉 = S −ΔS by an
amount ΔS ≡ 〈a†rar〉 that can be expressed as an average over contributions from each
mode. The schematic form (the details depend on the system) in terms of spin-wave
frequencies ωk and exchange interaction J is [41]

ΔS ∼ J

Ω

∫
BZ

ddk
�ωk

, (3.41)

where Ω is the Brillouin zone (BZ) volume. As we have seen in Section 3.1.2, frustration
promotes macroscopic classical ground-state degeneracy and branches of soft modes.
Here we find that these modes make divergent contributions to ΔS, destabilizing
long-range order.

Is the resulting state a quantum spin liquid? A necessary requirement is that (i) the
ground state leaves all symmetries of the Hamiltonian unbroken, and the absence of
Néel order is one aspect of this. To appreciate that we should demand more, consider
as an example a bilayer, square-lattice spin-1

2 Heisenberg antiferromagnet, having
nearest-neighbour exchange J within layers and J ′ between layers. This model has
two phases: the ground state is Néel-ordered for J ′ � J , but consists of interlayer
singlets for J ′ � J . Although the large J ′/J state breaks no symmetries, it is ‘ordinary’
rather than ‘exotic’, in the sense that it is continuously connected to a band insulator.
That is to say, there is a path in the space of Hamiltonians that connects this phase
of the spin model to a tight-binding model without interactions that has one filled
band (symmetric under layer interchange) and one empty band (antisymmetric under
interchange).

To exclude such ordinary possibilities, we require in addition that a quantum spin
liquid (ii) has half-odd-integer spin per unit cell. The combination of (i) and (ii) to-
gether implies for a large class of models that a system with a gapped ground state
has topological order, as we now discuss.

3.5.2 Lieb–Schultz–Mattis theorem

Some strong constraints on the nature of ground states and excitations in spin models
that have half-odd-integer spin per site and (at least) U(1) symmetry are revealed by
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the Lieb–Schultz–Mattis theorem [42]. This was originally proved for one-dimensional
models, but has subsequently been applied to quasi-one-dimensional and higher-
dimensional systems [43, 44]. The theorem shows for a chain of length L that the
energy gap between the ground and first excited states vanishes as L→∞. We know
of three distinct ways in which this can happen. Two of these are conventional. First,
if the model spontaneously breaks a symmetry, the ground state belongs to a low-lying
multiplet, and splittings within the multiplet vanish as L diverges. An example is a
state in which the size of the unit cell is doubled spontaneously by spin dimeriza-
tion. Second, if the model has a branch of gapless excitations, the lowest excitation
energy decreases as a power of system size. This is the case for spinon excitations in
the spin- 1

2 Heisenberg chain. The third, unconventional, possibility concerns systems
that do not show symmetry breaking, and in which excitations that can be created
by local operators are gapped. For these, the implication of the theorem is that the
ground state belongs to a low-lying multiplet that does not originate from symmetry
breaking. Instead, it has its origin in topological order.

We will sketch the proof as it applies to the spin-1
2 XXZ chain, and then discuss

more general implications. Consider the Hamiltonian

H = J
∑
n

[
1
2
(S+
n S
−
n+1 + S−n S

+
n+1) + ΔSznS

z
n+1

]
(3.42)

for a chain of L sites with periodic boundary conditions and L even. Suppose the
ground state |0〉 is unique (if it is degenerate, there is nothing to prove, since the gap
is zero) and denote its energy by E0. We construct a second state |ψ〉 = U |0〉 from it
by acting with an operator

U = exp

(
2πi

L∑
n=1

n

L
Szn

)
(3.43)

that generates a long-wavelength twist of spin configurations about the z axis. We will
show that 〈ψ|0〉 = 0, and will use 〈ψ|(H− E0)|ψ〉 to obtain a variational bound on
the separation in energy between the ground and first excited states of H.

To show orthogonality of |0〉 and |ψ〉, consider the effect of translations on |0〉 and
on |ψ〉. Let the operator T effect translation by one lattice spacing. We have T |0〉 = |0〉
since the ground state is unique. On the other hand,

TU T−1 = Ue−(2πi/L)
∑

n S
z
ne2πiSz

1 . (3.44)

The factor e−(2πi/L)
∑

n S
z
n = +1 if

∑
n S

z
n = 0 (and there is ground-state degeneracy

if
∑
n S

z
n �= 0), but for half-odd-integer spins the factor e2πiSz

1 = −1. Hence, T|ψ〉 =
−|ψ〉, and therefore 〈ψ|0〉 = 0.

In order to evaluate 〈ψ|(H− E0)|ψ〉, we first examine how U transforms a single
spin operator. We have

e−iθSz

S+eiθSz

= e−iθS+, and so U†S+
n S
−
n+1U = e2πi/LS+

n S
−
n+1 . (3.45)
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From this, we find

〈ψ|(H− E0)|ψ〉 = −1
2
J [1− cos(2π/L)]

∑
n

〈S+
n S
−
n+1 + S−n S

+
n+1〉 . (3.46)

Since the factor [1− cos(2π/L)] decreases as 1/L2, while
∑
n |〈S+

n S
−
n+1 + S−n S

+
n+1〉| ≤

2L, the energy gap separating E0 from the next eigenstate vanishes at least as fast as
1/L, which is the result we seek.

These ideas can most simply be extended to higher dimensions by considering a
system on a strip, with the width M chosen to be an odd integer so that the spin per
unit cell of the strip remains half an odd integer [43]. The bound on the energy gap
implied by (3.46) is then O(M/L), which again vanishes provided that we take the
thermodynamic limit in an anisotropic fashion, a restriction that is not required in a
more sophisticated approach [44].

The possibility of asymptotic degeneracy without symmetry breaking or gapless
excitations is very striking. One route to understanding how it can arise is provided
by quantum dimer models.

3.5.3 Quantum dimer models

3.5.3.1 RVB picture

In order to discuss spin-liquid states, we need a suitable language. It should provide
an alternative to the picture we have of Néel order, which starts from a product
wavefunction based on the classical ground state. Anderson’s resonating valence bond
(RVB) state [1, 45] offers this language: we describe the spin-liquid wavefunction using
a basis of short-range singlets. In one such basis state, each spin is paired with another
nearby spin to form a singlet, with different basis states arising from different pairings.
This idea is depicted in Fig. 3.18.

Efforts to develop this picture directly face many difficult issues and questions [33].
Different basis states are not orthogonal, and it is not immediately apparent whether
the basis is complete in the space of total singlets. Equally, one might ask what the
prescription should be for choosing expansion coefficients, and how the Néel state can
be written in this basis.

0 ...+ + +

Fig. 3.18 Schematic illustration of the RVB state as a superposition of short-range singlets.

x

y

Fig. 3.19 Resonance for quantum dimer model on a square lattice.
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(b)

(a)

Fig. 3.20 Resonances for quantum dimer models on (a) triangular and (b) honeycomb lattices.

3.5.3.2 Quantum dimer models

Quantum dimer models [33] short-circuit many of these problems by defining a
quantum-mechanical problem on a Hilbert space that has the correlations of a classical
Coulomb phase built in from the start. The key idea is simply to define an orthonor-
mal basis set {|C〉} to be the close-packed dimer coverings C of a given lattice, so that
an arbitrary state in this space has the form |ψ〉 =

∑
C AC |C〉. The other ingredient

is a choice of Hamiltonian. In general, it will have ‘potential’ terms, which are diag-
onal in the dimer covering basis, and ‘kinetic’ terms, which are off-diagonal. The form
proposed for the square lattice by Rokhsar and Kivelson [33] is

H =
∑

{−t[ |=〉〈‖|+ |‖〉〈=| ] + v[ |‖〉〈‖|+ |=〉〈=| ]} . (3.47)

The notation used is intuitive although compact. Unpacking it: the sum runs over
all elementary plaquettes of the lattice and the symbol |=〉〈=| denotes a projection
operator onto states that have a horizontal pair of dimers in this plaquette. Similarly,
the symbol |=〉〈‖| represents an operator that converts a horizontal pair of dimers in
this plaquette to a vertical pair, and yields zero otherwise. It therefore produces the
dimer resonances shown in Fig. 3.19.

Extensions to different lattices are straightforward. For example, on the triangular
lattice, one allows resonances of pairs of dimers on four-site plaquettes of three types,
as shown in Fig. 3.20(a), while on the honeycomb lattice, three-dimer resonances are
required, as shown in Fig. 3.20(b). In general, one wants to include in the kinetic
energy a set of resonances that is sufficient to connect all dimer configurations within
a given U(1) or Z2 sector, but is otherwise as local as possible.

The nature of the ground state of the quantum dimer model Hamiltonian (3.47)
depends on the values of the parameters v and t. We will discuss only t > 0, so that
the kinetic energy favours a nodeless wavefunction. A special role is played by the
Rokhsar–Kivelson (RK) point in parameter space, v = t, because here the ground-
state wavefunction is given exactly by an equal-amplitude superposition |G〉 of all
dimer coverings within a given sector. To see this, note that the Hamiltonian at the
RK point has the form

HRK = t
∑

(|‖〉 − |=〉)(〈‖| − 〈=|) , (3.48)

which is a sum of projectors with a positive coefficient. Its eigenvalues are therefore
non-negative. Moreover, |G〉 is annihilated by the projection operators, and so is an
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eigenstate with energy zero. It is unique by the Perron–Frobenius theorem, provided
that the kinetic term is ergodic within the sector.

3.5.3.3 Correlations

Knowledge of the ground-state wavefunction enables us to evaluate equal-time cor-
relation functions. In particular, the ground-state expectation value of an observable
that is diagonal in the dimer basis is given by an average over dimer coverings. From
this, we can deduce at once that dimer correlations at the RK point of a quantum
dimer model take the power-law form characteristic of a Coulomb phase (see (3.29)
and (3.32) for two and three dimensions, respectively) on bipartite lattices, and are
exponentially decaying on non-bipartite lattices.

We can also consider the quantum dimer model in the presence of a pair of
static monomers. At the RK point, equal-amplitude superpositions of dimer cover-
ings continue to define zero-energy eigenfunctions, and so the ground-state energy
is independent of the separation between monomers. From this, one concludes that
monomers are deconfined in the ground state. Consider for comparison the behav-
iour at infinite temperature. In this limit (as discussed in Section 3.3), there is an
entropic contribution to the monomer–monomer potential. It is weakly (logarithmic-
ally) divergent at large separations in two dimensions on bipartite lattices, leading to
confinement in this case. In other cases, monomers are deconfined: the potential has
the Coulomb form on three-dimensional bipartite lattices, and approaches its limit-
ing value exponentially fast with separation on non-bipartite lattices in both two and
three dimensions.

3.5.3.4 Phase diagram

Moving away from the solvable RK point, we would like to understand the ground-
state phase diagrams of quantum dimer models on various lattices as a function of the
dimensionless coupling v/t [33, 46, 47]. The behaviour in some regimes and limits is
clear from simple arguments.

First, for v > t, we can write H in terms of the Hamiltonian HRK at the RK point
and a non-negative remainder, as

H = HRK + (v − t)
∑

(|‖〉〈‖|+ |=〉〈=|) . (3.49)

The so-called staggered state shown in Fig. 3.21(a) is annihilated by both terms in this
Hamiltonian, and hence is the ground state for all v > t. In terms of the description
of Coulomb phases on bipartite lattices, this is the state with maximal flux. It also
has analogues on non-bipartite lattices; see Fig. 3.21(d).

In the opposite limit, v → −∞, the ground state is a columnar state, maximizing
the number of flippable plaquettes, as illustrated in Fig. 3.21(b). Further possibilities
at intermediate values of v/t include plaquette states, shown schematically for the
square lattice in Fig. 3.21(c): in these states, dimers resonate independently on different
plaquettes between horizontal and vertical pairs.
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Note that all of the states shown in Fig. 3.21 break spatial symmetries and are
degenerate for that reason. By contrast, the ground state at the RK point leaves spatial
symmetries intact; its degeneracy arises topologically, from the existence of different
sectors, labelled by U(1) or Z2 quantum numbers according to the lattice type. The
fact that they support a set of distinct ground states labelled by topological fluxes is a
crucial feature of quantum dimer models, inherited from their classical counterparts.
It illustrates how the degeneracy demanded by the Lieb–Schultz–Mattis theorem can
arise without local symmetry breaking.

A full determination of the phase diagram requires Monte Carlo calculations. Here,
quantum dimer models have a tremendous advantage over most spin Hamiltonians
for frustrated systems, because they avoid the so-called sign problem and can be
simulated efficiently using worm algorithms. The resulting phase diagrams are shown
schematically in Fig. 3.22.

Some aspects of the phase diagram are generic, but others depend on spatial di-
mension and on whether or not the lattice is bipartite. Properties precisely at the
RK point are known in all cases by reference to the corresponding classical dimer
problem: dimers are disordered, with correlations that decay exponentially on non-
bipartite lattices and as a power law on bipartite lattices. Moreover, the RK point
lies at a phase boundary, since the staggered state is the ground state for all v > t.
Crucial differences in behaviour appear on the other side of the RK point (v < t). A
simple first step to rationalizing these differences is to use classical, high-temperature
properties as a basis for guessing the nature of the quantum ground state. Specifically,

(d)(c)(b)(a)

Fig. 3.21 Some possible ordered phases for quantum dimer models: (a) staggered, (b) columnar
and (c) plaquette states on the square lattice; (d) staggered state on the triangular lattice.

(a) v/t

RK  point
Plaquette StaggeredColumnar

(b) v/tStaggeredColumnar    2 RVB

(c) v/t

1

StaggeredColumnar U(1) RVB

Fig. 3.22 Schematic phase diagrams for the quantum dimer model on (a) square, (b)
triangular, and (c) diamond lattices.
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we know that the high-temperature, entropic interaction between monomers yields
confinement on bipartite lattices in two dimensions, but not in three dimensions or
on non-bipartite lattices. Correspondingly, the ground state of quantum dimer mod-
els is generically ordered on bipartite lattices in two dimensions. Deconfinement of
monomers at the RK point on the square lattice must therefore be seen as a special
feature of the transition between one ordered phase (the plaquette phase for v < t)
and another (the staggered phase for v > t). In contrast, deconfinement of monomers
at the RK point on the triangular or diamond lattices is a reflection of behaviour
throughout a dimer liquid phase that extends from the RK point to smaller val-
ues of v/t. As we have seen in Section 3.3, topological order in this liquid phase is
characterized respectively by Z2 and U(1) quantum numbers, which distinguish differ-
ent sectors of the dimer configuration space, and therefore different quantum ground
states.

A summary of the main features of the phase diagrams for quantum dimers models
shown in Fig. 3.22 is that deconfined phases are found: (i) in both two and three spatial
dimensions for Z2 models, which arise on non-bipartite lattices, and (ii) only in three
spatial dimensions in U(1) models, which arise on bipartite lattices [46, 47]. These are
general properties of lattice gauge theories: whereas Z2 theories support confined and
deconfined phases in 2 + 1 and 3 + 1 dimensions, compact U(1) theories are known
always to be confining in 2 + 1 dimensions, but to have both types of phase in 3 + 1
dimensions [48].

3.5.3.5 Excitations

Three types of excitation are important in quantum dimer models. Of these, monomers
(mentioned already) involve a relaxation of the dimer covering constraint, while the
others—visons and emergent photons—are excited states of complete dimer coverings,
which are respectively point-like and wave-like.

The energy cost of introducing monomers is a free parameter of the quantum dimer
model, not fixed by the parameters v and t. It is natural, however, to regard them
as gapped excitations, arising in pairs from breaking dimers. Viewing the dimer as a
spin singlet, the monomer carries spin 1

2
and so is also referred to as a spinon. An

isolated monomer in a dimer covering of a bipartite lattice is either a source or sink of
U(1) flux, depending on which sublattice it occupies, and in that sense is a monopole.
As we have discussed in Section 3.3.4, transitions between ground states in different
topological sectors can be produced by generation of a pair of quasiparticles, followed
by transport of one quasiparticle around the torus, and ending with recombination.
The relevant quasiparticles here are monomer excitations.

Variational wavefunctions offer a language in which to discuss excitations of HRK

within the space of close-packed dimer coverings. At the RK point, we know that the
ground-state wavefunction has equal amplitude for all coverings within a given sector.
An excited-state wavefunction must have a phase that varies with dimer covering or
it would not be orthogonal to this ground state.
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Fig. 3.23 Vison excitation.

The vison [49] is a vortex excitation of a two-dimensional system. It can be
represented at the RK point by a variational wavefunction of the form

|ψvison〉 =
∑
C

(−1)nC |C〉 . (3.50)

Here nC is the number of dimers in the configuration C that cross a line on the
dual lattice that extends from the centre of the plaquette on which the excitation is
based to the system boundary (or, for a system on a torus, to the centre of another
vison), as illustrated in Fig. 3.23. In order for a wavefunction of this form to be
reasonable, its physical properties should depend only on the line’s endpoints, and not
on the line’s path: it is a simple exercise to check that this is true. To understand
the significance of the form of this wavefunction, consider two configurations, C and
C′, which are related by flipping dimers around a single loop. The dimer flip changes
the sign of (−1)nC if the loop encloses the vison, but otherwise has no effect. This
suggests several conclusions. First, far from the vison, the state |ψvison〉 is very similar
to |G〉, since many different components of the wavefunction, related by dimer flips
around loops that do not enclose the vison, contribute all with the same phase to
|ψvison〉, just as they do to |G〉. Second, |ψvison〉 and |G〉 are orthogonal, since the
average of (−1)nC over configurations is zero. Third, close to the vison, the states
|ψvison〉 and |G〉 are quite different, and so we expect a finite energy gap for vison
creation.

An emergent photon is an excitation involving density waves of the dimer orienta-
tions. It is a gapless excitation of a U(1) quantum dimer liquid, and so of interest at the
RK point on bipartite lattices in 2 + 1 and 3 + 1 dimensions, and also away from the
RK point in the U(1) phase in 3 + 1 dimensions. At the RK point itself, discussion of a
trial wavefunction is again a very useful approach [33]. The excitation is characterized
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by a polarization τ̂ and a wavevector q. To specify the trial wavefunction, we use the
dimer number operator στ̂ (r). Its Fourier transform is

στ̂ (q) =
∑
r

eiq·rστ̂ (r) (3.51)

and the trial wavefunction we consider is

|ψphoton〉 = στ̂ (q)|G〉 . (3.52)

Note that 〈G|ψphoton〉 = 0 for |q| �= 0 since |G〉 and |ψphoton〉 = 0 are both eigenstates of
translation, but with different eigenvalues. In addition, for small |q|, the state |ψphoton〉
is locally similar to |G〉, in the sense that dimer flips around short loops induce only
small changes in the phases of its expansion coefficients AC.

Excitation energies E(q) in the quantum dimer model can be determined varia-
tionally using this trial wavefunction, taking inspiration from Feynman’s treatment of
phonon modes in Bose condensates [50]. We start from

E(q) ≤ 〈G|σ†τ̂ (q)HRKστ̂ (q)|G〉
〈G|σ†τ̂ (q)στ̂ (q)|G〉

− 〈G|HRK|G〉
〈G|G〉 =

f(q)
2s(q)

, (3.53)

where

f(q) = 〈G|[σ†τ̂ (q), [HRK, στ̂ (q)]]|G〉 , s(q) = 〈G|[σ†τ̂ (q)στ̂ (q)|G〉 . (3.54)

From (3.53), we see that excitations are gapless if there are wavevectors q at which
f(q) vanishes and s(q) remains finite or approaches zero more slowly. In turn, f(q) = 0
if [HRK, στ̂ (q)] = 0, and for the latter to hold we require both of the two dimer con-
figurations shown in Fig. 3.19 to make the same contribution to στ̂ (q). Setting τ̂ = x̂
for definiteness, this is the case in two dimensions if qy = π or in three dimensions
if qy = qz = π. Writing q = (π, π) + k or q = (π, π, π) + k, one finds f(q) ∝ k2

y or
f(q) ∝ k2

y + k2
z , respectively. It remains to compute s(q), which is a correlator for

classical dimer coverings and can be evaluated using the treatment of Coulomb phases
established in Section 3.3. As dimer occupancy is represented by flux, we require the
flux correlator; and because the mapping between dimers and fluxes uses an alter-
nating orientation convention on links, long-wavelength flux correlations reflect dimer
correlations near the Brillouin zone corner. From the relation

〈G|[σ†x̂(q)σx̂(q)|G〉 ∝ 〈Bx(−k)Bx(k)〉 , (3.55)

one finds s(q) ∝ k2
y/k

2 in two dimensions and s(q) ∝ (k2
y + k2

z)/k
2 in three. This yields

the important result

E(q) ≤ ck2 , (3.56)

with c a numerical constant, showing that the quantum dimer model has gapless
excitations at the RK point.
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We shall see that the quadratic dispersion shown in (3.56) reflects true behaviour,
rather than simply providing an upper bound, but it is specific to the RK point
and is replaced by a linear dispersion within the U(1) phase in 3 + 1 dimensions. To
discuss the relevant physics, we consider how to extend the continuum description of
Coulomb phases from classical systems in D space dimensions to quantum systems in
D + 1 spacetime dimensions.

Taking D = 2, we require an imaginary-time action for a height field h(r, t) that
is compatible with (3.56). The quadratic expression

SRK =
1
2

∫
{[∂th(r, t)]2 +K2[∇2h(r, t)]2} d2r dt (3.57)

is implied. It yields for the Fourier transform of the height field the correlator

〈|h(k, ω)|2〉 =
1

(Kk2)2 + ω2
(3.58)

and hence an equal-time correlator∫
dω 〈|h(k, ω)|2〉 ∝ 1

Kk2
(3.59)

of the form required for the classical height model that describes dimer correlations
in the ground-state wavefunction at the RK point. This action is, however fine-tuned;
adding further symmetry-allowed terms, we arrive at

S2+1 =
1
2

∫
{[∂th(r, t)]2 + ρ2|�∇h(r, t)|2 +K2[∇2h(r, t)]2 − g cos[2πh(r, t)]}d2r dt .

(3.60)
We can identify the stiffness ρ2 with the parameter combination 1− v/t in the quan-
tum dimer model. At the RK point, the stiffness vanishes, g is irrelevant under
renormalization, and we return to (3.57). On one side of the RK point, v > t, ρ2

is negative, promoting a state with a large gradient |�∇h(r, t)| in the height field: the
staggered phase. On the other side, v < t, positive ρ2 suppresses fluctuations of h(r, t)
and g cos[2πh(r, t)] is relevant, producing a pinned phase. In this way, we see that
the RK point for a bipartite lattice in 2 + 1 dimensions is an isolated critical point
between two conventional ordered phases.

Contrastingly, quantum dimer models on bipartite lattices in 3 + 1 dimensions
generically support a dimer liquid phase. Again we require an imaginary-time action
compatible with (3.56), now expressed in terms of the vector potential �A(r, t). Picking
the Coulomb gauge �∇ · �A(r, t) = 0, an expansion in space and time derivatives gives

S3+1 =
1
2

∫
{|∂t �A(r, t)|2 + ρ2|�∇× �A(r, t)|2 +K2|�∇× [�∇× �A(r, t)]|2}d3r dt . (3.61)

Again, we expect ρ2 ∝ 1− v/t. At the RK point, with ρ2 = 0, we recover a quadratic
dispersion relation for excitations, and equal-time correlations of the classical Coulomb
phase. On one side of the RK point, with v > t, negative ρ2 drives the system into
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a staggered phase, as in 2 + 1 dimensions. On the other side, however, with v < t,
by introducing a scalar potential Φ(r, t) and writing �E(r, t) = ∂ �A(r, t)− �∇Φ(r, t), the
action can be expressed in the form [51, 52]

S3+1 =
1
2

∫
{| �E(r, t)|2 + ρ2| �B(r, t)|2 +K2|�∇× �B(r, t)|2}d3rdt , (3.62)

familiar from quantum electrodynamics. Weak perturbations to this action allowed by
symmetry are irrelevant in the renormalization group sense. It describes a liquid phase
of the quantum dimer model and has linearly dispersing emergent photon excitations.
Monomers introduced into the dimer covering are monopole sources for the �B field,
and the three-dimensional analogue of visons are sources for the �E field.

3.6 Concluding remarks

The presentation has necessarily been a very selective one, chosen particularly to bring
out common strands in the treatment of frustration in classical models and in quantum
systems. It is reassuring to find that the main ideas also emerge from quite different
treatments.

3.6.1 Slave particles

A large and important class of theories follows from representing spins in terms of
particles subject to a local constraint. The constraint can be imposed using a gauge
field, which takes the same place in a description of a spin liquid as the gauge fields
that appear in dimer models. One starting point is Schwinger’s representation of spin-S
operators using two species of bosons, as [41]

Sz =
1
2
(b†1b1 − b

†
2b2), S+ = b†1b2, S− = b†2b1 , (3.63)

with [bi b
†
j ] = δij and the constraint b†1b1 + b†2b2 = 2S. Fluctuations can be controlled

by generalizing from SU(2) to SU(N) [53] or, on non-bipartite lattices, to Sp(N) [54],
and from two to N species of boson.

Alternatively, we can recall the origin of local moments in itinerant fermions [55],
writing

�Si = f†iα�σαβfiβ , with f †i↑fi↑ + f †i↓fi↓ = 1 , (3.64)

where {f †iα, fjβ} = δijδαβ . The Heisenberg exchange term �Si · �Si then corresponds to
a four-fermion interaction, and a mean-field decoupling leads to a quadratic fermion
Hamiltonian of the form

HMF =
∑
ij,σ

{
tijf

†
iσfjσ +

(
Δijf

†
i↑, f

†
j↓ + h.c.

)}
, (3.65)
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where the hopping coefficients tij and pairing amplitudes Δij serve as variational co-
efficients. Denoting the ground state of HMF by |Slater〉, components with double site
occupancy can be removed by Gutzwiller projection to yield a spin-liquid wavefunction

|G〉 =
∏
i

(1− ni↑ni↓) |Slater〉 . (3.66)

Within this approach, depending on the phases of the hopping amplitudes, the fermi-
ons move in a Z2, U(1), or SU(2) gauge field, and have a gapped, Dirac or metallic
spectrum—in decreasing order of stability. Spinons are represented by Bogoliubov
quasiparticles, and visons by flux excitations encoded in the phases of the hopping
amplitudes [56].

3.6.2 Numerics

Unbiased numerical methods play a key role in this research field, and often represent
the only way to find out what phases are supported by a particular physical model;
reviews can be found in [57] and [58]. In general, while exact diagonalization of the
many-body Hamiltonian has the advantages of flexibility (for example, providing an
early identification of a gapped spin liquid [59]), alternative techniques are important
to avoid the difficulties stemming from the exponential growth with system size of the
Hilbert space dimension. These include the design of Hamiltonians that avoid Monte
Carlo sign problems [58], and the use of the density matrix renormalization group and
related methods to study quasi-one-dimensional samples (see e.g. [61]). At the same
time, new approaches to identifying exotic states are increasingly important, such as
the evaluation of entanglement entropy to probe topological order [60].

3.6.3 Summary

Some common strands run through much of the physics that has been presented. Frus-
tration gives rise to classical degeneracy, and the correlations that are built onto these
classical degenerate states lead to the ideas of topological sectors and deconfined, frac-
tionalized excitations. By adding quantum dynamics to dimer models, two important
types of stable quantum liquid phase can be realised. One is a gapped Z2 phase, sta-
ble in both two and three spatial dimensions, which has point-like excitations of two
types: spinons and visons. The other is the U(1) liquid, stable only in three spatial
dimensions, and having gapped electric and magnetic monopole excitations as well as
gapless emergent photon modes. Models realizing Z2 phases include, in two dimen-
sions, the triangular-lattice quantum dimer model [46], the toric code [62], and the
spin- 1

2 kagome-lattice Heisenberg antiferromagnet [63]. Examples of U(1) liquids are
provided by the diamond-lattice quantum dimer model [64] and by hard-core bosons
on the pyrochlore lattice [65].
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Preface

Entanglement spectroscopy, initially introduced by Li and Haldane in the context
of the fractional quantum Hall effect, has stimulated an extensive range of stud-
ies. The entanglement spectrum is the spectrum of the reduced density matrix
when we partition the system into two. For many quantum systems, it unveils a
unique feature: computed from the bulk ground-state wavefunction, the entanglement
spectrum gives access to the physics of edge excitations. Using this property, entangle-
ment spectroscopy has proved to be a highly valuable tool to diagnose topological
ordering.

The aim of these lectures is to provide an overview of entanglement spectroscopy,
mostly in the context of the fractional quantum Hall effect. We introduce the basic
concepts through the example of quantum spin chains. We discuss the connection with
entanglement entropy and the matrix product state representation. We show how the
entanglement spectrum can be computed for non-interacting topological phases and
how it reveals the edge excitation from the ground state. We then present an extensive
review of entanglement spectra as applied to fractional quantum Hall phases, showing
how much information is encoded within the ground state and how different partitions
probe different type of excitations. Finally, we discuss the application of this tool to
study fractional Chern insulators.

4.1 Introduction

In the past decade, it has become clear that Landau’s theory of phase transitions,
which involves the appearance of a broken-symmetry order parameter, does not apply
to a series of phases of matter with so-called topological order. Topological phases
exhibit the surprising property that their quantum ground state can be degenerate
and no local measurement can distinguish these degenerate states. This feature is the
key to topological quantum computing: this robustness is used to solve the problem of
local decoherence (for example due to disorder) by construction instead of by quantum
error correction (a hardware versus a software approach). This inherent robustness is
also the source of a major issue: the absence of a local order parameter makes the
identification of a topological order a difficult task.

Most intrinsic topologically ordered phases are strongly correlated systems. Thus,
numerical simulations have been an important tool to understand the emergence of
these phases from microscopic models. The absence of a local order parameter, coupled
with the few finite sizes that can be reached through simulations, restrict our ability
to characterize these systems. From this perspective, we would like to achieve the
following two goals:

1. Convince ourselves that the phase is indeed emerging. The more signatures
we have, the more confidently might we claim to have strong evidence of this
emergence.

2. Minimize our effort—meaning that we compute only the ground state of our
system. This is actually more a limitation of the algorithm (or technique) or of
computational power than a consequence of being lazy. If we work with quantum
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many-body systems, the Hilbert-space dimension grows exponentially with sys-
tem size (think about a spin- 1

2 system). This will be our bottleneck sooner or
later (and most probably sooner).

So, if we only have access to the ground state, we can wonder how much information
about the system can be extracted. If we are lucky, we might have a model ground
state we can compare with. The simplest way to compare the ground state from a
simulation and this model ground state would be to compute an overlap (meaning
a scalar product). Unfortunately, this might be tricky to do (for example, the two
states might be expressed in two different bases). Moreover, we end up with a number
between 0 and 1, scaling with the system size. Thus, we have to decide what is a good
overlap.

Other routes would be to use a global order parameter, looking for the ground-
state degeneracy (playing with the genus of the surface we are working on, which might
affect the ground-state degeneracy for a topological phase), play with the boundary
conditions (twist the boundary, flux insertion, etc.)

A promising tool to extract topological information from the ground-state wave-
function is the entanglement entropy [12, 35, 40]. The key idea is to break the system
ground state into pieces and look at the entanglement between these pieces. In the
simplest case, we consider the bipartite entanglement between two parts A and B. As
we will see, this technique will reveal lots of information about the phase itself, such
as its excitations. In many examples, this provides an in-depth view of the informa-
tion encoded within the wavefunction of a topological phase. As a corollary, it means
that we can store a wavefunction in a more efficient way when we perform numerical
simulations, just by keeping the relevant information.

In the simplest case, we consider the bipartite entanglement between two parts A
and B of the system in its ground state |Ψ〉. This partition is characterized by the
reduced density matrix ρA = TrB |Ψ〉 〈Ψ| of subsystem A, obtained by tracing out all
the B degrees of freedom. Among the various entropies that have been considered as
an entanglement measurement, the entanglement entropy is the most popular (see [5]
for an extensive review). It is defined as the von Neumann entropy associated with ρA,
that is, SA = −TrA [ρA ln ρA]. For a system in d dimensions with a finite correlation
length l, the entanglement entropy satisfies the area law [68]

SA � αLd−1, (4.1)

where L � l is the typical length that defines the size of the region A and α is a non-
universal constant. The area law indicates that the dominant part of the entanglement
entropy is controlled by the area (Ld−1) that separates the two domains. Physically,
it means that the entanglement between A and B is located at the interface of the
two regions.

For two-dimensional topological phases, it was shown in [35] and [40] that the first
correction to the area law is a topological term: SA ∼ αL − γ. The subleading term γ
is called the topological entanglement entropy: it is a constant for a given topologic-
ally ordered phase, γ = lnD. Here D is the total quantum dimension characterizing
the topological field theory describing the phase and thus the nature of the system
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excitations. The topological entanglement entropy appears as a way to characterize
the topological order of a phase. However, its practical calculation depends on scaling
arguments, which might be hard to obtain to sufficient accuracy from numerical cal-
culations [31, 36]. Moreover, it does not uniquely determine the topological order in
the state.

While the topological entanglement entropy compresses the information contained
in the reduced density matrix into a single number, the concept of entanglement
spectroscopy have been shown to be a powerful tool to probe the topological order.
Indeed, the aim of using the entanglement spectrum (ES) is to have a deeper look at ρA
by analysing its full spectrum. The ES was initially introduced by Li and Haldane [41]
in the context of the fractional quantum Hall effect (FQHE), stimulating an extensive
range of studies [3, 6, 15, 19, 33, 37, 43, 60, 63, 64, 69, 70, 75, 76, 88]. It has also
been studied and applied to a wide variety of topological and non-topological phases,
including spin systems [13, 16, 34, 38, 46, 54–56, 65, 74, 86], as well as topological
insulators [24, 57, 78], Bose–Hubbard models [45], and complex paired superfluids [18].
Moreover, the partition of the system has to be thought in a broad sense: it can be done
in real space, in momentum or Fourier space, or in particle space. For many model
states such as the Laughlin wavefunction [39] and the AKLT spin chain [1, 2], the
counting (the number of non-zero eigenvalues) is exponentially lower than expected.
This counting is related to the nature of the system excitations. The salient feature
is that this information about the excitations is obtained only from the ground state.
The ES is a way to extract this information, and each type of cut reveals different
aspects of these excitations.

These lecture notes will try to give an overview of entanglement spectroscopy, but
with an emphasis on its application to the FQHE and similar phases. This bias is
motivated by the large number of studies of the ES that have been carried out for
these phases and the detailed understanding of the ES that has thereby been obtained.
These notes are organized as follows. Section 4.2 provides an introduction to the
relevant notation and the concept of the ES. We exemplify these notions with simple
spin systems and relate the ES to the matrix product state (MPS) representation.
In Section 4.3, we show how the chiral edge mode can be observed from the ES of a
non-interacting system, illustrating this feature with the integer quantum Hall effect
(IQHE) and the Chern insulator (the simplest example of a topological insulator). In
Section 4.4, we present an extensive overview of the ES for the FQHE. We show the
different bipartite partitions that have been considered for these systems and the kind
of information that has been revealed by determining the ES. Finally, in Section 4.5,
we discuss how the ES has been used as a tool to probe the phases that emerge in
fractional Chern insulators (FCIs).

4.2 Entanglement spectrum and entanglement entropy

As a first step, we discuss the concept of entanglement spectroscopy in some simple
cases. We also briefly cover the definition and relevant properties of the entangle-
ment entropy. We introduce the Li–Haldane conjecture in the case of the AKLT spin
chain. We discuss the important situation where the number of non-zero eigenvalues
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of the reduced density matrix is massively reduced. In particular, we show the relation
between the latter property and the MPS representation.

4.2.1 Definitions

Let us consider a generic n-body quantum state |Ψ〉 that can be decomposed on the
orthonormal basis {|λ〉}. We now assume that this basis can be written as the tensor
product of two orthonormal bases {|μA〉} and {|μB〉}, that is, {|λ〉 = |μA〉 ⊗ |μB〉},
providing a natural bipartition of the system into A and B. The decomposition of the
state |Ψ〉 reads

|Ψ〉 =
∑
μA,μB

cμA,μB
|μA〉 ⊗ |μB〉. (4.2)

The entanglement matrix M is defined such that its matrix elements are given by
MμA,μB

= cμA,μB
. The size of M is given by the dimensions of the subspaces A and B,

which we denote respectively by dimA and dimB. Note that we do not assume that
dimA = dimB, and thus M is generically a rectangular matrix and not necessarily
square. One can perform a singular value decomposition (SVD) of M . The SVD allows
one to write a rectangular matrix

M = UDV †, (4.3)

where U is a dimA ×min (dimA,dimB) matrix that satisfies U†U = 1 (i.e. it has
orthonormalized columns), V is a dimB ×min (dimA, dimB) matrix that satisfies
V V † = 1 (i.e. it has orthonormalized rows). D is a diagonal square of dimension
min (dimA, dimB), where all entries are non-negative and can be expressed as {e−ξi/2}.

Using the SVD, one can derive the Schmidt decomposition of |Ψ〉:

|Ψ〉 =
min(dimA,dimB)∑

i=1

e−ξi/2|A : i〉 ⊗ |B : i〉, (4.4)

where

|A : i〉 =
∑
μA

U†i,μA
|μA〉, (4.5)

|B : i〉 =
∑
μB

V †i,μB
|μB〉. (4.6)

To be a Schmidt decomposition, the states |A : i〉 and |B : i〉 have to obey
〈A : i|A : j〉 = 〈B : i|B : j〉 = δi,j . This property is trivially verified using the identities
on U and V . The Schmidt decomposition provides a nice and numerically efficient way
to compute the spectrum of the reduced density matrix. Consider the density matrix
of the pure state ρ = |Ψ〉〈Ψ|. We compute the reduced density matrix of A by tracing
out the degree of freedom related to B, that is, ρA = TrBρ. Using (4.4), we deduce
that

ρA =
∑
i

e−ξi |A : i〉〈A : i|. (4.7)
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Thus, the spectrum of ρA can be obtained from the coefficient of the Schmidt de-
composition or the SVD of the entanglement matrix and is given by the set {e−ξi}.
From a numerical perspective, getting the spectrum of ρA is more accurate using the
SVD of M than a brute-force calculation of ρA in the {|μA〉} basis followed by its
diagonalization. In a similar way, we can obtain the reduced density matrix of B:

ρB = TrA ρ =
∑
i

e−ξi |B : i〉〈B : i|. (4.8)

Note that ρA and ρB have the same spectrum. While these two square matrices
might have different dimensions (dimA and dimB, respectively), they both have the
same number of non-zero eigenvalues. This number has to be less than or equal to
min(dimA,dimB). Thus, studying the properties of ρA for various partitions (i.e.
choices of A and B) can be restricted to the cases where dimA ≤ dimB .

With these tools and properties, we can now define the entanglement spectrum
(ES). The latter corresponds to the set {ξi}, the logarithms of the reduced density
matrix eigenvalues. The key idea of the original article of Li and Haldane [41] was to
look not only at this whole spectrum, but at a specific subset of these values (or a
block of ρA) with well-defined quantum numbers. Assume an operator O that can be
decomposed as OA +OB , where OA (respectively OB) acts only on the A (respectively
B) subspace. One can think about O as the projection of the spin operator or the
momentum. If [O, ρ] = 0, we also have 0 = TrB [OA, ρ] + TrB[OB , ρ] = [OA,TrBρ] =
[OA, ρA] as the trace over the B degrees of freedom of a commutator operator in the
B part vanishes. If |Ψ〉 is an eigenstate of O, then the latter commutes with ρ. We can
simultaneously diagonalize ρA and OA, and label the {ξi} according to the quantum
number of OA.

4.2.2 A simple example: two spin-1
2

To exemplify the notation and concepts described above, we consider a system of two
spin- 1

2
as depicted in Fig. 4.1(a). Any state |Ψ〉 can be decomposed onto the four basis

states:

|Ψ〉 = c↑↑|↑↑〉+ c↑↓|↑↓〉+ c↓↑|↓↑〉+ c↓↓|↓↓〉. (4.9)

(a) (b) (c)
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Fig. 4.1 [Colour online] (a) Schematic picture of the two-spin- 1
2

system. (b) Entanglement
spectrum (ES) for the state |Ψ1〉 = |↑↑〉. (c) ES for the state |Ψ2〉 = 1√

2
(|↑↓〉 − |↓↑〉). (d) ES

for the state |Ψ3〉 = 1
2
|↑↓〉 +

√
3

2
|↓↑〉.
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A natural way to cut this system into two parts consists of the A (respectively B)
part being the left (respectively right) spin. The entanglement matrix is given by

M =

(
c↑↑ c↑↓

c↓↑ c↓↓

)
, such that |Ψ〉 =

∑
i,j=↑,↓

Mi,j |A : i〉 ⊗ |B : j〉. (4.10)

We consider three examples: a product state |Ψ1〉 = |↑↑〉, a maximally entangled
state |Ψ2〉 = 1√

2
(|↑↓〉 − |↓↑〉), and a generic entangled state |Ψ3〉 = 1

2 |↑↓〉+
√

3
2 |↓↑〉.

The entanglement matrices for these three states are

M1 =
(
10 00

)
, M2 =

(
0 1√

2

− 1√
2

0

)
, M3 =

(
0 1

2
√

3
2 0

)
. (4.11)

Performing the SVD on the first state |Ψ1〉 is trivial: being a product state, it is
already written as a Schmidt decomposition. For |Ψ2〉, we can do the SVD

M2 =

(
1 0
0 1

)(
1√
2

0
0 1√

2

)(
0 −1
1 0

)
, (4.12)

such that the Schmidt decomposition is

|Ψ2〉 =
1√
2

(+|↑〉)⊗ (+|↓〉) +
1√
2

(+|↓〉)⊗ (−|↑〉) . (4.13)

A similar calculation can be performed for |Ψ3〉.
The projection of the total spin along the z axis, Sz, is the sum of individual

components Sz,A and Sz,B. Thus, when we perform the cut into the two parts A and
B, Sz,A is a good quantum number that can be used to label the eigenvalues of the ES
according to the discussion in Section 4.2.1. The ET for the three states |Ψ1〉, |Ψ2〉,
and |Ψ3〉 are shown in Fig. 4.1(b–d). For the product state |Ψ1〉, there is just a single
level, since the reduced density matrix has a single non-zero eigenvalue. For the two
other examples, there are two levels, each with a given Sz,A value. The calculation of
the entanglement entropy, which is a measure of the entanglement, indicates directly
that |Ψ1〉 is a product state. We can derive the same conclusion from the number of
levels in the ES. While this example is rather a trivial result obtained from the ES, it
stresses one of the strong points of this technique. Some properties of the states can
be deduced just by counting the non-zero eigenvalues of the reduced density matrix.

4.2.3 Entanglement entropy

They are several ways to quantify the entanglement between two parts of a system and
there is an extensive literature on this topic (see [5] for an extensive review). The goal
of these lectures is not to give a detailed introduction to entanglement entropies. So
we will restrict ourselves to a few useful examples in the context of topological phases.
Perhaps the most common measure of entanglement is the von Neumann entanglement
entropy

SA = −TrA [ρA ln ρA] . (4.14)
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From a practical point of view, the calculation of the Von Neumann entanglement
entropy is easy once the Schmidt decomposition or the spectrum of the reduced density
matrix has been obtained:

SA = −
∑
i

λi lnλi =
∑
i

ξie
−ξi . (4.15)

Similarly, we can define the entanglement entropy for the B part of the system
SB = −TrB [ρB ln ρB]. Using 4.8, we immediately see that SA = SB. If A and B are
not entangled (i.e. |Ψ〉 = |ΨA〉 ⊗ |ΨB〉), we get SA = 0. For the full system A+B,
the entanglement entropy is also zero. As a consequence, we have in general that
SA + SB �= SA+B (the entanglement entropy is actually strongly subadditive).

We will now turn to the entanglement entropy of some specific systems. In many
situations, it is useful to look at the case of a random state. Especially for people
interested in numerical simulations, it is always a good idea to compare with what
a random output would give. For example, consider the calculation of the overlap
(the simplest way to compare two wavefunctions). Let us take two random states
|Ψ1〉 and |Ψ2〉 defined in a Hilbert space of dimension D. Then the average overlap
| 〈Ψ1|Ψ2〉 |2 � 1/D. This result gives a simple bound for what is a bad overlap in finite
systems (note that one should not cheat and define D as the dimension of the Hilbert
space with all the symmetries the system has).

For the entanglement entropy, we recall the notation dimA for the dimension of the
Hilbert associated with the A part and dimB for the dimension of the Hilbert space
of the B part. In the limit dimB ≥ dimA � 1, it has been shown [50] that

SA � ln(dimA)− dimA

2 dimB
. (4.16)

In particular, when dimB � dimA � 1, we find that SA � ln(dimA).
To get a more physical picture of this formula, we can consider the system to

be made of spin- 1
2
, with VA spin- 1

2
for A and VB spin- 1

2
for B. The Hilbert-space

dimensions are dimA = 2VA and dimB = 2VB , leading to SA � VA ln 2. Thus, for a
random state, the entanglement entropy is proportional to the volume of the subsystem
A, meaning that the entanglement entropy obeys a volume law.

We can now move on to the case of gapped phases. We denote the correlation length
by η. We consider a geometrical bipartition of the system into A and B as depicted in
Fig. 4.2. For one-dimensional gapped systems, if the size of A is large enough compared
with η, then the entanglement entropy does not depend on the length VA, that is, SA
is constant. This statement can be proved and an upper bound on the constant can
be found [32].

For higher-dimensional systems, it is conjectured that the entanglement entropy
(see e.g. [20] for an extensive discussion) satisfies

SA � αL, (4.17)

where L � η denotes the area of the surface that separates A from B and α is a
constant. Thus, the entanglement entropy for a gapped system satisfies an area law
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A B
(a)

A B

(b)

A B

(c)

η
L

Fig. 4.2 [Colour online] Schematic description of the bipartite geometrical partition for a one-
dimensional system (a) and for a two-dimensional system (b). (c) illustrates the small region
around the boundary between A and B (with a thickness of the order of the correlation length
η) that is relevant in the entanglement entropy when considering a gapped phase.

(as opposed to the volume law of the random state). In two dimensions, L is just the
perimeter of the boundary between A and B (see Fig. 4.2(b)). Here we should make
two remarks. First, one-dimensional gapped systems also obey the area law (simply
set L to 1, the boundary being just a point). Second, this is a major difference from
the case of a random state, where one gets a volume law for the entanglement entropy.
Intuitively, if the correlation length is finite, then we expect that only the region
around the boundary between A and B, whose thickness is of the order of a few η’s
(as shown in Fig. 4.2(c)) should matter in the entanglement between A and B.

For two-dimensional topological phases, we can go beyond the area-law contribu-
tion. It was shown in [35] and [40] that the first correction to this area law is a constant
term γ:

SA ∼ αL − γ. (4.18)

While α is non-universal, this is not the case for the sub-leading term γ. This latter is
called the topological entanglement entropy. It is a constant for a given topologically
ordered phase:

γ = ln
(
D
da

)
. (4.19)

For a given type of excitation a, the quantum dimension da defines how the Hilbert-
space dimension exponentially increases with the number of such excitations. Each
type of excitation corresponds to a topological sector. Abelian excitations have a
quantum dimension equal to 1, while non-Abelian ones have da > 1. The total quan-
tum dimension is given by D =

√∑
a d

2
a. These quantum dimensions characterize the

topological field theory describing the phase and thus the nature of the system exci-
tations. Note that in (4.19), the a of the da term corresponds to the topological sector
of the wavefunction |Ψ〉 whose entanglement entropy is computed.

The topological entanglement entropy appears as a way to characterize the
topological order of a phase. However, its practical calculation depends on scaling
arguments, which might be hard to obtain to sufficient accuracy from numerical cal-
culations [31, 36]. Moreover, it does not uniquely determine the topological order in
the state. For that reason, it is interesting to look at the full spectrum of the reduced
density matrix and not to reduce it to a single number.
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4.2.4 The AKLT spin chain

We now move to a typical example of strongly correlated n-body quantum systems:
the quantum spin chains. One of the simplest examples of a strongly correlated gapped
system is the antiferromagnetic spin-1 chain. It is also one of the simplest examples
of a symmetry-protected topological phase (here protected by spin rotation or time-
reversal symmetries; see e.g. [66] for a short review) . More precisely, we focus on the
Affleck–Kennedy–Lieb–Tasaki (AKLT) model [1, 2]. This system is the prototype of a
gapped spin-1 chain [27]. The AKLT Hamiltonian of the one-dimensional spin-1 chain
reads

HAKLT =
∑
j

	Sj · 	Sj+1 +
1
3

∑
j

(	Sj · 	Sj+1)
2
. (4.20)

The ground state of the AKLT Hamiltonian is a valence bond state. It can be
understood within a simple picture sketched in Fig. 4.3. Each spin-1 can be written
as two spin- 1

2
combined in the triplet state. Between two neighbouring sites, two of

the four spin- 1
2 (one per site) are combined in the singlet sector. When an open chain

is considered, the two extreme unpaired spin-1
2 (see Fig. 4.3) correspond to the edge

excitations, leading to a fourfold-degenerate ground state (one singlet state and one
triplet state).

To compute the ES of the AKLT ground state for an open chain, we first have to
decide which of the four degenerate states we would like to analyse. In the sector of
total spin Sz = ±1, there is only one state, so the choice is simple, while in the sector
Sz = 0, there are two states. For the sake of simplicity, we focus on the Sz = 1 case.
To cut the system into two parts, we can follow the same procedure as that described
in Section 4.2.2: the A part will be made from the lA consecutive leftmost sites and
the B part from the remaining rightmost sites (see Fig. 4.3).

BA

Fig. 4.3 [Colour online] Schematic description of the AKLT ground state. The upper chain
shows the spin-1 AKLT chain and the lower chain its valence bond description. Each spin-1 is
decomposed into two spin- 1

2
, one dark grey [red] and one light grey [blue], that are projected

on the triplet state (depicted by a box). The AKLT ground state is obtained by projecting one
dark grey [red] spin- 1

2
of one site with one light grey [blue] spin- 1

2
of the neighbouring site in

the singlet state. We observed the two unpaired spin- 1
2
, one at each end of the spin chain. This

figure also shows how the system is cut into two parts A and B during the ES calculation.
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Fig. 4.4 (a) The ES for the AKLT ground state with 8 sites in the Sz = 1 sector. The system
is cut into two equal parts of size lA = 4. The ES only contains two levels, i.e. two non-zero
eigenvalues in the reduced density matrix. This reflects the edge excitation (a spin- 1

2
) of the

AKLT ground state. The inset is a zoom on these two levels. (b) The ES for the Heisenberg
spin-1 chain with 8 sites in the Sz = 1 sector. The system is cut in a similar way to the AKLT
case. The two states with the lowest entanglement energies (i.e. the two largest eigenvalues
of the reduced density matrix) are similar to those of the AKLT ground state. We also show
the entanglement gap Δξ between the low-entanglement-energy structure similar to the AKLT
ground state and the higher-entanglement-energy states.

Figure 4.4(a) displays the ES for a AKLT open chain with 8 sites and lA = 4. The
entanglement energies ξ are plotted versus Sz,A, the z projection of the A-part total
spin. The reduced density matrix has only two non-zero eigenvalues, whereas the size
of the reduced density matrix is 81× 81. This dramatic reduction in the number of
non-zero eigenvalues compared with a random state is a major characteristic that we
will observe for many model states. If we think about the cut as an artificial edge that
we have introduced in the system, then the physical interpretation becomes obvious:
what we observe here is a spin-1

2
edge excitation of the AKLT chain. This is the first

example where the Li–Haldane conjecture [41] can be observed: for this gapped phase,
the ES is directly related to the spectrum of the edge excitation. Note that the true
edge excitations of the system do not play any role here, since our choice of the AKLT
ground state in the Sz = 1 sector freezes these excitations.

The AKLT Hamiltonian is the prototype of the gapped quantum spin-1 chain,
and so it is interesting to look at the behaviour of the ES away from this specific
case. The simplest case that one can consider is the Heisenberg spin-1 chain, where
the Hamiltonian is simply given by H =

∑
j
	Sj · 	Sj+1. In Fig. 4.4(b), we consider a

similar situation to that for the AKLT model of Fig. 4.4(a). At the bottom of the ES,
we recover two states, with the same quantum numbers as the AKLT case. In contrast
to the latter, however, we also observe some levels with higher entanglement energy.
Because the AKLT ground state and the Heisenberg spin-1 chain are adiabatically
connected, we would like to argue that the low-entanglement-energy structure in the
Heisenberg spin-1 ES will characterize the system. We define the entanglement gap
Δξ as the minimum difference in entanglement energy between the low-entanglement-
energy structure similar to a model state (the AKLT model in this example) and
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the entanglement energy levels above this structure. The meaning of Δξ is actually
the Li–Haldane conjecture away from model states: if this entanglement gap stays
finite in the thermodynamic limit, then the edge excitations of the system will be
in the same universality class as the model state whose ES reduces to the same
low-entanglement-energy structure. Indeed, numerical simulations based on the dens-
ity matrix renormalization group [14] have shown such a property for the Heisenberg
model.

To summarize, this example has already been able to show us several features
of the ES. For some model states, the number of non-zero eigenvalues might be re-
lated to the edge excitation of the system. This number can be exponentially smaller
than what we would expect from a random state, which is a non-trivial signature.
Away from this ideal situation and as long as we stay in the same universality class,
we would expect to observe a similar fingerprint to that of the model state in the
low-entanglement-energy part of the spectrum. This structure should be protected
from the higher-entanglement-energy levels by an entanglement gap.

4.2.5 Matrix product states and the entanglement spectrum

The understanding and simulation of quantum many-body states in one space dimen-
sion has experienced revolutionary progress with the advent of the density matrix
renormalization group [81]. In modern language, this method can be viewed as a vari-
ational optimization over the set of matrix product states (MPS) [23, 53]. Let us
consider a quantum state

|Ψ〉 =
∑
{mi}

c{mi}|m1, . . . ,mNorb〉, (4.21)

where the {mi} = {m1, . . . ,mNorb} are a set of physical indices such as a spin up or
down or an occupied or empty orbital:

|Ψ〉 =
∑
{mi}

(C [m1] · · ·C [mNorb ])αL,αR
|m1, . . . ,mNorb〉, (4.22)

where {C [m]} is a set of matrices (each orbital might require a different set of matrices)
and αL and αR are boundary conditions that pick one matrix element of the matrix
product (taking the trace being another option). The C [m]

α,β matrices have two types of
indices: [m] is the physical index and (α, β) are the bond indices (or auxiliary space
indices), with α, β,= 1, . . . , χ, where χ is called the bond dimension. Such a rewriting
of a state decomposition is always possible. When the bond dimension χ of the matrix
C [m] is much smaller than the size of the n-body Hilbert space, this formulation
provides a more economical representation of the state. The crucial question is how
small can χ be for (4.22) to still be an exact statement. Generic one-dimensional
gapped systems can be approximated by finite χ [79]. Critical systems, however, require
an MPS with an infinite bond dimension [17, 49].

The AKLT ground state that we have discussed in the previous section can be
expressed in a rather simple MPS form. In that case, Norb is the number of spin-1,
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and the physical index m can take three different values −1, 0,+1 corresponding to
the three values of Sz. The MPS representation requires three 2× 2 matrices

C [0] =

⎛⎝−
√

1
3

0

0
√

1
3

⎞⎠ , C [+1] =

(
0
√

2
3

0 0

)
, C [−1] =

⎛⎝ 0 0

−
√

2
3

0

⎞⎠ . (4.23)

As an exercise, we can check that we indeed reproduce the ground state of the
AKLT model. We focus on the ground state ΨN

1,1 in the Sz = 1 sector. For N = 2
spins, it decomposes into

ΨN=2
1,1 =

√
2

2 |+1, 0〉 −
√

2
2 |0,+1〉, (4.24)

where |sz,1, sz,2〉 = |sz,1〉 ⊗ |sz,2〉 is the many-body basis where the first (respectively
second) spin has its spin projection along z equal to sz,1 (respectively sz,2). Using the
matrices of (4.23), we find that, picking the entry in the first row and second column,
we recover (up to a normalization factor) the coefficients of the decomposition of
(4.24). Choosing the entry in the matrix product (i.e. αL and αR) is akin to select
the boundary conditions. Note that this matrix element is zero for products such as
C [+1]C [+1] or C [0]C [0], as it should be since ΨN=2

1,1 has Sz = 1.
A similar calculation can be performed for N = 3 spins. There, the decomposition

of Ψ1,1 is

ΨN=3
1,1 = 1√

7
(|+1, 0, 0〉 − |0,+1, 0〉+ |+1, 0, 0〉)− 2√

7
|+1,−1,+1〉. (4.25)

Once again, we can explicitly check that the MPS description leads to the correct de-
composition. Note that ΨN=3

1,1 has weight neither on |−1,+1,+1〉 nor on |+1,+1,−1〉,
despite having Sz = 1. The MPS description also gives such a result.

In this example, the size of the C [m] matrices is equal to the number of non-zero
eigenvalues observed in the ES. As we will now show, these two quantities are related.
A way to create a bipartite partition of the system is to consider A being made of the
indices {m1, . . . ,mlA} and B built from the indices {mlA+1, . . . ,mNorb}. Following the
notation of (4.2), we have {|μA〉 = |m1, . . . ,mlA〉} and {|μB〉 = |mlA+1〉 , . . . ,mNorb}.
The MPS formulation of (4.22) can be rewritten to make this partition apparent:

|Ψ〉 =
χ∑
α=1

∑
{mi}

(C [m1] · · ·C [mlA
])αL,α

(C [mlA+1] · · ·C [mNorb ])α,αR
|m1, . . . ,mNorb〉. (4.26)

Thus, we obtain that

|Ψ〉 =
χ∑
α=1

|A : α〉 ⊗ |B : α〉, (4.27)
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with

|A : α〉 =
∑
{mi}

(C [m1] · · ·C [mlA
])αL,α

|m1, . . . ,mlA〉, (4.28)

|B : α〉 =
∑
{mi}

(C [mlA+1] · · ·C [mNorb ])α,αR
|mlA+1〉, . . . ,mNorb . (4.29)

While this decomposition looks similar to the Schmidt decomposition of (4.4), the
states |A : α〉 and |B : α〉 are neither orthonormal nor linearly independent. Two extra
steps are actually required to obtain the true Schmidt decomposition: we need to
extract an orthonormal complete basis from {|A : α〉} and {|B : α〉} and then perform
an SVD on the entanglement matrix. But these extra steps can only (at worst) reduce
the number of terms in the sum of (4.27). Indeed, denoting by {|A : α̃〉} (respectively
{|B : β̃〉}) the orthonormalized basis extracted from {|A : α〉} (respectively {|B : α〉}),
we can introduce two transformation matrices U and V such that

|A : α〉 =
∑
α̃

Uα,α̃|A : α̃〉, |B : α〉 =
∑
β̃

Vα,β̃ |B : β̃〉 . (4.30)

These bases have dimensions lower than or equal to the bond dimension χ. We
immediately find that

|Ψ〉 =
∑
α̃,β̃

(
U tV

)
α̃,β̃
|A : α̃〉 ⊗ |B : β̃〉 . (4.31)

The entanglement matrix can be directly read out from the previous equation, leading
to the ES once the SVD is performed on U tV . As a consequence, if we want to write an
exact MPS for |Ψ〉, the bond dimension χ cannot be lower than the number of non-zero
eigenvalues of the reduced density matrix. The latter number gives the optimal size
for the MPS representation of a state (as discussed in the case of the AKLT ground
state). Thus, any massive reduction of the system ES should be the sign of an efficient
MPS representation of a quantum state.

4.3 Observing an edge mode through the entanglement spectrum

In the previous section, we have shown how the ES is able to reveal the gapped edge
physics of a system such as the AKLT model. We will now discuss the case of gapless
edge excitation of a topological phase. Remarkably, even a non-interacting system such
as the IQHE allows us to illustrate this unique property of the ES.

4.3.1 The integer quantum Hall effect

4.3.1.1 Overview and notation

We consider a completely filled single Landau level. For the sake of simplicity and
without loss of generality, we focus on the lowest Landau level (LLL). Using the
symmetric gauge 	A = (−yB, xB, 0), the one-body wavefunctions are given by
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φm(z) =
1√

2π2mm!
zme−|z|

2/4l2B , (4.32)

where lB =
√
h/eB is the magnetic length, which we will set to 1, and z = x+ iy is

the particle complex coordinate in the plane. m ≥ 0 is an integer corresponding to
the angular momentum. If we have a radial confining potential with a slow variation
compared with the magnetic length, then the Landau levels are just bent and follow the
confining potential as depicted in Fig. 4.5. The edge mode of the IQHE corresponds to
a non-interacting chiral state, with a linear dispersion relation E = (2πv/L)n, where
n ≥ 0 is an integer, v is the edge mode velocity, and L is the length of the edge. From
this one-particle spectrum, we can build the many-body spectrum of the chiral edge
as depicted in Fig. 4.6. For simplicity, we drop the energy scale 2πv/L. We start by
filling all the levels up to the Fermi level (Fig. 4.6(a)). We define the total energy
as the energy reference (i.e. E = 0). The lowest-energy excitation E = 1 is unique
and shown in Fig. 4.6(b): it gives to a single level in the many-body spectrum at
momentum n = 1. At the energy E = 2, we have two possible excitations, Fig. 4.6(c)
and (d), leading to two levels at momentum n = 2. Performing a similar reasoning
for the other excitations, we end up with the counting per momentum 1, 1, 2, 3, 5, . . .
depicted in Fig. 4.6(e). This is the counting of the chiral U(1) bosons.

The bulk of the IQHE is actually quite simple to describe. Since the system is
a filled band, we are filling all the orbitals starting from the one with the lowest
momentum. The number of occupied orbitals is given by the number of flux quanta
NΦ in the system. For N electrons, the many-body wavefunction simply reads

|ΨIQHE〉 =
(
N−1∏
m=0

c†m

)
|0〉, (4.33)

where c†m is the creation operator associated with the one-body wavefunction φm(z).
In first-quantized notation, and up to a normalization factor, (4.33) simply becomes

ΨIQHE(z1, . . . , zN ) =
∏
i<j

(zi − zj) exp(− 1
4

∑
i

|zi|2 ). (4.34)

Energy

2LL

LLL

hωc

m ∝ r2

Fig. 4.5 Schematic description of the Landau levels in the presence of a slowly varying confining
potential. Here only the lowest Landau level (LLL) and the second Landau level (2LL) are
depicted. The shading denotes the region below the Fermi level.



Observing an edge mode through the entanglement spectrum 181

E = 0

E = 1

E = 2

E = 2

E 

(e) 

n 
0 

1 

2 

3 

4 

5 

6 

1 

1 

2 

3 

5 

7 

11 

(a) (c) 

(b) (d) 

Fig. 4.6 Construction of the many-body energy spectrum of the IQHE chiral edge mode. (a–d)
Starting with the filled situation (a) defining our reference energy, we can consider the lowest-
energy excitation (b) by moving the topmost particle to the next empty level. (c) and (d) show
the two possible excitations with energy E = 2. (e) The many-body energy E of the IQHE
chiral edge mode as a function of the momentum m. The number above each level gives its
degeneracy.

4.3.1.2 Real-space partition

We will now discuss how to perform a partition in real space of our system. Note
that this discussion is generic and not specific to the IQHE. Our goal is to divide the
space into two separate regions A and B. Consider the creation operator c† for a given
orbital. We want to split this operator into two parts A and B such that

c† = αc†A + βc†B, (4.35)

where c†A (respectively c†B) creates an electron living only in A (respectively B) and α
and β are constants. Since {c, c†} = {cA, c†A} = {cB , c†B} = 1, the two constants should
satisfy |α|2 + |β|2 = 1. Let Ψ(	r ) = 〈	r|c†|0〉 denote the wavefunction in first-quantized
notation. We can perform the following decomposition:

Ψ(	r ) = ΘA(	r )Ψ(	r ) + [1−ΘA(	r )] Ψ(	r ),
= NAΨA(	r ) +NBΨB(	r ), (4.36)

where ΘA(	r ) is 1 if 	r belongs to A and 0 otherwise, and where the two normalized
(and orthogonal) wavefunctions ΨA and ΨB are given by

ΨA(	r ) =
1
NA

ΘA(	r )Ψ(	r ), NA =
∫
A

d	r |Ψ(	r )|2, (4.37)

ΨB(r) =
1
NB

[1−ΘA(	r )] Ψ(	r ), NB =
∫
B

d	r |Ψ(	r )|2. (4.38)

Notice that N 2
A +N 2

B = 1. Comparing (4.35) and (4.36), we immediately deduce that
α = NA and β = NB . The treatment that we have performed here is generic and does
not depend on any specific property of Ψ.
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4.3.1.3 Back to the IQHE

Equipped with the decomposition mentioned in Section 4.3.1.2, we can now perform
the real-space ES of the IQHE. While there is in principle no constraint on the choice
of A, we would like to preserve as many quantum numbers as possible. If we use the
symmetric gauge, a natural choice is to preserve the rotational symmetry. Thus, we
can decide to take for A a disc centred at the origin and with a radius R. Such a cut
was described in [62] to compute the entanglement entropy of the IQHE. Each orbital
Φm (z) can be decomposed, following (4.36), as

Φm(z) = αmΦm,A(z) + βmΨm,B(z), (4.39)

with

α2
m =

1
2mm!

∫ R

0

dr r2m+1e−r
2/2, β2

m = 1− α2
m. (4.40)

α2
m and β2

m are incomplete gamma functions and can easily be computed numerically.
Since Φm,A(z) are eigenstates of the angular momentum, they are still orthogonal
(similarly for Ψm,B(z)).

Performing the Schmidt decomposition for such a partition is rather easy. For
pedagogical reasons, we first consider the IQHE with only two particles occupying the
two first orbitals m = 0 and m = 1. The ground-state wavefunction |ΨIQHE〉 reads

|ΨIQHE〉 = c†0c
†
1|0〉. (4.41)

Substituting the expression (4.35) for each creation operator, we get

|ΨIQHE〉 = α0α1c
†
0,Ac

†
1,A|0〉

+ β0β1c
†
0,Bc

†
1,B |0〉

+ (α0β1c
†
0,Ac

†
1,B|0〉 − α1β0c

†
1,Ac

†
0,B|0〉). (4.42)

The first term (respectively second term) on the right hand side of (4.42) corresponds
to the case where we have two particles in A (respectively B). The third term corres-
ponds to the case where we have one particle in A and one in B (notice the minus
sign due to the fermionic statistics). When performing such a cut, we have two good
quantum numbers:

• The total number of particles N = NA +NB , where NA (respectively NB) is the
number of particles in the region A (respectively B).

• The total angular momentum Lz = Lz,A + Lz,B, where Lz,A (respectively Lz,B)
is the total angular momentum of the particles in A (respectively B).

The ES can be read out directly from the Schmidt decomposition of (4.42) and
sorted per quantum numbers:

NA = 0, Lz,A = 0: one level at −ln(|β0β1|2);



Observing an edge mode through the entanglement spectrum 183

NA = 1, Lz,A = 0: one level at −ln(|α0β1|2);
NA = 1, Lz,A = 1: one level at −ln(|α1β1|2);
NA = 2, Lz,A = 1: one level at −ln(|α0α1|2).

As an exercise, we let the reader check that the reduced density matrix associated
with this ES is properly normalized to 1. For the generic case (N electrons occupying
the N first orbitals), a similar calculation of the Schmidt decomposition would give

|ΨIQHE〉 =
N∑

NA=0

∑
Lz,A

∑
{m1,...,mNA

},∑
i mi=Lz,A

NA∏
i=1

αmi

N∏
j=NA+1

βmj
|{m1, . . . ,mNA

}〉 ⊗ |{mNA+1, . . . ,mN}〉.

(4.43)

The third sum runs over all the possible ways to choose NA particles among the N
occupied orbitals with the constraint that these NA particles have a total angular
momentum Lz,A. Each valid configuration {m1, . . . ,mNA

} where the mi are ordered
from the smallest to the largest integer leads to a state |{m1, . . . ,mNA

}〉 up to a sign
(a consequence of the possible orbital reordering and the fermionic statistics, as was
mentioned after (4.42)). Once the {m1, . . . ,mNA

} have been selected, the occupied
orbitals {mNA+1, . . . ,mN} for the particles in B are automatically defined, giving the
state |{mNA+1, . . . ,mN}〉. Once again, the ES follows directly from such a decompos-
ition since it is a Schmidt decomposition: the orthogonality conditions are satisfied
since two different sets {m1, . . . ,mNA

} give two orthogonal (and normalized) states.
If we focus on a single NA sector, we can count how many entanglement en-

ergies we have per angular momentum. For concreteness, let us take NA = 6 and
N = 12. The system has 12 orbitals with angular momentum going from 0 to 11.
Each {m1, . . . ,mNA

} can be represented with boxes corresponding to each orbitals
as depicted in Fig. 4.7. The smallest angular momentum Lz,A = 15 is obtained by
occupying the first six orbitals as shown in Fig. 4.7(a). Thus, there is a single level in
the ES for NA = 6 and Lz,A = 15. For Lz,A = 16, there is also a unique configuration
(and thus a unique level), as shown in Fig. 4.7(b). Moving on to Lz,A = 17, we now
have two options, shown in Fig. 4.7(c, d). We immediately see that this construction
is identical to that of the many-body spectrum for the chiral edge mode. So this latest
ES and the ES in a given particle number sector have the same counting of levels.

Do the entanglement energies also follow a linear dispersion relation? The ES for
NA = N/2 = 6 is shown in Fig. 4.8. The finite-size effects lead to two deviations in
the physical spectrum of the edge mode:

• They spoil the edge-mode counting for large angular momentum. Indeed, for a
given number of flux quanta, there is a maximum angular momentum that can
be reached.

• As can be observed in Fig. 4.8, levels are not strictly degenerate for a given
angular momentum, as they should be. This property is only recovered in the
thermodynamic limit.
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Fig. 4.7 Valid configurations that appear in the Schmidt decomposition for NA = N/2 = 6.
Each box represents an orbital with momentum m (the label on top) and can be occupied (1) or
empty (0). (a) The configuration with the smallest angular momentum Lz,A = 15. (b) The only
configuration with Lz,A = 16. For Lz,A = 17, we have the two options shown in (c) and (d).
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Fig. 4.8 Real-space ES of the ν = 1 IQHE on the disc geometry for N = 12 fermions and
NΦ = 11. We focus on the sector NA = 6. The inset displays the counting in the thermodynamic
part (the RSES has some exact degeneracies). It matches that of a U(1) chiral boson.

We might wonder why we looked at a single sector of NA. A key idea of Li and
Haldane’s approach when they introduced the ES was to look at some specific block
of the reduced density matrix. When we cut the system into two, we want A to be
a smaller droplet of the same quantum fluid up to edge excitation. In this picture, it
is natural to look at a fixed number of particles. We can even be more quantitative.
Consider the eigenstates of the reduced density matrix (i.e. the |A : i〉 of the Schmidt
decomposition of (4.4)). The eigenstate related to the level with the smallest Lz,A is
a many-body state where all the first NA lowest orbitals in the φA,m basis (i.e. each
orbital from m = 0 to m = NA − 1) are occupied. This is the densest state that one
can create for ν = 1 IQHE with NA particles.

4.3.2 Chern insulators

The construction of the ES that we have done for the IQHE can be extended to
any non-interacting topological insulators. For simplicity, we will focus on the first
and simplest example of a topological insulator, the Chern insulator (CI) that was
introduced in a theoretical work by F. D. M. Haldane in 1988 [28]. It is defined by
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Fig. 4.9 [Colour online] (a) The two-orbital lattice model with one s and one p orbital per
site. (b) The band structure for the two-orbital lattice model with a mass term set to M = 1,
plotted as a function of the momenta kx and ky. Each band carries a Chern number C = ±1.

a non-zero Chern number C of the occupied bands. This (first) Chern number is a
topological invariant, computed over the Brillouin zone, that characterizes a given
band. A key feature is that a non-zero Chern number results [77] in a quantized Hall
conductance σxy = (e2/h)C, similar to the quantum Hall effect, but now without the
requirement for an external magnetic field.

A typical example of a Chern insulator is shown in Fig. 4.9(a). It is based on a
simple tight-binding model on a square lattice with two orbitals (one s and one p
orbital) per site (see [82] for a more detailed description). With a suitable choice for
the hopping amplitudes, the Bloch Hamiltonian for this model reads

H(k) =
∑
i=x,y

[− sin(ki)σi]−

⎡⎣M − ∑
i=x,y

cos(ki)

⎤⎦σz, (4.44)

where σx, σy, σz are the three Pauli matrices and M is a mass term (chemical potential
between the two orbitals). The band structure is shown in Fig. 4.9(b), with two bands,
each carrying a Chern number equal to ±1 if |M | < 2 and separated by a gap. If the
model is put on a cylinder when the system is in a topological phase (meaning that
the Chern number is non-zero), the energy spectrum clearly exhibits one chiral gapless
edge mode at each end of the cylinder, as shown in Fig. 4.10(b). Setting |M | > 2
to drive the system to a trivial phase will suppress these gapless edge modes as in
Fig. 4.10(c).

4.3.3 Entanglement spectrum for a CI

By tuning the mass parameter M of the two-orbital model described previously, we
can drive the system from a topological insulator to a trivial insulator. In these two
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Fig. 4.10 [Colour online] (a) Two-orbital lattice model on a cylinder. At each end, there is one
chiral gapless edge mode (the full [blue] and dashed [red] arrows). (b) Band structure for the
two-orbital lattice model on a cylinder with a mass term set to M = 1, plotted as a function of
the momentum kx along the cylinder radius. In the gap region, we clearly observe the dispersion
relation of the two gapless edge modes (full [blue] and dashed [red]), going from one band to
another (black). (c) Band structure for the two-orbital lattice model on a cylinder with a mass
term set to M = 3. The system is in trivial (non-topological) phase and no gapless edge modes
are observed.

cases, the energy spectrum would look similar, exhibiting a bulk gap. Here we will
show that the ES is able to distinguish between the trivial and the topological phases.
For that purpose, we consider the case where we completely fill the lower band up to
the Fermi energy εF located in the system bulk gap. The quantum state |ΨCI〉 of the
system is just a simple Slater determinant that can be written in second-quantized
notation as

|ΨCI〉 =
∏

kx;ε<εF

c†kx,ε
|0〉, (4.45)

where c†kx,ε
is the creation operator related to the state with momentum kx and en-

ergy ε. We fill all the states with an energy ε lower than the Fermi energy εF (see
Fig. 4.11(a)). Any choice of εF is valid as long as it is located in the bulk gap. For
the sake of simplicity, the calculation is done on the cylinder geometry, motivating
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Fig. 4.11 [Colour online] (a) Band structure for the two-orbital lattice model on a cylinder
with a mass term set to M = 1, where we set the Fermi level in the bulk gap. (b) Two-orbital
lattice model on a cylinder cut into parts A (left) and B (right).

our choice to label the states using the momentum along the x direction, where we
apply periodic boundary conditions. In this situation, the edge-mode excitations are
completely frozen in a similar manner to the way in which choosing one of the ground
state of the AKLT in Section 4.2.4 fixes the excitations at the edge.

We now cut the cylinder into two parts A (left part) and B (right part) as depicted
in Fig. 4.11(b) (our partition is performed far from the edges). Performing the same
decomposition as in (4.39), each creation operator can be written as a sum of two
creation operators, one for each part of the system:

c†kx,ε
= α∗kx,ε

c†kx,ε;A
+ β∗kx,ε

c†kx,ε;B
, (4.46)

where αkx,ε (respectively βkx,ε) is the weight of the state (kx, ε) on the A (respectively
B) part. These weights satisfy |αkx,ε|

2 + |βkx,ε|
2 = 1. Using this decomposition, |ΨCI〉

can be rewritten as

|ΨCI〉 =
∑
NA

∑
{kx,A,εA}

N{kx,A,εA}N{kx,B,εB}|{kx,A, εA}〉 ⊗ |{kx,B , εB}〉. (4.47)

Here NA is the number of particles in part A, and the sum over {kx,A, εA} corresponds
to all the possible ways to choose NA states among the original states used to build
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the Slater determinant of the full band. Note that once we have fixed the choice for
the states we consider to be in A, the state for B is completely determined and unique,
labelled here by {kx,B , εB}. This equation is the exact analogue of (4.43) for the IQHE.
The other quantities in (4.47) are

N{kx,A,εA} =
∏

(kx,ε)∈{kx,A,εA}
α∗kx,ε

, (4.48)

|{kx,A,εA}〉 =
∏

(kx,ε)∈{kx,A,εA}
c†kx,ε;A

|0〉, (4.49)

and similarly for the quantity with a B index.
By construction, we have just realized the Schmidt decomposition of |ΨCI〉. So the

ES can be read out directly from (4.47). Indeed, the spectrum of the reduced density
matrix is just given by {|N{kx,A,εA}N{kx,B,εB}|2}. Unfortunately, this spectrum still
requires a factorial effort to be computed owing to the combinatorial factor involved
in choosing NA states among the occupied ones, as discussed in Section 4.3.1.3. But,
as pointed out in [24] and [62], this many-body ES can be deduced from a one-body
ES similarly to the way in which one constructs the many-body energy spectrum of
non-interacting particles from the one-body spectrum. For such a system, the reduced
density matrix ρA can be rewritten as

ρA =
∑
α

e−ξα |A : α〉〈A : α| = e−Ĥent , (4.50)

where the entanglement Hamiltonian Ĥent is a one-body Hamiltonian

Ĥent =
∑
kx,i,j

h(kx)i,jc
†
kx,i

ckx,j . (4.51)

Here the indices i and j denote any site (or orbital) that belongs to the A part. Note
that one can always define an entanglement Hamiltonian using (4.50). The possibility
of expressing it as a one-body Hamiltonian is a specific feature of |ΨCI〉 being a product
state (i.e. a single Slater determinant) or more generally a Gaussian state [11].

To compute the spectrum of h(kx), we use its relation to the propagator

GAi,j(kx) = 〈ΨCI|c†kx,i
ckx,j |ΨCI〉. (4.52)

Indeed, theses two matrices GA(kx) and h(kx) are related by the following equation
(see [4] for a detailed derivation):

GA
t
=

1
1 + eh(kx)

. (4.53)

Note that this propagator can be written of a sum of projectors onto the the A part.
As a consequence, its eigenvalues are between 0 and 1.

While the many-body ES exhibits the chiral edge mode of the CI (this ES is actually
similar to the one that we will describe in Section 4.4.5 for interacting systems), the
spectrum GA(kx) (or h(kx)) allows us to unveil the same information from a one-body
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Fig. 4.12 [Colour online] (a) Eigenvalues of the propagator (4.52) for the two-orbital lattice

with a mass term set to M = 3 (trivial phase). The partition is exactly half of the cylinder.

There is a clear gap between eigenvalues localized around 0 and eigenvalues localized around

1. (b) Eigenvalues of the propagator (4.52) for the two-orbital lattice with a mass term set

to M = 1 (topological phase). The partition is exactly half of the cylinder. The [blue] dots

that mimic the chiral edge mode interpolate between the two bands. This is similar to the

true edge mode shown in Fig. 4.10(b).

calculation. In Fig. 4.12, we show the spectrum of GA(kx) for both the topological
(Fig. 4.12(a)) and the trivial phases (Fig. 4.12(b)). Similar to its energy spectrum,
the one-body ES of the trivial phases exhibits two bands (one located around 0, the
other around 1) separated by a gap. On the other hand, in the topological case, there
is clearly a chiral mode connecting the two bands. Like the AKLT model discussed in
Section 4.2.4, the partition has introduced an artificial edge and the ES mimics the
true edge spectrum of the system.

Compared with the spin chain discussed in Section 4.2.4, we see that plotting the
entanglement energies as a function of conserved quantum number (here the momen-
tum along the x direction) is really helpful to directly observe the edge mode. But
it is more a matter of convenience than a requirement. Indeed, the ES can be used
to diagnose topological order without this additional information. In the presence of
disorder, kx would not be a good quantum number. Still, by looking at the level stat-
istics in the ES [57], we can differentiate a trivial phase from a topological phase.
The CI case is one example of a two-dimensional system where the ES can be com-
puted analytically. Actually, this derivation holds true for any of the non-interacting
topological insulators. Unfortunately, such an analytical derivation is not feasible, in
general, for strongly interacting systems, as we will now discuss in the case of the
fractional quantum Hall system.

4.4 Fractional quantum Hall effect and entanglement spectra

In this section, we review the different aspects of entanglement spectra applied to the
FQHE. We provide a short (and partial) introduction to this topic. We discuss the
different partitions that have been proposed and their relation. In particular, we show
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how much information about the excitations can be extracted from the ground state
by using the entanglement spectra.

4.4.1 Fractional quantum Hall effect: overview and notation

In these lecture notes, we restrict attention to the case of spinless particles occupying
the lowest Landau level. The natural geometry to consider is the plane (or disc). For
technical reasons, other geometries having periodic boundary conditions (in one or
two directions), such as the cylinder [61], the torus [30], and the sphere [26], are more
convenient when it comes to finite-size (numerical) studies. In the following, we will
mostly focus on genus-zero surfaces, in particular the disc and the sphere. We denote
by N the number of particles in the system and by NΦ the number of flux quanta.
The filling factor is defined (in the thermodynamic limit) as ν = N/NΦ. A convenient
choice for the one-body basis on the plane (using the symmetric gauge as discussed in
Section 4.3.1.1) and on the sphere leads to the following set of wavefunctions:

φm(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1√
2π2mm!

zme−|z|
2/4 (plane),

√
(NΦ + 1)!

4πm!(NΦ −m)!
umvNΦ−m (sphere).

(4.54)

On the plane (or disc), z = x+ iy is the particle coordinate and Lz = m is the an-
gular momentum (where m ≥ 0 is an integer). On the sphere, u = cos(1

2θ) e
iϕ/2 and

v = sin( 1
2θ) e

−iϕ/2 are the spinor coordinates with the polar coordinates (θ, ϕ), and
Lz = 1

2
NΦ −m is the angular momentum along z, where m = 0, 1, . . . , NΦ. NΦ is the

number of flux quanta that pierce through the sphere. On such a closed geometry,
both the radius (∝

√
NΦ) of the sphere and the number of orbitals (NΦ + 1) are fixed

by the strength of the magnetic monopole at its centre. Figure 4.13(a, b) schematically
describe these orbitals for the two geometries.

On the plane geometry, a general quantum Hall wavefunction for N particles in
the lowest Landau level can be expressed as

Ψ (z1, . . . , zN ) = P (z1, . . . , zN ) e−
∑

i |zi|2/4, (4.55)

where P is a polynomial in the N complex variables associated with the particle posi-
tions z1, . . . , zN . If we restrict attention to fermionic wavefunctions, this polynomial
has to be antisymmetric. Note that any wavefunction written on the disc can also be
obtained on the sphere using the stereographic projection by identifying z ≡ u/v (up
to some global factor). To simplify our equations, we will drop the Gaussian factor
in any wavefunctions. So, when discussing model wavefunction on the plane or the
sphere geometry, it is sufficient to provide P and we can drop all the other factors. We
can decompose this wavefunction in the occupation basis, using the orbitals of (4.54):

Ψ (z1, . . . , zN ) =
∑
{λ}

cλMλ(z1, . . . , zN ). (4.56)
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Fig. 4.13 [Colour online] Schematic representation of the orbital basis (a) on the sphere geom-
etry for NΦ = 6 and (b) on the disc geometry. (c) Typical n-body state of the occupation basis
having three particles in an orbital with angular momentum Lz = 0, 2 and 3. When we perform
an orbital partition into the lA leftmost orbitals (shaded boxes [in red]), the A part in real space
is roughly the domain that contains these orbitals.

Mλ is the normalized Slater determinant that has its orbital occupation given by
the configuration λ (such a configuration is shown in Fig. 4.13(c)). The functions
Mλ form a set of orthonormal free many-body states. When the wavefunction is
obtained through numerical simulation, such a decomposition is directly accessible: one
diagonalizes a Hamiltonian by expressing it in a convenient basis, which is generally
the occupation basis for the FQHE. For model wavefunctions such as the Laughlin
[39] or Moore–Read [47] states, one can use an efficient recursive algorithm [8] that
provides the corresponding decomposition.

The archetypal fractional quantum Hall (FQH) model wavefunction is the cele-
brated Laughlin state [39]

ΨLgh(z1, . . . , zN ) =
∏
i<j

(zi − zj)m. (4.57)

m is the only variational parameter. Actually,m is related to the filling factor ν = 1/m.
On the sphere geometry, (4.57) implies the relation NΦ = m(N − 1). For a fermionic
wavefunction, m has to be odd. m = 1 corresponds to the completely filled lowest
Landau level as indicated in (4.34). It is a single Slater determinant (Vandermonde
determinant) and thus is a product state in the occupation basis. At ν = 1

3
, the Laugh-

lin wavefunction is a very accurate approximation of the FQH ground state obtained
through any realistic simulation. Being an intrinsic topological phase in its full glory
(as opposed to the IQHE), the Laughlin wavefunction is degenerate when placed on a
higher-genus surface. For example, it is m-fold-degenerate on the torus geometry.

Bulk excitations can be nucleated by removing (for quasielectron) or inserting
(for quasihole) fluxes. Each excitation carries a fractional charge (±e/m) and obeys
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fractional statistics. For one quasihole located at the position η, we can write the
corresponding wavefunction

ΨLgh, 1qh(z1, . . . , zN ; η) =
∏
i

(zi − η)ΨLgh(z1, . . . , zN ). (4.58)

Changing the quasihole position η spans a subspace described by a basis of N + 1
quasihole states, each having a well and uniquely defined angular momentum. More
generally, the number of quasihole states for given values of N and NΦ is a signature of
the phase and acts as a fingerprint that can be tracked in numerical simulations. This
counting of states can be obtained by Haldane’s exclusion principle [29] (or Haldane
statistics). For the ν = 1/m Laughlin wavefunction, this number is identical to the
number of configurations with N particles and NΦ + 1 orbitals where there is no more
than 1 particle in m consecutive orbitals. Figure 4.14 gives some simple examples of
compatible configurations. Note that both the Laughlin wavefunction and its quasihole
excitations are the only zero-energy states of a local two-body model interaction [26],
(4.58) being the unique densest zero-energy state among them.

The edge excitations of the Laughlin state are described by a chiral U(1) boson.
For an edge of length L, the dispersion relation is given by E � (2πv/L)n, where n is
an integer and v is the edge-mode velocity. The degeneracy of each energy level can
be deduced from the picture described in Fig. 4.15. Using the Haldane statistics for
the Laughlin ν = 1/m state, starting from the ground state, we obtain the sequence
1, 1, 2, 3, . . . irrespective of m, identical to the counting of the IQHE discussed in
Section 4.3.1.1. As in the case of the quasihole state, this counting is a fingerprint of
the edge excitations.

Finally, we give another example of model wavefunctions: the Moore–Read state
[47]. This model is considered to be the prototype model wavefunction to explain the
appearance of a Hall conductance plateau at filling factor ν = 5

2
(i.e. in the second

Landau level). It can be written as

ΨMR(z1, . . . , zN ) = Pf
(

1
zi − zj

)∏
i<j

(zi − zj)2. (4.59)

LZ = 0 1 2 3 4 5 6 7 8
1 0 0 1 0 0 1 0 0

LZ = 0 1 2 3 4 5 6 7 8
1 0 0 0 1 0 1 0 0

LZ = 0 1 2 3 4 5 6 7 8
1 0 0 0 1 0 0 1 0

LZ = 0 1 2 3 4 5 6 7 8
0 1 0 0 1 0 0 1 0

Fig. 4.14 An example of Haldane’s exclusion principle. We consider a system with N = 3

particles in 9 orbitals on the disc with momenta going from Lz = 0 to Lz = 8. Among the four
configurations described here, only three satisfy Haldane’s exclusion principle for the ν = 1

3

Laughlin state: no more than one particle in three consecutive orbitals. The violation of this
principle in the top right configuration is shown by the shaded boxes. For each compatible
partition, one can easily compute the corresponding total Lz value (e.g. 9 for the left topmost
configuration).
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Fig. 4.15 A description of the chiral U(1) edge mode counting at ν = 1
3
. (a) The ground state

with energy E = 0. It obeys Haldane statistics (no more than one particle in three consecutive
orbitals). The shading denotes the region below the Fermi level. (b) The lowest-energy excitation
(E = 1) that satisfies the Haldane statistics. (c) An example of an excitation at the same energy
but violating (outlined by the rectangular box) the Haldane statistics. (d) and (e) The two
possible excitations at E = 2.

The Moore–Read state possesses two kind of excitations: Abelian excitations with a
charge ±e/2 and non-Abelian excitations carrying a charge ±e/4. In a similar way to
the Laughlin case, the number of quasihole states can be derived from Haldane’s ex-
clusion principle (in that case, no more than two particles in four consecutive orbitals).
The Moore–Read state has two edge modes: a charge edge mode similar to that of
the Laughlin state and a neutral Majorana fermion edge mode. Note that a natural
way to build the Moore–Read state is based on conformal field theory (CFT) [47],
rewriting (4.59) as a correlator (using the CFT of the Ising model in the present case).

4.4.2 Orbital entanglement spectrum

Li and Haldane [41] proposed to compute the ES of a FQH state using a partition in
the orbital basis. We call this type of ES an orbital entanglement spectrum (OES). As
already pointed out in [31], where the authors tried to extract the topological entangle-
ment entropy of the Laughlin state from the wavefunction, a cut in the orbital basis
roughly mimics a cut in real space. The OES is defined by the number of consecutive
orbitals that are considered. This number will be denoted by lA, the number of or-
bitals for the B part being lB and satisfying lA + lB = NΦ + 1 on the sphere geometry.
When we compute the OES for a FQH state on the geometry such as the sphere or
the disc, we can use two good quantum numbers to label the blocks of the reduced
density matrix: NA the number of particles in A and Lz,A the projection of the total
angular momentum of the particles in A. The OES is generally represented in terms
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Fig. 4.16 OES for the ν = 1
3

Laughlin state with N = 12 fermions on the sphere geometry,
keeping lA = 17 orbitals and looking at the sector with a fixed number of particles, NA = 6.
The inset is a zoom on the ES related to the U(1) edge mode counting of the Laughlin state. As
expected, this counting is 1, 1, 2, 3, 5, 7, 11. For this cut, the deviation of the OES counting to
the edge mode counting (due to finite-size effects) starts at Lz,A = 7: the OES gives 13 levels,
while the U(1) counting is 15.

of the entanglement energies ξ as a function of Lz,A for a fixed value of NA. A typical
example is shown in Fig. 4.16 for the ν = 1

3 Laughlin state. Note that for the sake
of simplicity and in contrast to many of the original publications, the non-trivial part
of the OES here is located at the left-hand side of the plot. We also shift the origin of
Lz,A such that the leftmost entanglement level state has Lz,A = 0.

The OES of the Laughlin state is highly specific: any random state with the same
symmetry would produce many more entanglement energy levels, i.e. it would have
many fewer zero eigenvalues in the reduced density matrix. Actually, not only would
additional entanglement energy levels be present in the sector of Lz,A where there is no
level for the Laughlin state, but also the total number of levels would be exponentially
larger. Thus, such a model state induces large constraints on the reduced density ma-
trix. In Fig. 4.16, we observe that the counting of entanglement energies starting from
the left matches the sequence 1, 1, 2, 3, 5, 7, 11. This is the expected counting sequence
for a chiral U(1) boson edge mode as discussed in Section 4.4.1. Beyond a given Lz,A,
the OES counting becomes lower than the U(1) counting. Knowing we are dealing
with a finite-size system (in both the numbers of orbitals and of particles), there is a
maximum value of Lz,A that can be reached and there is a single state with lA orbitals
and NA fermions that can reach it. Thus, it is clear than both countings should differ
at some point, since the U(1) counting keeps growing. We call the thermodynamic
region that part of the OES where there is no size effect on the edge-mode counting.
This region increases with the system size. In a simplified picture, we can think of the
unique state at Lz,A = 0 of the OES as a Laughlin liquid droplet for NA particles.
Slightly increasing Lz,A corresponds to generating edge-mode excitations. A more
rigorous derivation of this schematic point of view will be described in Section 4.4.4.

From this observation, Li and Haldane conjectured that in the thermodynamic
limit, the OES should be identical to the energy spectrum of the edge mode of the
model state. This statement goes beyond the counting argument, which is itself a
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signature of the edge physics. To corroborate this idea, one can look at the evolution
of the entanglement energies when the system size is increased [76]. These energies
should mimic the dispersion relation of the gapless edge mode, (2πv/L)Lz,A, where
L is the cut perimeter. Despite some indication that this description is correct, the
finite-size calculations are unable to lead to a definitive conclusion. A more accurate
approach will be discussed in Section 4.4.5, and will provide more convincing evidence
of this conjecture.

A similar calculation can be performed on other geometries. Figure 4.17 shows
the OES of the ν = 1

3 Laughlin state for the disc, the cylinder, and the thin annulus
(or conformal limit [76]). While the shape of the OES depends on the geometry, the
counting remains identical as long as one considers genus-zero surfaces. The OES on
the two different cylinders in Fig. 4.17(b, c) are a clear consequence of the area law.
While the OES is an approximation of a real-space cut, its shape depends on the length
of the cut. On the cylinder, this length is the cylinder circumference (or perimeter),
and does not vary with the number of flux quanta, NΦ (the usual hemisphere cut for
the sphere would give a length proportional to

√
NΦ). A smaller perimeter, and thus

a smaller entanglement entropy, results in an OES with a steeper slope.
Moving to a higher-genus surface like the torus leads to a slightly different

picture [37]. The usual orbital basis on the torus is translationally invariant along
one direction of this geometry. Performing the bipartite partition gives rise to two
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Fig. 4.17 OES for the ν = 1
3

Laughlin state with N = 12 fermions, keeping lA = 17 orbitals
and looking at the sector with a fixed number of particles, NA = 6, on different geometries:
(a) the disc geometry; (b) a thin cylinder with perimeter L = 10lB ; (c) a thicker cylinder with
perimeter L = 15lB ; (d) the thin-annulus limit. Note that for the cylinder geometry, we use the
momentum along the cylinder perimeter, Ky,A, instead of the angular momentum Lz,A.
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artificial and spatially separated edges. The OES mimics the physics of two counter-
propagating edge modes. A consequence of this interplay between these two modes is
the absence of zero eigenvalue in the reduced density matrix. This is a major difference
from the OES for the genus-zero geometries.

Beyond the thermodynamic region of the OES, finite-size effects start to appear.
There, the spectrum also has a non-trivial structure compared with a generic wave-
function. For most of the model wavefunctions, there is no quantitative understanding
of this non-thermodynamic part of the OES. In the case of the ν = 1/m Laughlin state,
it has been shown [33] that the counting of this region can actually be deduced from
a generalized exclusion principle that depends on m. Actually, it is a nice example
where finite-size effects allow one to get more information than in the thermodynamic
limit: while all ν = 1/m Laughlin states have the same edge theory, a chiral U(1)
boson, the compactification radius of the bosons depends on m (

√
m in that case).

The thermodynamic region gives access to the U(1) counting, whereas the finite-size
effects encode the value m.

More complex model wavefunctions exhibit a richer OES structure. We focus on
the Moore–Read state. Figure 4.18 shows the OES for this state using the same parti-
tion (here lA = 14) but looking at two different blocks of the reduced density matrix,
namely NA = 8 (a) and NA = 7 (b). For these two cases, the counting in the thermo-
dynamic region is different, reflecting the two sectors of the CFT (namely the identity
and the ψ sectors) used to build this state. A surprising result here is that the state
itself is built only using one of the two sectors, whereas the OES exhibits both.

For the time being, we have only looked at the OES for the ground state (i.e.
in the absence of excitations) of model wavefunctions. But the OES in the presence
of pinned excitations is also quite insightful [51]. Figure 4.19 shows the OES for the
Moore–Read state in the presence of pinned quasihole excitations. In order to preserve
the rotational symmetry along the z axis of the sphere, the excitations are located at
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Fig. 4.18 OES for the ν = 2 + 1
2

Moore–Read state with N = 16 fermions keeping lA = 14

orbitals. (a) Setting NA = 8, we observe the counting 1, 1, 3, 5, . . . , which is related to the
identity sector. (b) Setting NA = 7, another counting emerges, 1, 2, 4, 7, . . . , corresponding to
the ψ sector. In both cases and for this system size, the counting starts to deviate from the
CFT one starting from Lz = 4.
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Fig. 4.19 OES for the ν = 2 + 1
2

Moore–Read state with quasiholes for N = 16 fermions and
NΦ = 30 flux quanta, keeping NA = 8 particles and lA = 15 orbitals. We show two different
situations: in (a), there is one Abelian excitation of charge e/2 located at the north pole in the
hemisphere A; in (b), there are two non-Abelian excitations, each carrying a charge e/4, one at
each pole. Both situations clearly exhibit a different counting, namely here 1, 1, 3, 5, . . . for (a)
and 1, 2, 4, 8, . . . (non-Abelian sector).

the poles. We consider two situations: (a) an Abelian excitation of charge e/2 is located
at the north pole in the hemisphere A; (b) there two non-Abelian excitations, each
carrying a charge e/4, one at each pole. In both cases, the system has the same number
of particles and flux quanta, and the OES is computed for the same parameters for lA
and NA. Still, the OES clearly exhibits a different counting: in Fig. 4.19(a) we recover
the counting of the vacuum sector (as in Fig. 4.18(a)), and in Fig. 4.19(b) we recover
the counting of the non-Abelian sector sector (as in Fig. 4.18(b)). Thus, the OES can
be used as a probe to check the parity of the number of non-Abelian excitations in a
region of the system. Note that the OES of the Laughlin state is not modified by the
presence of pinned quasihole excitations.

As a final note about the OES for model wavefunctions, we should stress once
again that the rank of the reduced density matrix being exponentially smaller than
any random state with the same symmetry is a major property. We have indicated in
Section 4.2.5 that such a feature is a signal that an efficient MPS formula might exist.
In the case of the FQHE, the edge modes are gapless. As the ES reflects the edge
physics, we expect this MPS to be infinite, in contrast to the AKLT example. Indeed,
recent developments [21, 22, 87] have shown that an (infinite) MPS formulation is
available for a large class of model wavefunctions, with a well-controlled truncation
parameter that allows numerical calculations.

4.4.3 OES beyond model wavefunctions

While the OES has already allowed us to gain some insight into the information
encoded within the ground state of a topological phase, we would like to use it as
a probe to detect topological order. For that purpose, we need to move away from
model states. When dealing with more realistic descriptions of FQH systems, several
assumptions are made. In general, we suppose that there is no Landau-level mixing,
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and in many cases we also assume that electrons are spin-polarized. For low filling
factor (such as ν = 1

3 ), these hypothesis are quite accurate. Moreover, the disorder is
neglected. In this scenario and for ν < 1, the effective Hamiltonian reads

H = PLLL

∑
i<j

V (	ri − 	rj)PLLL, (4.60)

where PLLL is the projector onto the lowest Landau level. The two-particle interaction
V has to be thought as an effective interaction, including effects such as screening and
finite confinement of the electron gas. In a crude approach, it is generally assumed
that this interaction is just the three-dimensional Coulomb interaction, V (	r ) = 1/r.
The ground state of this Hamiltonian can be computed for a small number of particles
and flux quanta using exact diagonalization techniques such as the Lanćzos algorithm.

In Fig. 4.20, we have computed the OES for the ground state of the projected
Coulomb interaction |Ψexact〉, using exact diagonalization. The overlap between this
state and the ν = 1

3 Laughlin state |ΨLgh〉 is | 〈Ψexact|ΨLgh〉 |2 = 0.9819. In the low-
entanglement-energy part of the spectrum, we clearly distinguish a structure similar
to that of the Laughlin state in Fig. 4.16, which we have related to the edge-mode
excitations. In contrast to the example of the spin-1 Heisenberg model discussed in
Section 4.2.4, the entanglement gap does not extend along all momentum sectors.
But the edge-mode counting is clearly separated from the higher entanglement-energy
levels. The low-energy part related to the edge physics of the mode state is called the
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Fig. 4.20 [Colour online] OES for the ground state of the Coulomb interaction with N = 12

fermions and NΦ = 33 on the sphere geometry, keeping lA = 17 orbitals and looking at the
sector with a fixed number of particles, NA = 6. We use the same system size and parameters
as for the OES of the ν = 1

3
Laughlin state in Fig. 4.16. The levels enclosed by the dotted

line [the levels shown in blue] are those related to the edge mode of the Laughlin state. Δξ

denotes the entanglement gap between the edge-mode counting and the non-universal part of
the spectrum. The inset is a zoom on the ES related to the U(1) edge-mode counting of the
Laughlin state.
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universal part of the ES. The higher-energy part is dubbed the non-universal part of
the ES. In this example, the idea of looking at the ES per momentum sector is crucial:
without resolving the OES as a function of Lz,A, the entanglement gap would not be
visible.

The fact that the entanglement gap Δξ does not spread over the full spectrum
could appear as a failure of the OES to find the universality class. First, we should
focus on the part of the spectrum that has reached the thermodynamic limit, i.e. in
the Li and Haldane picture, the region that should match the edge physics. From that
perspective, what should be relevant is the presence of the entanglement gap in this
region that grows when we increase the system size. In the paper that introduced
the ES [41], convincing numerical results were provided that Δξ does not collapse
when the system size is increased. Moreover, the extension of the region where there
is an entanglement gap tightly depends on the geometry in finite size calculations. For
example, performing the OES of the same state but on a thin annulus (also called
the conformal limit [76]) leads to a modified picture as shown in Fig. 4.21. In some
cases, one can clearly separate the full universal part of the ES (that of some model
state) from the non-universal part. As discussed in [76], this can happen even when
the exact state has a moderate overlap with the model state. In some examples, one
can even adiabatically go from the model state to the exact state without closing the
entanglement gap.

Up to now, we have mostly focused on the universal part of the ES. Looking at
Fig. 4.22, we observe that the non-universal part exhibits several branches. Indeed,
these branches can be related to the neutral excitations (the excitations that do not
involve a change in the number of particles or in the number of flux quanta) of the sys-
tem [69]. For the FQHE, these neutral excitations are quasihole–quasielectron excitons.
Two approaches are available to test this idea. One can build an approximation of the
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Fig. 4.21 [Colour online] OES for the ground state of the Coulomb interaction on the thin-
annulus geometry, with the same system size and parameters as in Fig. 4.20. The levels enclosed
by the dotted line [the levels shown in blue] have an identical counting to those of the Laughlin
state and are separated from the non-universal part of the spectrum. The inset shows the OES
for the same kind of system but with a lower number of particles (N = 10). In that case, the
structure associated with the Laughlin state (enclosed by the dotted line [shown in blue]) clearly
detaches from the non-universal part.
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Fig. 4.22 [Colour online] OES for N = 8 fermions and NΦ = 21 flux quanta on the sphere
geometry, setting NA = 4 and lA = 11: (a) OES of the ν = 1

3
Laughlin state; (b) OES of the

ground state of the Coulomb ground state. We clearly observe three branches, the lowest (en-
closed by the dotted line [shown in blue]) being related to the ν = 1

3
Laughlin state. The second

lowest branch is enclosed by the full line [shown in green].
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Fig. 4.23 [Colour online] (a) OES from the linear combination of the ν = 1
3

Laughlin state and
the first neutral excitation having the same symmetry as the Laughlin state. For convenience,
the linear combination is optimized to maximize the overlap with the Coulomb ground state.
Fine tuning is not required to see that this technique reproduces the two lowest branches,
indicating that the second branch (enclosed by the full line [shown in green]) is related to neutral
excitations. (b) OES from the finite-temperature calculation as defined in (4.61). We truncate
the energy spectrum to include only the lowest-energy neutral excitations (the magneto-roton
mode). The temperature is set to β = 7 to mimic the OES of the Coulomb state. Once again, we
clearly deduce that the second low-entanglement-energy branch is related to the lowest-energy
neutral excitations. For both (a) and (b), we use the same system sizes as in Fig. 4.22.

exact ground state based on the model state and the lowest-energy neutral excitation
that has the same symmetry as both the model and exact states; see Fig. 4.23(a). The
other option is to consider the model state but at finite temperature, where the full
density matrix is given by

ρ =
1∑

n

e−βEn

∑
n

e−βEn |Ψn〉〈Ψn|, (4.61)



Fractional quantum Hall effect and entanglement spectra 201

where |Ψn〉 and En are respectively the eigenstates and eigenvalues of the Hamiltonian
that produces the model state; see Fig. 4.23(b). In both cases, we see that the resulting
OES correctly captures the non-universal part. This exercise also appears to support
the idea that the ES of the ground state of a realistic Hamiltonian contains information
not only about the universality class of the ground state but also about its excitations.

4.4.4 Particle entanglement spectrum

The concepts of entanglement entropy and entanglement spectrum are not specifically
related to a partition in real space. Indeed, the OES is, strictly speaking, a partition
in momentum space, which in the specific case of the FQHE can be roughly related
to a spatial cut. Partitioning a system in different ways can unveil different type
of information, as has been shown in the case of quantum spin chains [74]. Among
the possible partitions, a simple one is based on removing particles from the system,
realizing a particle partition. In the context of the entanglement entropy for the FQHE,
such a partition was introduced in [31] and [89]. The related ES, called the particle
entanglement spectrum (PES),was introduced later in [71]. In contrast to the OES, the
geometry (i.e. the number of orbitals) is preserved, and the particles are divided into
two groups A and B, containing NA and NB particles, respectively. In first-quantized
notation and for a generic wavefunction Ψ(x1, . . . , xN ) for N = NA +NB particles,
the reduced density matrix is given by

ρA(x1, . . . , xNA
;x′1, . . . , x

′
NA

) =∫
dxNA+1 · · · dxN Ψ∗(x1, . . . , xNA

, xNA+1, . . . , xN )Ψ(x′1, . . . , x
′
NA
, xNA+1, . . . , xN ).

(4.62)

As a first example, one can look at the completely filled lowest Landau level, i.e.
the ν = 1 IQHE. The ground state on the sphere geometry for N = NΦ + 1 fermions
is given by

|Ψν=1〉 =
∣∣−1

2
NΦ, . . . ,

1
2
NΦ

〉
. (4.63)

This state is a product state in the orbital basis, leading to a trivial OES with a single
non-zero eigenvalue. For the PES, the picture is different: The counting is given by
the number of ways one can choose NA particles among the N particles of the system
(it is the same counting that the real-space ES for the IQHE at finite size discussed
in Section 4.3.1.3). This case clearly stresses that different partitions probe different
properties of the same system.

We now turn to the cases of interacting states, focusing on the Laughlin ν = 1
3

state. Figure 4.24 shows the PES for the sphere and disc geometries. As in the case of
the OES, the counting is non-trivial (i.e. the number of non-zero eigenvalues is much
lower than the naive dimension of the reduced density matrix) and does not depend
on the geometry. What was empirically found in [71] is that the counting matches
(per momentum sector) the number of quasihole states of the same state with NA
and NΦ flux quanta (the particle partition does not affect NΦ). This statement was
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Fig. 4.24 PES for the ν = 1
3

Laughlin state withN = 8 fermions,NΦ = 21, andNA = 4 on the
sphere geometry (a) and on the disc geometry (b). In both cases, the counting per momentum
is given by the number of quasihole states of the Laughlin state for NA particles and NΦ = 21.
The high degeneracy observed for the PES on the sphere is a consequence of the total angular
momentum L2

A being a good quantum number when the PES is performed on a state with
a total angular momentum equal to zero (such as the Laughlin ground state). For the sphere
case in (a), we also present a schematic representation of the types of quasihole states that
correspond to the leftmost, centre, and rightmost levels.

checked for a large series of model wavefunctions. When these model wavefunctions
are unique zero-energy states of some local model Hamiltonian, one can prove that
the counting is bounded by the number of quasihole states. Indeed, any eigenstate
of ρA corresponding to a non-zero eigenvalue has to be a quasihole state (meaning a
zero-energy state of the model Hamiltonian). So far, there is no mathematical proof
in the generic case that this bound has to be saturated. Note that the PES for ν = 1
that we have discussed above can also be understood as the quasihole excitations of
the integer quantum Hall state.

If we admit that the conjecture about the bound saturation is valid, then we com-
pletely understand the counting of the PES, including any finite-size effect (as opposed
to the OES). Both entanglement spectra, the OES and the PES, are actually related in
the thermodynamic region [15]. In Fig. 4.24(a), we present a schematic representation
of the quasihole states in each part of the PES. The leftmost angular momentum sec-
tor (Lz,A = 0) corresponds to the case where all quasiholes are located in the southern
hemisphere which is then completely depleted. We are left with a Laughlin droplet
occupying the northern hemisphere. Slightly moving away from Lz,A = 0 is equivalent
to slight deformations of the droplet, i.e. the edge excitations. Indeed, the counting
starting from Lz,A = 0 is 1, 1, 2, 3, . . ., as expected from the Laughlin edge mode. It
was proved in [15] that the entanglement matrices (as defined in Section 4.2.1) as-
sociated with the thermodynamic region in both the PES and the OES must have
the same rank. Using this bulk–edge (or PES–OES) correspondence, the proof of the
Li–Haldane conjecture is reduced (at least for the class of model states that have been
considered) to the proof of the bound saturation.
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The PES can also be computed on the torus geometry. As the FQH phases are
topological phases, the degeneracy of their ground state changes with the genus of the
surface on which they live. For example, on the torus, the Laughlin ν = 1/m state
is m-fold-degenerate and the Moore–Read state is 6-fold-degenerate. Thus, multiple
choices for the density matrix are available. For the PES, we use the incoherent density
matrix, where we sum all the sectors:

ρ =
1
d

d∑
i=0

|Ψi〉〈Ψi|, (4.64)

where {|Ψi〉} with i = 1, . . . , d forms an orthogonal basis of the degenerate ground-
state manifold (d being the total degeneracy). As defined, this density matrix
commutes with the magnetic translation operators and does not depend on a particu-
lar basis choice. The PES calculations are performed using the translational symmetry
along one direction (here y), and the eigenvalues of ρA can be labelled by the corres-
ponding Ky,A momentum. Figure 4.25(a) shows the PES for the Laughlin state on the
torus. The properties are identical to those of the PES on the sphere: the counting
matches that of the quasihole states, and the corresponding eigenstates of ρA span
the subspace of the quasihole states. This is a clear difference from the OES on the
torus, where the counting is trivial, as discussed in Section 4.4.2. For the ground
state of the Coulomb interaction at ν = 1

3
, the PES is quite interesting: as observed

in Fig. 4.25(b), there is a clear entanglement gap separating a low-entanglement-
energy structure having the same counting as the PES of the Laughlin state and a
higher-entanglement-energy part. From the different examples that have been stud-
ied, the PES behaves nicely on the torus geometry. This property will be used as a
powerful tool to probe the physics of fractional Chern insulators in Section 4.5.
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Fig. 4.25 PES on the torus geometry for N = 8 fermions and NΦ = 24, keeping NA = 4 par-
ticles. (a) The ν = 1

3
Laughlin state. The counting per momentum sector is given exactly by

the number of quasihole states with NA = 4 fermions and NΦ = 24. (b) The Coulomb ground
state. We observe a clear entanglement gap Δξ between a low-entanglement-energy structure
having the same counting as the PES of the Laughlin state and a higher-entanglement-energy
part.
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4.4.5 Real-space entanglement spectrum

When we described the OES in Section 4.4.2, we argued that this type of partition is
an approximation of a partition in real space, thanks to the specific properties of the
orbital basis. The OES appears as a fuzzy cut and not a sharp cut. Several articles
[19, 63, 70] have addressed the question of the real-space entanglement spectrum
(RSES) using a sharp real-space partition for FQH states. It is an natural extension
from the non-interacting IQHE case described in Section 4.3.1. If one chooses a cut
that preserves the rotation along z for the sphere or the disc, then Lz,A is still a good
quantum number. This makes the connection with the other entanglement spectra
easier. As in the case of the OES, NA is also a good quantum number. The generic
principle of the RSES was described in Section 4.3.3. Following (4.46), we can split
the creation operation associated with the orbital m as follows:

c†m = αmc
†
m;A + βmc

†
m;B , (4.65)

where α2
m (respectively β2

m) is the weight of the orbital m in the A (respectively B)
part. Whereas α2

m and β2
m on the disc are related to incomplete gamma functions as

shown in (4.40), these coefficients on the sphere can be expressed as incomplete beta
functions. A key property of the RSES is that a block of its entanglement matrix
MRSES
NA

with a fixed NA can be related to the entanglement matrix MPES
NA

of the PES
for NA particles. Using (4.65), we can deduce the relation MRSES

NA
= SMPES

NA
Q, where

S and Q are diagonal matrices with non-zero diagonal elements. These elements are
purely one-body geometrical factors αm and βm coming from the space partition. As a
consequence, the two matrices MPES

NA
and MRSES

NA
have the same rank and thus the two

entanglement spectra have the same counting. It should be noted that if we take the
weights αm = βm = 1/

√
2, we recover the PES exactly. As discussed in Section 4.4.4,

the OES for the ν = 1 state (i.e. the IQHE) is trivial, where ρA has a single non-zero
eigenvalue. Having the same counting as the PES, the RSES thus differs strongly from
the OES, as shown in Fig. 4.7.

In Fig. 4.26(a), we show the RSES of the ν = 1
3 Laughlin state on the sphere when

A consists of the northern hemisphere, with a sharp cut at the equator. As expected,
the counting per momentum sector is identical to that of the PES. The shape of the
spectrum itself is reminiscent of the OES, being due to the geometrical cut. Beyond
the counting, one could ask whether the entanglement energies of RSES mimics the
dispersion relation of the edge mode in a better way than the OES. In both cases,
the spread between the smallest and largest entanglement energies in a given angular
momentum sector seems to converge to zero. Figure 4.26(b) shows the extrapolation
of the average entanglement energy per angular momentum sector to the limit of a
large number of particles. If in this limit the RSES were equivalent to the edge-mode
dispersion relation, we would expect these energies to be of the form (2πv/L)n, where
n is an integer, v is the edge-mode velocity, and L is the cut perimeter. The finite-size
calculation shows fairly good agreement with this picture. Most of these properties
have been confirmed for much larger system sizes using the MPS description of the
Laughlin state [87]. These results underline once again that the ES of the system
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Fig. 4.26 [Colour online] (a) RSES of the ν = 1
3

Laughlin state on the sphere geometry for
N = 8 fermions and NΦ = 21. We have used the (sharp) hemisphere cut and display the RSES
in the sector NA = 4. The counting is identical to that in Fig. 4.24(a). (b) Average entanglement
energy 〈ξ〉 times the perimeter of the cut L per momentum sector (here n = LA

z ) extrapolated
at the thermodynamic limit as a function of 1/N . The even–odd effect is just a consequence
of NA being the integer part of N/2. The velocity of the edge mode is v = 1.41(5) (see inset).
Such a value would be compatible with a rescaling of the ν = 1 edge mode velocity by a factor
1/

√
3.

ground state contains a description of the edge excitations, reinforcing the bulk–edge
correspondence.

4.5 Entanglement spectrum as a tool: probing
the fractional Chern insulators

As a practical application of entanglement spectroscopy, we discuss the physics of
Chern insulators in the strongly interacting regime. We emphasize that the ES can
conveniently replace overlap calculations when those are not available. We show that
entanglement spectroscopy can discriminate between two phases when simple energetic
analysis fails.

4.5.1 From Chern insulators to fractional Chern insulators

In the context of the quantum Hall effects, strong interactions are known to give rise
to the exotic physics of the FQHE. Current work suggests that, analogously to the
FQHE, introducing strong interactions coupled with fractional filling of the topological
insulator bands can give rise to novel and remarkable topological phases of matter. The
first class of topological insulators that was studied in the strongly interacting regime
were the Chern insulators described in Section 4.3.2. With the addition of strong
interactions and fractionally filled bands, these systems are known as fractional Chern
insulators (FCIs). At the beginning of 2011, several papers presented evidence from
numerical simulations [48, 59, 67] that demonstrated that FCIs could be implemented
in principle for model systems (see [7, 52] for reviews).
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Fig. 4.27 [Colour online] (a) The kagome lattice model as discussed in [73] with three sites per
unit cell. In the simplest case, this model has only a single complex nearest-neighbour hopping
term. (b) Band structure for the Kagome lattice model with a hopping term of eiπ/4. The
topmost and lowest bands have a Chern number C = ±1, while the middle band is trivial (i.e.
with a Chern number C = 0).

The emergence of a FQH-like phase in FCIs depends strongly on the underlying
one-body model [82]. In this subsection, we consider a slightly more complex model
than the two-orbital model discussed in Section 4.3.2 (it was shown that this model
does not exhibit any FQH state in the strongly interacting regime). It is based on the
Kagome lattice [73] (see Fig. 4.27(a)), a triangular lattice with three sites per unit cell,
with a complex hopping term teiϕ between neighbouring sites. The Bloch Hamiltonian
for this model is given by

H(k) = −

⎛⎜⎝ 0 eiϕ(1 + e−ikx) e−iϕ(1 + e−iky)

0 eiϕ(1 + ei(kx−ky))

h.c. 0

⎞⎟⎠ , (4.66)

where kx = k · e1 and ky = k · e2, e1 and e2 being the lattice translation vectors as
shown in Fig. 4.27(a). The magnitude of the hopping term is set to 1. The dispersion
relation is displayed in Fig. 4.27(b), showing the three bands, two of which carry a
non-zero Chern number. This model with short-range repulsion was shown to host
Laughlin-like phases both for fermions [82] and for bosons [42].

The simplest way to look at the FCI is to work in the flat-band limit [59]: we focus
on the interaction and the topological properties of the band structure, discarding the
effects of band dispersion and band mixing. This allows us to mimic the usual hypoth-
esis of the FQHE calculations as described in Section 4.4.3. We start from the original
Bloch Hamiltonian H(k) =

∑
nEn(k)Pn(k), where En(k) and Pn(k) are respectively

the dispersion and the projector onto the nth band. Then we focus on the ith band
(the lowest band in the case of the Kagome model). We can conveniently consider
an equivalent system with the same one-body wavefunctions but with perfectly flat
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bands HFB(k) =
∑
n nPn(k). From the energy perspective, this is the same situation

as a single Landau level.
For the interacting case, we consider N spinless fermions on a lattice made of

Nx unit cells in the e1 direction and Ny in the e2 direction, with periodic boundary
conditions. The filling factor is defined as ν = N/(NxNy). The simplest repulsive inter-
action that can be used for spinless fermions is just the nearest-neighbour repulsive
interaction

Hint = U
∑
〈i,j〉

: ninj : , (4.67)

where 〈i, j〉 denotes the sum over nearest-neighbouring sites. Projecting this inter-
action onto the lowest band and using the flat-band limit, the total effective
Hamiltonian is just given by the projected interaction, similar to the FQHE case
in (4.60). Exact diagonalizations can be performed to probe this system. A typical
energy spectrum for the interacting Kagome lattice at filling factor ν = 1

3
is shown in

Fig. 4.28(a). Similar to the FQHE on a torus (see Fig. 4.28(b)), we observe an (almost)
threefold degenerate ground state clearly separated from the higher-energy excitations.
Note that the ground state is not exactly degenerate, as expected for the FQHE phase
on a torus such as the Laughlin state. This is a consequence of the absence of an exact
magnetic translation symmetry [9, 25, 52], in contrast to the FQHE.

Since Chern insulators are equivalent to quantum Hall systems without an external
magnetic field, one might imagine that FCIs should give rise to topological phases
analogous to those exhibited by the FQHE. However, as stated previously and contrary
to expectations, not all CI models [82] have been found to exhibit such ‘fractional’
phases. For the time being, the emergence of FQH-like phases for a given model can
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Fig. 4.28 (a) Low-energy spectrum for N = 8 fermions on a Nx ×Ny = 6 × 4 unit-cell
Kagome lattice with periodic boundary conditions. Kx and Ky denote the total momenta in the
x and y directions. We clearly observe an almost threefold-degenerate ground state (the energy
splitting between these three states is 3.1 × 10−5). (b) Low-energy spectrum for the FQHE with
N = 8 fermions and NΦ = 24 on a torus. The Hamiltonian that we have used is the hollow-core
interaction, for which the Laughlin state is the exact zero-energy ground state.
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only be probed through numerical simulations of that model. Moreover, many of the
signatures obtained through the energy spectrum could also be obtained for charge
density waves (CDWs) in finite-size calculations. As we will now discuss, the concept
of the ES has proved to be a powerful tool for probing these systems.

4.5.2 Entanglement spectrum for fractional Chern insulators

FCIs are lattice models, and thus one might expect the real-space partition to be
a rather trivial task to perform. However, the projection onto the flattened lowest
band, which is done in momentum space, makes such a calculation rather non-trivial.
Fortunately, the particle ES does not suffer from this problem and can be performed
using a specific representation. Indeed, we can apply the same procedure as for the
FQHE on the torus that we described in Section 4.4.4. We will use the same definition
for the total density matrix as in (4.64), even though for an FCI the degeneracy of the
ground state is not exact. In Fig. 4.29, we present the PES for the almost threefold-
degenerate ground state of the kagome system in Fig. 4.28(a). This PES, which can
be plotted as a function of the momenta in both the x and y directions, exhibits a
clear and large entanglement gap. It is reminiscent of the PES in Fig. 4.25(b) for
the Coulomb ground state of the FQHE on a torus. The counting below this gap is
exactly that predicted for a Laughlin-like phase. One might wonder whether an overlap
calculation could identify a Laughlin-like state. Writing the Laughlin state on an FCI
in a suitable way for numerical simulations is a difficult task [58, 83], but the results
that have been obtained confirm what was already concluded from the PES.
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Fig. 4.29 [Colour online] PES for the three lowest-energy states of the kagome FCI model for
Nx ×Ny = 6 × 4, keeping NA = 4 particles. Kx,A and Ky,A denote the total momenta in the
x and y directions, and are good quantum numbers when the PES is determined. There is a
clear entanglement gap below which the number of levels [in blue] exactly matches the counting
of Laughlin quasihole excitations on a system with 4 fermions on a system with 6 × 4 = 24

flux quanta. The counting per momentum sector below the entanglement gap matches that
predicted by the folding formula of [9].
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Fig. 4.30 (a) The kagome model in the one-dimensional limit (i.e. Nx = 1) for N = 6 and
Ny = 18. While we use a logarithmic scale for the energy, we still observe an almost threefold-
degenerate ground state. (b) PES for this almost threefold-degenerate ground state, keeping
NA = 3 particles. There are 59 states per momentum sector below the entanglement gap (de-
picted by the black dotted line), as expected for a CDW (a Laughlin state would give 2530
states per momentum sector).

Since these systems could also host CDW-like phases, one might also wonder
whether such a phase would be detected by the PES. A simple way to force the
system into a CDW phase involves considering the one-dimensional limit of an FCI
[10], keeping only one unit cell in one direction (let us say x). For such a case, the
signature from the energy spectra is actually quite similar to that of a regular, two-
dimensional FCI. For example, we still observe a threefold-degenerate ground state at
filling factor ν = 1

3
; see Fig. 4.30(a). Obtaining the PES reveals a completely different

perspective. As observed in Fig. 4.30(b), there is still a large entanglement gap, but
the counting does not match that expected for a Laughlin-like state. Indeed, it has
been shown that this counting is that of a CDW [10].

As a final remark about ES for FCIs, we point out that this technique has again
been quite successful in probing unusual phases. While FCIs share many common
features with the FQHE, some striking differences result in them hosting new physics.
The most remarkable example is that a single band can have a Chern number C greater
than 1. Indeed, whereas usually a single Landau level carries a Chern number equal to
1, and thus a completely filled Landau level has a Hall conductance equal to h/e2, this
restriction does not apply to Chern insulators. The physics of non-interacting C > 1
is actually similar to C copies of a Landau level. These systems have been investigated
numerically [44, 72, 80, 85]. However, the studies using ES [72, 84] have revealed that
the picture of a simple multicomponent FQH-like system breaks down when strong
interactions are allowed.

4.6 Conclusions

In these lecture notes, we have discussed some basic concepts of entanglement spectros-
copy and have illustrated some of its features. The most remarkable result of the ES
is its ability to reveal how much information is encoded within many of the quantum
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ground states, even for finite-size systems. Of course, relations between the ground
state (the bulk of the system) and the low-energy excitations (the edge modes) had
already been pointed out before the introduction of the ES. For FQH model wave-
functions built from a CFT, the equivalence between the CFT of the bulk and that
associated with the edge was conjectured in [47]. In a similar manner, the use of the
reduced density matrix in strongly correlated systems is at the heart of the density
matrix renormalization group [81]. The fundamental step made by Li and Haldane
was to look at the data stored in the reduced density matrix in the right way, guided
by the idea that the ES should mimic the energy spectrum of the edge modes.

The FQHE is a nice sandbox where the concept of the ES has been developed
and tested. We have seen that several types of bipartition allow the extraction of
different types of information about the system excitations. Although some of these
results are still empirical, several steps have been made to give them a more robust
analytical basis. Maybe the most intriguing concept is still that of the entangle-
ment gap. For the FQH phases, there is a good understanding of the universal
(or low-entanglement-energy) part. On the other hand, the ‘non-universal’ part also
has its own structure, related to neutral excitations. But a quantitative understanding
of the entanglement gap is still missing. How large should it be for a phase to be driven
by the universal part? Future studies should address this issue.

In the early days of the ES, most of the results were derived from situations where
many properties were already known (e.g. the case of model states). Recent work
on FCIs has proved that the ES can be used as a tool to probe new systems. It
has helped to discriminate between different phases, especially when no expression
for model states has been available. Since computing the ES is generally a relatively
straightforward numerical calculation, it should now be part of the toolbox used to
analyse quantum systems. By picking the right quantum numbers, the ES can be a
powerful way to unveil the physics hidden in gigabytes of data.
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Néel state. Phys. Rev. Lett., 50, 1153–1156.

[28] Haldane, F. D. M. (1988, October). Model for a quantum Hall effect without
Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev.
Lett., 61, 2015–2018.

[29] Haldane, F. D. M. (1991). ‘Fractional statistics’ in arbitrary dimensions: a
generalization of the Pauli principle. Phys. Rev. Lett., 67, 937–940.

[30] Haldane, F. D. M. and Rezayi, E. H. (1985). Periodic Laughlin–Jastrow
wave functions for the fractional quantized Hall effect. Phys. Rev. B , 31,
2529–2531.

[31] Haque, M., Zozulya, O., and Schoutens, K. (2007). Entanglement entropy in
fermionic Laughlin states. Phys. Rev. Lett., 98, 060401.

[32] Hastings, M. B. (2007). An area law for one-dimensional quantum systems. J.
Stat. Mech.: Theory Exp., 2007, P08024.

[33] Hermanns, M., Chandran, A., Regnault, N., and Bernevig, B. A. (2011). Haldane
statistics in the finite-size entanglement spectra of 1/m fractional quantum Hall
states. Phys. Rev. B , 84, 121309.

[34] Huang, C.-Y. and Lin, F.-L. (2011). Topological order and degenerate singular
value spectrum in two-dimensional dimerized quantum Heisenberg model. Phys.
Rev. B , 84, 125110.

[35] Kitaev, A. and Preskill, J. (2006). Topological entanglement entropy. Phys. Rev.
Lett., 96, 110404.
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lators in topological flat bands with higher Chern number. Phys. Rev. Lett., 109,
186805.

[45] Liu, Z., Guo, H.-L., Vedral, V., and Fan, H. (2011). Entanglement spectrum: iden-
tification of the transition from vortex-liquid to vortex-lattice state in a weakly
interacting rotating Bose–Einstein condensate. Phys. Rev. A, 83, 013620.

[46] Lou, J., Tanaka, S., Katsura, H., and Kawashima, N. (2011). Entanglement
spectra of the two-dimensional Affleck–Kennedy–Lieb–Tasaki model: correspond-
ence between the valence-bond-solid state and conformal field theory. Phys. Rev.
B , 84, 245128.

[47] Moore, G. and Read, N. (1991). Nonabelions in the fractional quantum Hall
effect. Nucl. Phys. B , 360, 362–396.

[48] Neupert, T., Santos, L., Chamon, C., and Mudry, C. (2011). Fractional quantum
Hall states at zero magnetic field. Phys. Rev. Lett., 106, 236804.

[49] Nielsen, A. E. B., Cirac, J. I., and Sierra, G. (2011). Quantum spin Hamiltonians
for the SU(2)k WZW model. J. Stat. Mech.: Theory Exp., 2011, P11014.

[50] Page, D. N. (1993). Average entropy of a subsystem. Phys. Rev. Lett., 71, 1291–
1294.
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Preface

This chapter rests to a large extent on a paper I wrote some time ago on Duality in
generalized Ising models and phase transitions without local order parameter. It deals
with Ising models with interactions containing products of more than two spins. In
contrast to this old paper, I will first give examples before I come to the general
statements.

Of particular interest is a gauge-invariant Ising model in four dimensions. It has
important properties in common with models for quantum chromodynamics as de-
veloped by Ken Wilson. One phase yields an area law for the Wilson loop, yielding
an interaction increasing proportionally to the distance and thus corresponding to
quark confinement. The other phase yields a perimeter law allowing for a quark–gluon
plasma.

5.1 Introduction

In this contribution, I consider a number of Ising models, which arose out of the
question of whether there is duality for Ising models in dimensions larger than two.
Indeed, the idea of duality can be used to construct a whole class of such systems,
which, however, differ from conventional Ising models in some properties. First, these
models contain interactions with products of more than two Ising spins. Second, they
no longer have local order parameters, although they can still have two phases. For a
number of these systems, the order appears in the expectation value of the product of
the spins along a loop, called a Wilson loop. This shows, in the limit of large loops,
an area law at high temperatures and a perimeter law at low temperatures.

Such models, where the Ising spins are replaced by elements of groups, typically
the groups U(1), SU(2), and SU(3), have become important as lattice gauge models
in high-energy physics for the description of quarks and gluons.

In Section 5.2, I review the Kramers–Wannier duality for two-dimensional Ising
models. In Section 5.3, I introduce the model dual to the conventional three-
dimensional Ising model. In Section 5.4 I introduce the general concept of Ising models
and duality. In Section 5.5, this is applied to general lattices and in Section 5.6 to mod-
els on hypercubic lattices. The correlation functions are considered in Section 5.7. The
basic idea of lattice gauge theory is given in Section 5.8, and a useful lattice for the
discretization of Maxwell’s equations is mentioned in Section 5.9.

5.2 Kramers–Wannier duality

Kramers and Wannier [7, 10] predicted in 1941 the exact critical temperature of the
two-dimensional Ising model on a square lattice. They did this by comparing the high-
and low-temperature expansions for the partition function of this model. Consider a
square lattice with Ns = N1 ×N2 lattice points and periodic boundary conditions.
There is an Ising spin Si,j = ±1 at each lattice site. The Hamiltonian reads

H = −J
N1∑
i=1

N2∑
j=1

(Si,jSi,j+1 + Si,jSi+1,j). (5.1)
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5.2.1 High-temperature expansion (HTE)

We may rewrite the Boltzmann factor

e−βH =
∏
i,j

( coshK + Si,jSi,j+1 sinhK)( coshK + Si,jSi+1,j sinhK)

= (coshK)Nb
∏
i,j

(1 + Si,jSi,j+1 tanhK)(1 + Si,jSi+1,j tanhK), (5.2)

where K = βJ and Nb is the number of bonds. To determine the partition function,
we may expand this expression in powers of SS′ tanhK and sum over all spin config-
urations. This summation yields zero unless all spins appear with even powers. In this
latter case, the sum is 2Ns . This is the case when the interaction bonds form closed
loops. That is, at each lattice site, there meet an even number of bonds, as shown in
the upper row of Fig. 5.1.

The partition function can be expanded as

Z(K) = 2Ns(coshK)Nbf(tanhK), (5.3)

f(a) =
∑
l

cla
l. (5.4)

The coefficients cl count the number of closed loops of length l, c0 = 1, c2 = 0, c4 = Ns,
c6 = 2Ns, c8 = Ns(Ns + 9)/2, etc., with cl = 0 for odd l.

Fig. 5.1 [Colour online] Examples of closed loops in the HTE and Bloch walls in the LTE on
the dual lattice.
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5.2.2 Low-temperature expansion (LTE)

We now consider the low-temperature expansion on the dual lattice. The dual lattice
is obtained by placing a spin S∗(r∗) inside each of the squares (in general polygons) of
the original lattice. We multiply spins S∗ in polygons with a common edge and sum
over these products, which in the case of the square lattice is written as

H∗ = −J∗
∑
i,j

(S∗i−1/2,j−1/2S
∗
i−1/2,j+1/2 + S∗i−1/2,j−1/2S

∗
i+1/2,j−1/2). (5.5)

Assuming positive J∗, the states lowest in energy are those where all S∗ are equal.
Their energy is

E∗min = −NbJ
∗, (5.6)

where Nb = 2N∗s is the number of bonds.
Excited states are found by turning some spins, as in the bottom row of Fig. 5.1.

Reversing one spin costs an excitation energy 2lJ if the spin interacts with l other
spins. Quite generally, the excitation energy is given by 2lJ if the overturned spins are
surrounded by Bloch walls with a total number of l edges. In the case of the square
lattice, one obtains

Z∗(K∗) = 2eNbK
∗
f(e−2K∗

), (5.7)

with f defined in (5.4).

5.2.3 Comparison

Kramers and Wannier argued that if the partition function, or equivalently the free
energy, has a singularity at the critical point and no other singularity, then it must be
determined by

e−2Kc = tanhKc, (5.8)

which yields

Kc =
1
2

ln(1 +
√

2) = 0.4407, (5.9)

which indeed turned out to be correct from Onsager’s exact solution [8]. Thus, there
is a relationship between the partition function and similarly the free energy at high
(K < Kc) and low (K∗ > Kc) temperatures for

tanhK = e−2K∗ ⇐⇒ tanhK∗ = e−2K

=⇒ sinh(2K) sinh(2K∗) = 1. (5.10)

The square lattice is called self-dual, since the HTE and LTE are performed on
the same lattice. This is in contrast to the case of the triangular lattice, for which the
HTE is performed on the triangular lattice and the LTE on the honeycomb lattice;
see Fig. 5.2. Then, however, the HTE of the triangular lattice and the LTE of the
honeycomb lattice are given by the same sum f(a):

Zhte
3 (K) = 2Ns3(coshK)Nbf3(tanhK), Z lte

6 (K) = 2eNbKf3(e−2K), (5.11)
Zhte

6 (K) = 2Ns6(coshK)Nbf6(tanhK), Z lte
3 (K) = 2eNbKf6(e−2K), (5.12)
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Fig. 5.2 [Colour online] Triangular and dual hexagonal lattices. The thick [black] triangle
indicates a product of three interactions on the triangular lattice contributing to HTE and the
Bloch wall for an overturned spin on the hexagonal lattice. Similarly, the thick [red] hexagon
indicates a product of six interactions on the hexagonal lattice contributing to the HTE and
the Bloch wall of an overturned spin on the triangular lattice.

where the numbers Nb of bonds are equal in both lattices and Ns3 = Nb/3 and Ns6 =
2Nb/3. The coefficients cl in f3 and f6 count the number of closed loops on the
triangular and honeycomb lattices, respectively.

As a consequence, the partition functions Z3(K) and Z6(K∗) are directly related for
K and K∗ given by (5.10). One cannot directly read off the critical values Kc for these
lattices. However, the Ising model on the honeycomb lattice can be related to that on
the triangular lattice by means of the star–triangle transformation [10]. To do this, one
eliminates every other spin of the hexagonal lattice by summing

∑
S0

eKS0(S1+S2+S3).
This gives CeK

′(S1S2+S1S3+S2S3), which yields the Boltzmann factor of the Ising model
on the triangular lattice.

5.3 Duality in three dimensions

The basic question I asked myself when I started my paper [11] on duality in gener-
alized Ising models was: Does there exist a dual model to the three-dimensional Ising
model? It turned out that there is such a model, but of a different kind of interaction.
(Compare also [1].)

In order to see this, I consider the low-temperature expansion of the three-
dimensional Ising model on a cubic lattice. I start out from the ordered state and
then change single spins. These single spins are surrounded by closed Bloch walls. The
expansion of the partition function is again of the form (5.4), (5.7), but now with
c2 = 0, c4 = 0, c6 = Ns, c8 = 0, c10 = 3Ns, c12 = Ns(Ns − 7)/2, etc.

The HTE of the dual model must be given by an interaction such that only closed
surfaces yield a contribution. Thus, we locate a spin at each edge and introduce
the interaction as a product of the spins surrounding an elementary square called
a plaquette. Then the interaction of the dual model reads
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Fig. 5.3 [Colour online] Elementary cube with spins. The full and dashed [red] circles (ellipses)
connect the four spins that are multiplied in the interaction.

H = −J
∑
i,j,k

(Si+1/2,j,k+1/2Si+1/2,j+1/2,kSi+1/2,j,k−1/2Si+1/2,j−1/2,k

+ Si+1/2,j+1/2,kSi,j+1/2,k+1/2Si−1/2,j+1/2,kSi,j+1/2,k−1/2

+ Si+1/2,j,k+1/2Si,j+1/2,k+1/2Si−1/2,j,k+1/2Si,j−1/2,k+1/2). (5.13)

It is a sum over three differently oriented plaquettes. They are shown in Fig. 5.3.

S-independent products of R(b) The R(b)’s denote the products of four spins on
a plaquette as they appear in the Hamiltonian (5.13). From Fig. 5.3, it is obvious that
the product of the sixR(b)s around the cube does not depend on the spin configuration,
since each spin appears twice in the product.

Gauge invariance This model has a local gauge invariance. Turning all spins
around the corner of a cube does not change the energy of the configuration. As
an example, in Fig. 5.3, the three spins around the corner close to the centre are
reversed from the state in which all spins are aligned upwards.

5.4 General Ising models and duality

5.4.1 General Ising models

We consider models with Ns Ising spins on lattice sites r described by a Hamiltonian

βH = −
∑
b

K(b)R(b), R(b) =
∏
r

[S(r)]θ(b,r), θ(b, r) ∈ {0, 1}, (5.14)

where {0, 1} contains the two elements 0 and 1 of the ring modulo 2 with

0 + 0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = 1,

0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1.
(5.15)

We call the b bonds; there are Nb of them. The element θ(b, r) of the incidence matrix
θ assumes the value 1 if r belongs to the bond b; otherwise it is 0. Thus, R(b) is the
product of the Ising spins S(r) with θ(b, r) = 1. We denote the rank of the matrix
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θ modulo 2 by Nθ. Thus, at least one Nθ ×Nθ subdeterminant equals 1 modulo 2,
whereas all (Nθ + 1)× (Nθ + 1) subdeterminants equal 0 modulo 2. If we write

S(r) = (−)σ(r), R(b) = (−)ρ(b), σ(r), ρ(b) ∈ {0, 1}, (5.16)

then

ρ(b) =
∑
r

θ(b, r)σ(r) (5.17)

is the image of θ. If all K(b) are positive, then one ground state is given by S(r) = +1.
In general, there will be several ground states. They obey ρ(b) ≡ 0 mod 2 for all b.
These configurations σ0(r) constitute the kernel of θ:∑

r

θ(b, r)σ0(r) ≡ 0 mod 2. (5.18)

There are Ng = Ns −Nθ linearly independent solutions {σ0}, which yield 2Ng ground-
state configurations.

5.4.2 Duality

Besides the Ising model described by the Hamiltonian (5.14), we consider a second
Hamiltonian

β∗H∗ = −
∑
b

K∗(b)R∗(b), R∗(b) =
∏
r∗

[S∗(r∗)]θ
∗(b,r∗), (5.19)

with N∗s spins S∗(r∗) on lattice sites r∗. The bonds b are common to both Hamil-
tonians. Similarly, we introduce the rank N∗θ and obtain the ground-state degeneracy
2N

∗
g , with N∗g = N∗s −N∗θ .
The two models are called dual to each other if two conditions are fulfilled:

(i) the closure condition ∑
b

θ(b, r)θ∗(b, r∗) ≡ 0 mod 2 (5.20)

for all pairs r, r∗;
(ii) the completeness relation Nm = 0, where

Nm := Nb −Nθ −Nθ∗ . (5.21)

If these two conditions are fulfilled, and K(b) and K∗(b) are connected by (5.10), then
the partition functions of the two models are related by

Y {K} = Y ∗{K∗}, (5.22)

where

Y {K} = Z{K}2−(Ns+Ng)/2
∏
b

[cosh 2K(b)]−1/2, (5.23)

and similarly for Y ∗{K∗}.
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5.4.2.1 Derivation of (5.22) and (5.23)

The partition function Z{K} can be written in the HTE as

Z{K} =
∑
{S(r)}

e−βH

=
∑
{S(r)}

∏
b

eK(b)R(b)

=
∏
b

coshK(b)
∑
{φ(b)}

∏
b

[tanhK(b)]φ(b)
∑
{S(r)}

∏
b

[R(b)]φ(b), (5.24)

with φ(b) ∈ {0, 1} independent for all b. Since∏
b

[R(b)]φ(b) =
∏
r

[S(r)]
∑

b θ(b,r)φ(b), (5.25)

those φ(b) = φ0(b) contribute that satisfy the set of homogeneous equations∑
b

θ(b, r)φ0(b) ≡ 0 mod 2 (5.26)

for all r. Thus, φ0 is the kernel of the transpose θt of θ. Its dimension is Nb −Nθ.
Thus, there are in total 2Nb−Nθ solutions {φ0}. They contribute with a factor 2Ns .
Thus,

Z{K} = 2Ns
∏
b

coshK(b)
∑
{φ0(b)}

∏
b

[tanhK(b)]φ0(b). (5.27)

In the LTE, the partition function Z∗{K∗} reads

Z∗{K∗} =
∑

{S∗(r∗)}
e−β

∗H∗

= 2N
∗
g

∑
closed{b}

∏
b

eK
∗(b)R∗(b)

= 2N
∗
g
∏
b

eK
∗(b)

∑
{ρ∗}

∏
b

e−2K∗(b)ρ∗(b), (5.28)

since R∗(b) = 1− 2ρ∗(b). ρ∗ is the image of θ∗:

ρ∗(b) =
∑
r∗

θ∗(b, r∗)σ(r∗). (5.29)

Its dimension is dim im(θ∗) = N∗θ . Owing to the closure relation, ρ∗ satisfies the
homogeneous equations∑

b

θ(b, r)ρ∗(b) =
∑
b

∑
r∗

θ(b, r)θ∗(b, r∗)σ(r∗) ≡ 0 mod 2. (5.30)
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Thus, ρ∗ belongs to the kernel of θt with dimension dim ker(θ) = Nb −Nθ. If both di-
mensions are equal, dim im(θ∗) = dim ker(θ), then the completeness relation is fulfilled,
Nm = 0, and the partition function reads

Z∗{K∗} = 2N
∗
g
∏
b

eK
∗(b)

∑
{φ0}

∏
b

e−2K∗(b)φ0(b), (5.31)

with the kernel φ0 of θt as given in (5.26).
The sums over {φ0} are the same for Z{K} and Z∗{K∗} in (5.27) and (5.31).

Denoting

f{a} :=
∑
{φ0}

∏
b

a(b)φ0(b), C :=
∏
b

coshK(b)
[cosh 2K(b)]1/2

, (5.32)

we obtain

∏
b

eK
∗(b)

[cosh 2K∗(b)]1/2
= 2NbC (5.33)

and

Y {K} = 2(Ns−Ng)/2Cf(tanhK), (5.34)

Y ∗{K∗} = 2(Nb+N∗
g−N∗

s )/2Cf(e−2K∗
) = 2(Ns−Ng+Nm)/2Cf(e−2K∗

). (5.35)

This yields the duality relation (5.22) for Nm = 0.
If Nm > 0, then the summation in (5.31) does not extend over the full set {φ0}.

Denoting the sum (5.31) by f ′{a} instead of f{a}, we then have

Y ∗{K∗} = 2(Ns−Ng+Nm)/2Cf ′(e−2K∗
). (5.36)

Since all terms in the sum f are positive, we obtain f ′ < f and thus the inequality

Y ∗{K∗} < 2Nm/2Y {K}. (5.37)

We have obtained this relation from the HTE of Z and the LTE of Z∗. If instead we
consider the HTE of Z∗ and the LTE of Z, then we obtain a similar second inequality,
and, in total,

2−Nm/2Y {K} < Y ∗{K∗} < 2Nm/2Y {K}. (5.38)

The difference in the free energy per lattice site vanishes in the thermodynamic limit
owing to the factors N±1/2

m in (5.38), if Nm does not increase in the thermodynamic
limit.
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5.4.2.2 Example: two-dimensional Ising model

The two-dimensional Ising model with Ns spins on the square lattice yields N∗s = Ns,
Nb = 2Ns, Ng = N∗g = 1, and thus Nm = 2. The closed loops that show up in the HTE
but not in the LTE are those where one loop runs around the torus in one or the other
or both directions. This corresponds to antiperiodic boundary conditions. Denoting the
partition function with boundary conditions Si,j = sxSi+N1,j = sySi,j+N2 by Zsx,sy

,
we obtain the exact relation

Y {K} =
1
2
(Y++{K∗}+ Y+−{K∗}+ Y−+{K∗}+ Y−−{K∗}). (5.39)

The difference in the free energy per lattice site due to the factors N±1/2
m in (5.38)

vanishes in the thermodynamic limit.

5.5 Lattices and Ising models

5.5.1 Lattices and their dual lattices

The models considered so far, will now be generalized to arbitrary dimension d. We
call k-dimensional hypercells k-cells. We divide the d-dimensional hypervolume into
Cd d-cells B(d). These are bounded by (d− 1)-cells B(d−1). Generally, the k-cells B(k)

are bounded by (k − 1)-cells B(k−1) and the number of k-cells is denoted by Ck. The
0-cells are simply the C0 corners B(0) of the d-cells.

We associate lattice points r(k) with the k-cells B(k). Their location will be specified
more precisely below.

The dual lattice is obtained in the following way. The points r(d) are the corners of
the dual lattice. Pairs of points r(d) are connected by 1-cells B∗(1) if the corresponding
two cells are separated by a common B(d−1). The 1-cells B∗(1) crossing the cells
B(d−1) around a given cell B(d−2) form the boundary of a 2-cell B∗(2). Generally, the
k-cells B∗(k) crossing the cells B(d−k) around a cell B(d−k−1) form the boundary of a
(k + 1)-cell B∗(k+1). It is reasonable to define the intersection of a cell B∗(k) with its
corresponding cell B(d−k) as the point r∗(k) = r(d−k). Thus, the number of cells B∗(k)

is equal to the number of points r∗(k): C∗k = Cd−k.
We define the incidence matrix

θ(r(k+1), r(k)) =

{
1 if B(k) is on the boundary of B(k+1),

0 if B(k) is not on the boundary of B(k+1).
(5.40)

Closure relation An important property of the lattices is the closure relation.
Consider a pair r(k+1) and r(k−1). They lie in cells B(k+1) and B(k−1). Then∑

r(k)

θ(r(k+1), r(k))θ(r(k), r(k−1)) ≡ 0 mod 2. (5.41)

Proof. If B(k−1) is on the boundary of B(k+1), then two cells B(k) on the boundary
of B(k+1) have B(k−1) as boundaries. If B(k−1) is not at the boundary of B(k+1), then
none of the B(k) on the boundary ofB(k+1) has B(k−1) as boundary. This proves (5.41).
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5.5.2 Models on the lattice

The model Mdn has Cn−1 spins on lattice sites r(n−1) with an interaction defined by
the bonds:

R(b) =
∏
r(n−1)

[S(r(n−1))]θ(r
(n)(b),r(n−1)). (5.42)

The dual model M∗d,d−n has C∗d−n+1 = Cn−1 spins at lattice sites r(n+1):

R∗(b) =
∏
r(n+1)

[S∗(r(n+1))]θ(r
(n+1),r(n)(b)). (5.43)

Together, these define, with couplings K and K∗, the models (5.14) and (5.19). Since
there is a one-to-one correspondence between the bonds b and the sites r(n), we shall
use interchangeably b(r(n)) and r(n)(b).

5.5.2.1 Gauge invariance

Changing all spins close to a point r(n−2),

S(r(n−1)) → (−)θ(r
(n−1),r(n−2))S(r(n−1)), (5.44)

does not change the energy of the system, since any R(b) is multiplied by

(−)
∑

r(n−1) θ(r
(n−1),r(n−2)))θ(r(n)(b),r(n−1)), (5.45)

which, owing to the closure relation (5.41), yields 1.

5.5.2.2 Spin-independent products of R(b)

The product over all R(b) around a given r(n+1), i.e.∏
b

R(b)θ(r
(n+1),r(n)(b)) =

∏
r(n−1)

S(r(n−1))
∑

r(n) θ(r
(n),r(n−1))θ(r(n+1),r(n)) = 1, (5.46)

does not depend on the spin configuration, since it yields 1 owing to the closure relation
(5.41). Of course, products of these products are also spin-independent.

5.5.3 Euler characteristic and degeneracy

5.5.3.1 Generalized Euler characteristic

The well-known Euler characteristic in d = 2 dimensions,

χ = C0 − C1 + C2, (5.47)

where C0 is the number of vertices (corners), C1 the number of edges, and C2 the
number of faces, depends only on the topology of the surface. For the plane, χ = 2,
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if the outer face is also counted. For the torus, χ = 0. This characteristic can be
generalized to an arbitrary dimension d:

χ =
d∑

m=0

(−)mCm. (5.48)

Any lattice with the same boundaries (topology) can be created from any other by
repeated application of the following action and its inverse:

• An m-cell is divided into two such cells by creating an (m+ 1)-cell between them.
Then both Cm and Cm+1 increase by 1 and χ is conserved.

For periodic boundary conditions, χ = 0, since we may cut the lattice in one direc-
tion, double it, and glue the two parts together. Then all Cm have doubled, and χ = 2χ
and thus vanishes. It is presumed that it is not possible to introduce an additional
‘wall’ B(d−1) in any periodic direction that does not intersect any of the original cells
B(d−1). See Fig. 5.4.

5.5.3.2 Degeneracy

We consider the change in Ng resulting from the application of the action defined
below (5.48). For m > n, the Hamiltonian is unchanged. For m = n, one bond and
thus one interaction is duplicated without change of degeneracy. For m = n− 1, one
spin is duplicated, but for the ground state both must be equal. For m = n− 2, there
is also one additional spin. Taking this spin aligned upwards, we again obtain the
ground state. But, by changing the signs of all spins lying on bonds adjacent to one
B(n−1) at the boundary of the new bond, we obtain another ground state. Then the
system has twice the degeneracy of the original system. The Hamiltonian does not
change for m < n− 2. Therefore, we obtain

Ng = tg +
n−2∑
m=0

(−)n−mCm, (5.49)

where tg depends only on the boundary condition. Similarly, we obtain

N∗g = t∗g +
d∑

m=n+2

(−)m−nCm. (5.50)

Fig. 5.4 [Colour online] Example of two-dimensional lattices in a periodicity square. The first
three examples do not yield χ = 0, since the walls indicated by the dashed [red] lines do not
intersect any edges. The last two examples yield χ = 0.
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Thus,

Nm = Nb −Ns +Ng −N∗s +N∗g

= Cn − Cn−1 − Cn+1 +Ng +N∗g

=
d∑

m=0

(−)n−mCm + tg + t∗g

= (−)nχ+ tg + t∗g. (5.51)

We argue after (5.56) that

tg =
(
d− 1
n− 1

)
, t∗g =

(
d− 1

d− n− 1

)
, Nm =

(
d

n

)
, (5.52)

for periodic boundary conditions. Thus, Nm does not depend on the size of the model.

5.6 The models Md,n on hypercubic lattices

We consider now the modelsMd,n on hypercubic lattices. The k-cells are k-dimensional
hypercubes with edges of unit length around r(k). The lattice points r(k) have k integer
coordinates and (d− k) half-integer coordinates, i.e. they are 1

2
modulo 1. The k-cells

are defined by

r
(k)
i − 1

2
< xi < r

(k)
i +

1
2

for r
(k)
i ∈ Z,

xi = r
(k)
i for r

(k)
i ∈ Z +

1
2
.

(5.53)

The coordinates of the dual model are r∗(k) = r(d−k), and the corresponding k-
dimensional hypercubes are given by

r
∗(k)
i − 1

2
< xi < r

∗(k)
i +

1
2

for r
∗(k)
i ∈ Z +

1
2
,

xi = r
∗(k)
i for r

∗(k)
i ∈ Z.

(5.54)

We assume periodic boundary conditions, and then

Ck = Cd−k = C∗k = C∗d−k =
(
d

k

)
Cd. (5.55)

The model Mdn has spins on sites r(n−1). The dual model M∗d,d−n has spins on sites
r(n+1) = r∗(d−n−1). Thus, the model M∗d,d−n is the model Md,d−n shifted by 1

2 in all
coordinates.

Because of the above conditions, r(n+1) and r(n−1) can only have bonds in common
if they agree in d− 2 coordinates and differ only in 2 coordinates. Let these different
coordinates be (i, j) and (i± 1

2 , j ±
1
2 ). Then they have two bonds in common as

claimed before: (i, j ± 1
2 ) and (i± 1

2 , j) and fulfil the closure condition.
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5.6.1 Gauge invariance and degeneracy

If n > 1, then one may reverse all spins closest to a given point r(n−2) without changing
the energy of the system. Thus, these systems have a local gauge invariance. This leads
to a high degeneracy of the ground state. From (5.49), we obtain

Ng = tg +
n−2∑
m=0

(−)n−m
(
d

m

)
Cd = tg +

(
d− 1
n− 2

)
Cd. (5.56)

tg is determined by considering only one hypercube Cd = 1 in the periodic lattice.
We obtain Ng = Ns, since periodic boundary conditions require that the spins in the
products R(b) be pairwise equal, and we obtain tg as given in (5.52). Thus,

Ng =
(
d− 1
n− 1

)
+
(
d− 1
n− 2

)
Cd. (5.57)

Similarly, we obtain

N∗g =
(

d− 1
d− n− 1

)
+
(

d− 1
d− n− 2

)
Cd, (5.58)

and t∗g and Nm, as given in (5.52).

5.6.2 Self-duality

The model Mdn on the hypercubic lattice is self-dual if d = 2n. This is the case for
M2,1, which is the two-dimensional Ising model on the square lattice. But the four-
dimensional model M4,2 with the plaquette interaction is also self-dual. Both have
a phase transition at Kc = 0.4407, (5.9). The Ising model M2,1 shows a continuous
transition. Creutz, Jacobs, and Rebbi [2] investigated the model M4,2 using Monte
Carlo techniques. They determined 〈R(b)〉 as a function of K and found a first-order
transition with hysteresis. When K was decreased, the system showed superheating
until about 0.48, and when K was increased, undercooling was found until about 0.40.
Starting from a mixed phase, the phase transition was located between 0.43 and 0.45.

Duality can be generalized to Abelian groups Z(N). Let S(r) = e2πip/N , with p =
0, . . . , N − 1, and let the energy assigned to the product of two spins in states p and
p′ be Ep−p′ . The weights ωp−p′ = e−βEp−p′ and their duals are then related by the
Fourier transform [12]

ω∗p = N−1/2
∑
p′

e2πipp′/N ωp′ . (5.59)

This can be generalized to the models Mdn. The models M42 are self-dual for ZN with
N = 3, 4 and the critical Kc’s have been determined [6, 16]. Monte Carlo calculations
[3] confirm these transition temperatures for N = 3, 4. Corresponding calculations
yield two phase transitions for N ≥ 5. For more general aspects of duality for Abelian
groups, see Section 6.1.4 in [4].
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5.7 Correlations

Non-vanishing correlations are only obtained for gauge-invariant products. These are
products of R(b). In particular, we consider the product of spins on the boundary of
an n-dimensional hypercube of Mdn. The HTE yields

〈∏
r

S(r)

〉
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[ tanhK + 2(d− n)(tanhK)1+2n + . . . ]υ for n > 1,

1
2 [ tanhK + [2(d− 1)]1/2(tanhK)2 + . . . ]υ

+ 1
2 [ tanhK−[2(d− 1)]1/2(tanhK)2 + . . . ]υ for n = 1,

(5.60)

where υ is the volume of the hypercube, which for n = 1 is the distance between the
two spins and for n = 2 the area spanned by the spins. The LTE yields

〈∏
r

S(r)

〉
=

⎧⎨⎩(1− e−4(d−n+1)K + . . . )f for n < d,

(1− 2e−2K + . . . )υ for n = d,
(5.61)

where f is the hyperarea of the boundary of the hypercube, which for n = 1 is the
number f = 2 of ends of the line and for n = 2 the perimeter of the square. Thus,
the behaviour of the correlation functions of large hypercubes differs in the high- and
low-temperature phases, and we expect

〈∏
r

S(r)

〉
∝

⎧⎨⎩e−υ/υ0(T ) for T > Tc, n < d,

e−f/f0(T ) for T < Tc, n < d.
(5.62)

We attribute the qualitatively different asymptotic behaviour in the two temperature
regions to different states of the system above and below a critical temperature Tc.

5.7.1 The model Mdd

The only restriction on the R(b) is that the product of all of them equals 1.
Consequently, the partition function reads

Z(K) = 2Ns
[
(coshK)Nb + (sinhK)Nb

]
. (5.63)

The expectation value of a product of υ factors R yields〈∏
b

R(b)

〉
=

(tanhK)υ + (tanhK)Nb−υ

1 + (tanhK)Nb
. (5.64)

The models Mdd do not show a phase transition. Among these models is M11, a closed
linear chain of Ising spins.
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5.7.2 Dislocations

We consider systems with magnetic dislocations. Let the operator M(b) change the
sign of K(b). We introduce φ∗(b) = 1 for bonds with changed signs and φ∗(b) = 0 for
bonds with unchanged coupling. Then the expectation value of the product of the
M(b)’s is 〈∏

b

M(b)φ
∗(b)

〉
=

〈∏
b

e−2φ∗(b)K(b)R(b)

〉

=
Z{(−)φ

∗
K}

Z{K} =
Y {(−)φ

∗
K}

Y {K} . (5.65)

From (5.10), we obtain tanh[(−)φ
∗
K] = e−2K∗−iπφ∗

and thus〈∏
b

M(b)φ
∗(b)

〉
=
Y {K∗ + iπφ∗/2}

Y {K∗}

= i−
∑

b φ
∗(b)

〈∏
b

eiπφ∗(b)R∗(b)/2

〉
{K∗}

=

〈∏
b

R∗(b)φ
∗(b)

〉
{K∗}. (5.66)

5.7.2.1 Interpretation

Kadanoff and Ceva[5] introduced this concept for the two-dimensional Ising model
M2,1. Take a sequence of bonds b indicated by either the black [blue online] or the
grey [green] bars between the two spins at the sites indicated in Fig. 5.5 by two black

Fig. 5.5 [Colour online] Correlation between the two spins at the dots.
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[red] circles. Then 〈
∏
bR
∗(b)〉 is the product of these two Ising spins at K∗. It is equal

to the ratio of the partition functions with the changed bonds and with the unchanged
bonds, and thus to the exponential of the difference ΔF of the free energy without
and with the changed bonds at K:

〈S(r∗)S(r∗′)〉(K∗) = e−βΔF (K). (5.67)

If K is in the paramagnetic region, then the disturbance of the bonds yields a contri-
bution to ΔF only close to the points, where this line of bonds ends. Thus, for large
separation of the two spins, it approaches a finite value, which corresponds to the
square of the magnetization at K∗. On the other hand, if K is in the ferromagnetic
region, then the disturbance will change the free energy proportionally to the distance
between the two spins S(r∗) and S(r∗′), which yields an exponential decay of the
correlation function.

Let us now consider M3,1 and M3,2. Change the sign of the interaction∑
ij SijkSijk+1 over a whole region (area) in the plane spanned by ij. Analogous

to the two-dimensional Ising model, the change ΔF (K) will be proportional to the
perimeter f for paramagnetic K and proportional to the area υ for ferromagnetic K.
The product

∏
bR
∗(b) is now the product of the Ising spins along the perimeter of the

dislocations. Consequently, the expectation value decays proportionally to e−f/f0(T
∗)

at low temperatures T ∗ and proportionally to e−υ/υ0(T
∗) at high temperatures T ∗, in

accordance with (5.62).

5.7.2.2 Local order parameter

If all states are taken into account, non-zero correlations are obtained only from prod-
ucts of R’s. For n = 1, the product of two spins S(0)S(r) can be written as a product
of R’s. For n > 1, products of spins

∏
k S(ak)

∏
l S(r + al) with ak and al restricted

to some finite region |ak| < c, |al| < c yield non-vanishing correlations for distances
r > 2c only if both

∏
k S(ak) and

∏
l S(r + al) are separately gauge-invariant, i.e. if

they are expressed as finite products of R’s. However, with (5.65) and (5.66), expect-
ations of products of R’s in one phase can be expressed as correlations in the other
phase: 〈 ∏

some b

R(b)

〉
{K} =

〈 ∏
same b

[cosh 2K∗(b)−R∗(b) sinh 2K∗(b)]

〉
. (5.68)

Thus, since there is no long-range order in the high-temperature phase, there can be
none in the low-temperature phase:

lim
r→∞

[〈∏
k

S(ak)
∏
l

S(r + al)

〉
−
〈∏

k

S(ak)

〉〈∏
l

S(al)

〉]
= 0. (5.69)

Thus, there is no local order parameter for models Mdn with n > 1. This argument
does not apply for n = 1, since in this case the number of R’s in the product increases
with |r|.
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5.8 Lattice gauge theories

We have seen that models Mdn with n > 1 show local gauge invariance. Such models
are related to quantum chromodynamics (QCD). The basic idea first formulated by
Wilson [14] is to start from the lattice that we introduced as M42. (For a retrospect by
Wilson, see [15]. Many reprints on this subject are compiled in Rebbi’s book [9]). The
degrees of freedom are now denoted by U in place of S. These U ’s are elements of a
group. It may be a finite or a continuous group, it may be Abelian or non-Abelian. In
the case of QCD, one considers the ‘colour’ group SU(3). Let us denote the U placed
on the link between lattice sites i and j by Uij , where one requires Uji = U−1

ij . The
action is a sum of terms

g−2
∑

plaquettes

{
1− 1

N
Re[tr(UijUjkUklUli)]

}
, (5.70)

where N is the dimension of U . In addition, we introduce quarks (fermions) with
interaction

g′−2
∑
links

ψi
†Uijψj . (5.71)

These interaction terms are invariant under local gauge transformations

ψj → Gjψj , ψ†j → ψ†jG
†
j , Uij → GiUijG

†
j . (5.72)

The couplings depend on the temperature and pressure of the hadron system. At low
temperature and pressure, the correlations fall off with an area law. Since the action is
an integral over time, this behaviour corresponds to an increase in the effective poten-
tial between quarks proportional to the distance between them. The gradient of the
potential is called the string tension and is given by 1/υ0(T ) in (5.62). This potential
binds three quarks, which constitute a hadron. Or one quark and one antiquark are
bound, constituting a meson. Generally, the difference between the numbers of quarks
and antiquarks has to be a multiple of three. At high temperature and high pressure,
the system forms a quark–gluon plasma. This corresponds to the phase in which the
correlation increases proportionally to the perimeter of the loop. Then the effective
potential between the quarks stays finite at large distances and the quarks are free to
move in this plasma.

5.9 Electromagnetic field

The electromagnetic field in quantum electrodynamics (QED) and its coupling to
charged particles can be described similarly, with the group U(1):

Uij = exp
(

i
∫ i

j

Aμ dxμ
)
. (5.73)
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Then

tr(Ur,r+aμeμ
Ur+aμeμ,r+aμeμ+aνeν

Ur+aμeμ+aνeν ,r+aνeν
Ur+aνeν ,r)

≈ exp
[
iaμaνFμν

(
r +

1
2
(aμeμ + aνeν)

)]
, (5.74)

with the electromagnetic field tensor

Fμν = ∂μAν − ∂νAμ. (5.75)

Since only the real part of tr(
∏
U) contributes, one obtains in leading order the well-

known action of the electromagnetic field proportional to FμνF
μν . If one takes the

continuum limit (a→ 0), then only these terms survive.
The discretized Maxwell equations can be solved on such a lattice [13]. One places

the components Aμ on sites r(1), the six electromagnetic field components Fμν on
sites r(2), and the components of the charge and current densities on sites r(1). Lorenz
gauge and charge conservation can be put on sites r(0).
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6.1 Overview

In these lectures, we will mainly be interested in how the concept of topological insula-
tors generalizes when we include interactions. More generally, we discuss the interplay
of symmetry and topology. Traditionally, phases of matter were distinguished on the
basis of symmetry alone. On the other hand, fractional quantum Hall (FQH) phases
are examples of topological states whose essential character does not require a discus-
sion of symmetry. However, topological insulators are an example of a new phase of
matter that combines both symmetry and topology.

To generalize the concept of topological insulators to strongly interacting systems,
we will need some definitions to limit the set of states we study and hence allow us to
make progress. Previously, the thinking was that phases like the integer quantum Hall
(IQH) state can occur in free-fermion models, and the new physics that interactions
bring are FQH phases. Now we understand that there is some space between these
two—there are states that retain the essential physical character of IQH states, but
require interactions. Partly, the advances occurred by sharply defining what we mean
by ‘IQH-like’ states—by identifying short-range entanglement as an essential property.

Throughout, we will discuss phases with an energy gap in the bulk and will focus
on zero-temperature properties. Often, we will be interested in new phases of matter,
but some of the most striking results will expose phenomena connected to well-known
phases like topological insulators and superconductors that are obscured by the free-
particle description.

To whet the reader’s appetite, we begin by mentioning three striking theoretical
results that emerge on including the effects of interactions. Establishing these will be
the goal of these lectures.

• IQH states of electrons have long been believed to be characterized by, of course,
an integer (Z), which is the Hall conductance in units of e2/h. We will see that
this is modified in the presence of interactions—actually, the classification is by
two integers (Z× Z)—and this family of states retains the essential properties of
IQH phases.

• It was believed that if the conducting surface of a three-dimensional (3D) topo-
logical insulator is made insulating, this must be because the time-reversal
symmetry is broken, either spontaneously or by the application of external fields.
It has recently been understood that you can have your cake and eat it too—that
there exist strongly interacting surface phases of a 3D topological insulator that
are insulating but retain time-reversal symmetry. The price to be paid is that
this state must have fractional excitations at the surface, i.e. excitations with
fractional charge and fractional (or anyonic) statistics. In fact, it must realize a
particularly exotic version of fractional statistics, namely non-Abelian statistics.
The simplest version of this state is closely related to the celebrated Read–Moore
Pfaffian state, but with a twist.

• We are used to thinking of the surface states of topological phases (say of 3D
phases) as being ‘impossible’ to realize in a purely 2D system with the same
symmetries. Indeed, this is generally true—even the new interacting surface phase
of a topological insulator cannot be realized in a purely 2D system. However, the
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set of topological superconductors protected by time-reversal symmetry (class
DIII) are labelled by an integer ν according to the free-fermion classification.
Roughly, this counts the number of Majorana cones (which are like ‘half’ of a
Dirac cone) present at the surface. From the free-fermion point of view, all these
surface states are ‘impossible’ 2D states. However, with interactions, we will show
that while ν = 1, 2, . . . , 15 are all indeed impossible in 2D states, the surface of
ν = 16 can be realized in a purely 2D but interacting model. This also means that
the integer classification is broken down: Z → Z16.

All these are statements about adding interactions to many-electron states. But to
make progress, we will need to take a diversion and study topological phases of bosons
or, equivalently, spins. Results there are integrally connected to a deeper understanding
of interacting electronic topological insulators and superconductors. Moreover, they
might be realized in experiments on ultracold bosons or frustrated magnetic models.
We will discuss some ideas along these lines, but it is fair to say that conceptual theory
is well ahead of experiments and model building in this area. However, the spectacular
success of the theory of topological insulators in connecting with experiments makes
us optimistic. There are even strongly correlated materials that have been proposed
to be in this phase.

6.2 Quantum phases of matter. Short-range versus
long-range entanglement

How do we distinguish different phases of matter? We will be particularly interested in
the zero-temperature state, i.e. the ground state of an interacting bunch of particles.
Typically, the phases of matter are only sharply defined in the limit of an infinite
number of particles. Then, two states belong to different phases if they are necessarily
separated by a phase transition at which properties change in a singular fashion. For
some time, people thought that they knew how to diagnose this. The answer, they
believed, had to do with symmetry—at the fundamental level, breaking symmetry in
different ways led to different phases. For example, in the quantum Ising model, with
two-level systems arranged on a line, with Hamiltonian

H = −J
∑
i

(
σzi σ

z
j + gσxi

)
, (6.1)

there is a symmetry or flipping of the spin: σz → −σz (similarly for the y spin dir-
ection). This Z2 symmetry is spontaneously broken if g is small, while it is restored
if g is sufficiently large. Thus, there are two phases, which can be distinguished by
the order parameter 〈σzi 〉. Symmetry is key to having a sharp distinction—if it is bro-
ken by hand, for example by adding a field along σz, then the phase transition can
be converted into a crossover. For a while, it was thought that all phases of matter
(apart from a few well-characterized outliers like metals) could be identified by such
a procedure.

However, Wegner came up a model that could be shown to have two phases that
shared the same symmetry. Today, we understand that they differ in their topology.
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A spin model with no spin symmetry

But two phases!
Phase 2

0
0

0.1

0.1

0.2

0.2

Phase 1 (II)

(III)

hz
˜

hx
˜

H = – σzσzσzσz – σxσxσxσx – hx σx – hz σz
∑ ∑ ∑ ∑

Fig. 6.1 [Colour online] The toric code model with generic perturbations, which has two phases
although they have the same symmetry. Phase 2 is gapped but has long-range entanglement—as
evidenced by the presence of ground-state degeneracy with periodic boundary conditions and by
anyon excitations with non-trivial mutual statistics. (Phase diagram adapted with permission
from [28]. Copyrighted by the American Physical Society.)

Here is the modern avatar of that model, the Kitaev toric code, which also has two-level
systems on the vertices of a 2D square lattice [16]. The coupling takes the following
form, and includes four spin couplings around the plaquettes (see Fig. 6.1):

H = −
∑
black

σzi σ
z
jσ

z
kσ

z
l −

∑
white

σxi σ
x
j σ

x
kσ

x
l − hz

∑
i

σzi − hx
∑
i

σxi . (6.2)

One of the two phases in this model is a ‘trivial’ phase, which can be thought of
as a product state of spins pointing along a certain direction. The other phase does
not have any representation as a product state of a site or finite group of sites. It can
be thought of as a condensate of closed loops, where the loops are formed by linking
σz = −1 spins for example. There are two kinds of point excitations in this phase,
which violate the individual plaquette terms. One is called a ‘charge’ and the other a
‘vortex’. Despite ultimately being built out of bosons (the spins can equally be thought
of as occupying sites with hard-core bosons), the excitations have unusual statistics.
Taking one around another leads to a −1 sign, and hence they are mutual semions.
This is an example of fractional statistics, in the generalized sense, which includes
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both exchange of identical particles as well as mutual statistics. It is an indication
of long-range entanglement (LRE). Another signature is that when the system is
defined with periodic boundary conditions (i.e. on a torus), there is a ground-state
degeneracy. The degenerate states appear identical with respect to any local operator
(the degeneracy itself can be understood since the Hamiltonian is a local operator).
We define a short-range-entangled phase as one that does not have these properties:

• A short-range-entangled (SRE) state is a gapped phase with a unique ground state
on any closed manifold. All excitations (particles with short-range interactions)
have conventional statistics.

For example, if the phase is built of bosons, all excitations are bosonic with trivial
mutual statistics.

We also allow for the possibility of a symmetry specified by a group G. We will re-
strict attention to internal symmetries; i.e. we will not consider symmetries that change
spatial coordinates, such as inversion, reflection, or translation. Common internal sym-
metries that are encountered in condensed matter physics are charge conservation,
various types of spin-rotation symmetry, and time-reversal symmetry. The advantage
of working with internal symmetries is that we can consider disordered systems that
respect the symmetry. Also, the symmetries can be defined at the edge, whereas for
spatial symmetries, one may require a special edge configuration to preserve symmetry.
Some spatial symmetries, such as inversion, are always broken at the edge.

Gapped SRE ground states that preserve their internal symmetries differ from
the trivial phase only if they possess edge states. (For 1D systems, the edge states
are always gapless excitations, and rigorous statements can be made using a matrix
product state representation of gapped phases [7, 10, 23, 29].)

The fact that SRE topological phases differ only at the edge, not in the bulk (unlike
LRE states), makes them much easier to study. The set of SRE topological phases in
a given dimension with symmetry G actually has more structure than just a set. If we
add the trivial phase as an ‘identity’ element, the set of phases is actually an Abelian
group. The operations for the group are shown in Fig. 6.2. The addition operation
is obvious: take two states and put them side by side. But it is not so obvious that
a state has an inverse: how is it possible to cancel out edge states? Two copies of
a topological insulator cancel one another, because the Dirac points can be coupled
by a scattering term that makes a gap. The inverse of a phase is its mirror image
(i.e. with one of the coordinates reversed). To see this, we must show that the state
and its mirror image cancel; the argument is illustrated at the bottom of Fig. 6.2. In
one dimension, for example, take a closed loop of the state and flatten it. The ends
are really part of the bulk of the loop before it was squashed, so they are gapped.
Therefore, this state has no edge states. Because topological SRE phases are classified
by their edge states, it must be the trivial state. Therefore, a Hamiltonian describing
the inverse of a particular state H(x, y, z, . . .) is, for example, H(−x, y, z, . . .). SRE
phases protected by a symmetry are termed symmetry-protected topological (SPT)
phases [5].
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a

b
Can add phases:

Can subtract phases:
(x, y,...)     (–x, y,...)

+

–a

a

Fig. 6.2 SRE phases that preserve a symmetry must form an Abelian group. This is not true
for LRE phases, which typically become more complicated when they are combined.

6.3 Examples of SRE topological phases

Let us give a couple of concrete examples of SRE topological phases of bosons/spins.
These are necessarily interacting—unlike free fermions, there is no ‘band’ picture here.

6.3.1 Haldane phase of S = 1 antiferromagnet in d = 1

The following simple Hamiltonian actually leads to a gapped phase with SRE, but
gapless edge states:

H = J
∑
i

�Si · �Si+1. (6.3)

The edge realizes effectively a S = 1
2 state, despite the chain being built of S = 1 spins.

This phenomena has been observed experimentally in some nickel-based insulating
magnets, such as Y2BaNiO5. The Ni atoms form S = 1 spins, organized into chain-like
structures that are relatively well isolated from one another .

The symmetry that is crucial to protecting this phase is SO(3) spin-rotation sym-
metry. However, it turns out that the full rotation symmetry is not required. It is
sufficient to retain just the 180◦ rotations about the x, y, and z axes. This symmetry
group {I,X, Y, Z} contains the identity and the three rotation elements. This can be
written as {I,X} × {1, Y }, since Z = X × Y , i.e. the combination of two rotations is
the third rotation. Mathematically, this group is Z2 × Z2. We will write down a model
with this rotation symmetry that, although it does not quite reduce the S = 1 down
to this symmetry, has the advantage of being exactly soluble—not just for the ground
state but also for all the excited states. This model also has a nice interpretation,
namely of arising from condensing domain walls bound to spin flips.

6.3.2 An exactly soluble topological phase in d = 1

Consider a spin model with Z2 × Z2 symmetry. There is a Z2 set of topological phases
with this symmetry in d = 1, and we will explicitly construct the non-trivial topological
phase. We will implement this symmetry by means of a pair of Ising models (labelled
σ and τ) that live on a zigzag lattice as shown in Fig. 6.3. Consider beginning in
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τ

σ

Fig. 6.3 [Colour online] An exactly soluble model of a 1D SRE phase with gapless edge states
protected by Z2 × Z2 symmetry. Terms in this Hamiltonian encourage binding of domain walls
to spin flips. The topological phase emerges on condensing these ‘decorated’ domain walls.

the ordered state of the σ, but with the τ disordered and pointing along a transverse
field τx. Now, we would like to restore the Z2 symmetry of the σ spins. We do this
by condensing the domain walls of the σ spins. If we directly condense domain walls,
we get the trivial symmetric state. However, we can choose to condense domain walls
with a spin flip of τ attached. We will see that this gives the topological phase [8].

One way to do this is to write down a Hamiltonian that would lead to this binding.
Note that the operator σzi σ

z
i+1 detects a domain wall. Consider

H = −
∑
i

(
σz2iτ

x
2i+1σ

z
2i+2 + τ z2i−1σ

x
2iτ

z
2i+1

)
, (6.4)

where we have placed the σ (τ) on the even (odd) sites of the lattice. In the absence
of a domain wall, we have the usual transverse field term, whose sign changes when
a domain wall is encountered. We will show that this is a gapped phase with SRE,
but has gapless edge states. In fact this Hamiltonian was previously discussed in the
context of generating ‘cluster states’ [27]

First, consider the system with periodic boundary conditions. We will leave it as
an exercise to show that each of the terms in the Hamiltonian (6.4) commutes with
all the others. Then, for a system with N sites, we have exactly N terms, which can
be written as

H = −
∑
i

(
σ̃x2i + τ̃x2i+1

)
, (6.5)

where the tilde indicates the three spin operators in the Hamiltonian (6.4). Hence,
this simply looks as if each site has a modified transverse field, which implies a unique
ground state and a gap, in this system with periodic boundary conditions.

Now consider open boundary conditions as shown. Let us focus on the left edge,
where the end of the chain implies that we lose the σ̃x operator. This will result
in a twofold degeneracy, as we will show. The first term in the Hamiltonian is now
−σz0τx1 σz2 . We can easily show that the two operators Σz = σz0 and Σx = σx0 τ

z
1 commute

with the Hamiltonian. However, they anticommute with one another. Hence, we can
show that the ground state must be at least twofold-degenerate. Suppose that we
have a unique ground state of the Hamiltonian, |ψ〉. This must be an eigenstate of
Σz, since it commutes with the Hamiltonian. Let us say Σz|ψ〉 = λ|ψ〉, where λ =
±1. However, we can find an independent state |ψ′〉 = Σx|ψ〉. This is a degenerate
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state, since [Σx, H ] = 0. It is also a distinct state, since it has a different eigenvalue
Σz|ψ〉 = −λ|ψ〉, owing to ΣzΣx = −ΣxΣz. Hence, there are at least two ground states,
(|ψ〉, |ψ′〉). They differ only by application of an edge operator, and hence this is an
edge degeneracy.

Note that it is important that we preserve the symmetry—if we add Σa to the
Hamiltonian, then we can gap the edge state, but at the expense of also breaking
the Z2 × Z2 symmetry. Hence, this is called a symmetry-protected topological (SPT)
phase. This model has special properties that make it exactly soluble—but the addition
of general perturbations that are local and preserve the symmetry leads to a more
generic state. The presence of an energy gap implies that the state is stable against
weak perturbations, which means that it will remain in the same phase.

Some of this material can be found in the review [30].

Exercise 6.1 Verify that the terms in (6.4) commute with one another, in a chain with
periodic boundary conditions. With open boundaries, explicitly write out a Hamiltonian and
check that the edge operators Σa commute with it.

Exercise 6.2 Use the Jordan–Wigner procedure to map (6.4) onto fermion operators. Recall

that, for the 1D quantum Ising model, the transformation is c†j = σ+
j Sj , where the string

operator is Sj =
∏

i>j σ
x
i . Show that the same mapping leads to a topological phase of these

non-local fermions. Note, however, that there are some important differences from a topo-
logical phase of electrons. Argue that in the latter case there must always be a residual
symmetry that cannot be broken by any physical operator, unlike in the fermionized version
of the problem here.

Let us give a couple of concrete examples of SRE topological phases of bo-
sons/spins. These are necessarily interacting—unlike in the case of free fermions, there
is no ‘band’ picture here. Later, we will see how they combine with the free-fermion
topological phases, in particular the IQH effect, to extend the classification from a
single integer to a pair of integers.

6.4 SRE phase of bosons in two dimensions

Let us consider a system of two species of bosons, ‘A’ and ‘B’ (e.g. two species of atoms
in an optical lattice), whose numbers are individually conserved. By analogy with the
1D example, we want to find a disordered phase that respects these symmetries and can
be obtained by condensing a vortex combined with a charge. In particular, say we begin
in the superfluid state of the ‘A’ bosons. We want to exit from it by condensing vortices
(and antivortices). However, in order to avoid reaching the regular Mott insulator, we
will bind a +1 charge of a ‘B’ boson to this vortex (and a −1 charge on the antivortex)
before condensing them. We will show that this gives rise to an SRE topological phase.
The phase will have a gapless edge state protected by symmetry. We will implement
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this in two ways [17]: (i) by a coupled-wire construction and (ii) by writing down an
effective field theory.

6.4.1 Coupled-wire construction

The field theory for a single chain of bosons takes the form

H = J(∂xφ)2 + U(∂xθ)2, (6.6)

where φ is the boson phase and θ is defined as

∂xθ(x) = 2πn(x), (6.7)

with n being the particle density. Using the standard density–phase commutation
relation, we have [∂xθ(x), φ(x′)] = −2πiδ(x− x′). This can be integrated to give

[θ(x), φ(x′)] = −πiSign(x− x′), (6.8)

where Sign(x) = +(−)1 for x > 0 (x < 0).

Exercise 6.3 Show that this commutation relation is symmetric on interchanging the fields
θ ↔ φ.

Normally, when the bosons are at commensurate filling, one also has vortex tun-
nelling operators Hv = −

∑
n λn cos(nθ). When these are relevant, a Mott insulator

results—for example, when − cos θ is large, the field is pinned at θ = 0, which implies
that the density is uniform. as in a Mott state. An excitation is a soliton, that is,
θ(x� 0) → 0 while θ(x� 0)→ 2π. This costs a finite energy, which is the gap to
particle excitations in the Mott state.

i = 0
i = 1 i = 2

i = 3
i = 4

Fig. 6.4 [Colour online] Coupled-wire construction of bosonic topological phase. ‘A’ and ‘B’
bosons live on the even-numbered and odd-numbered tubes, respectively. Vortices of one species
are bound to bosons of the opposite species, and their tunnelling is shown by the arrows. These
processes are shown to commute and gap the bulk, but leave behind a topological edge state.
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However, here we will be interested in a different type of vortex condensate, one
that binds charge. To this end, consider building a 2D system by coupling 1D systems
(tubes) together. We will assume that on alternate tubes we have bosons of the two
different species—thus, on the even-numbered tubes (2i) we have ‘A’ and on the odd-
numbered tubes (2i+ 1) we have ‘B’. In the absence of interchain coupling, we have
the decoupled Luttinger-liquid Hamiltonian

H0 =
∑
i

[
U(∂xθi)2 + J(∂xφi)2

]
(6.9)

and

[θj(x), φk(x′)] = −iπδj,kδ (6.10)

We ignore the effect of conventional vortices. Let us instead attempt to condense
vortices of the ‘A’ bosons with ‘B’ charge, and vice versa. We will do this by allowing
the composite objects to ‘hop’, which will lower their energy and make them eventually
‘Bose-condense’. Of course, since this is a vortex condensate, we are led to an insulator,
as elaborated previously. We will see that this is an exotic insulator.

Note that the vortices of the ‘A’ bosons (in Fig. 6.4) naturally live in the centres of
plaquettes of the sites available to ‘A’. This happens to be on the ‘B’ tubes as shown
by the crosses in Fig. 6.4. Hence, if we hop a vortex from one of the crosses to the
adjacent one, this can be represented as a space–time event on tube i = 2, represented
as eiθ2 . However, we also simultaneously want to hop ‘B’ bosons, and we have arranged
for their lattice sites to coincide with the locations of the ‘B’ vortices. This combined
process is then written as ei(−φ1+φ3+θ2). The reverse process binds an antivortex to
a ‘hole’, ei(+φ1−φ3−θ2), and, taken together with the process of hopping B vortices
bound with A bosons, this leads to the following set of terms:

Hint = −λ
∑
i

cos(φi−1 − θi − φi+1). (6.11)

First, we note that these terms all commute with one another; for example, if we
denote θ̃i = θi + (φi+1 − φi−1), then any two terms commute:

[θ̃i(x), θ̃j(x′)] = 0. (6.12)

Exercise 6.4 Calculate the commutator of a pair of fields Φl,m and Φl′,m′ where Φl,m =∑
i(liφi +miθi). Use this to prove the result (6.12).

Thus, all of these can be simultaneously satisfied. If we have periodic boundary con-
ditions, then there is a unique ground state, rather like the way in which pinning
the θ fields gives a unique Mott insulating state. The same count of variables leads
to a unique state in this case. However, interesting edge states appear if we have
an open slab as in Fig. 6.4. Let us focus on the left edge. Clearly, we are missing
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a cosine pinning field for θ̃0. This means that the first non-vanishing cosine terms
are θ̃1 = −φ0 + θ1 + φ2 and θ̃2 = −φ1 + θ2 + φ3. A field that commutes with both of
these is Φ = φ0. However, there is also a conjugate field that we require to define the
edge dynamics. In an isolated chain, this would have been θ0. However, here this does
not commute with one of the first cosines. It can be rectified by adding Θ = θ0 + φ1,
which commutes with all the cosines and has the standard Luttinger-liquid commuta-
tor with Φ: [Θ(x),Φ(x′)] = −iπ(x− x′). Hence, we have a gapless edge mode, which
is described by the usual Luttinger-liquid theory. However, there is an important dif-
ference between this Luttinger liquid at the edge and one that can be realized in
purely 1D. It is impossible to gap this edge without breaking one of the symmetries,
which happens to be number conservation of the two boson species. This is an in-
ternal symmetry—and in a purely 1D system it is always possible to find a gapped
state that preserves all internal symmetries: we just combine degrees of freedom until
they transform in a trivial way under the symmetry and condense them. However,
this is not possible at the edge: one cannot condense Φ, since it is charged under
the U(1) symmetry that protects ‘A’ particle conservation, and similarly we cannot
introduce a cosine of the Θ field, since it is charged under the other U(1). This is an
indication that it is a topological phase—we will see that this also implies a quantized
Hall conductance.

6.4.2 Effective field theory

Let us write down an effective theory to describe a fluid built out of boson–vortex
composites [17]. The ‘A’ particles acquire a phase of 2π on circling vortices, and hence
the effect of vortices can be modelled by a vector potential whose curl is centred at
the vortex locations:

∂xay − ∂yax = 2π
∑
j

nvj δ(r − rvj ), (6.13)

where nvj and rvj are respectively the strength and location of the vortices. This vec-
tor potential will couple minimally to the current L = �jA · �a, where the vectors are
2-vectors. A rewriting of this formalism to include the motion of vortices results in a
generalization to a 3-current jμ = (ρ, jx, jy) and a gauge 3-potential aμ = (a0, ax, ay).
Also, since we assume that the vortices are bound to the ‘B’ bosons, we can rewrite
the equation for a as

εμνλ∂νa
B
λ = 2πjμB, (6.14)

where we have introduced a superscript B for the vector potential. We can also utilize
the continuity equation for the current jA, ∂μj

μ
A = 0, to write

εμνλ∂νa
A
λ = 2πjμA. (6.15)

To keep track of the charge densities of ‘A’ and ‘B’ bosons, it is useful to introduce
external vector potentials A(A,B) that couple to the currents of these bosons. This
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leads to our final topological Lagrangian

Ltopo =
εμνλ

2π
(
aAμ ∂νa

B
λ + AAμ ∂νa

A
λ + ABμ ∂νa

B
λ

)
(6.16)

and the corresponding partition function

Ztopo[AA, AB ] = eiStopo =
∫
DaADaB ei

∫
dx dy dtLtopo . (6.17)

First, we would like to establish that this describes a SRE phase. Note that the mu-
tual phases involved are all 2π, implying the absence of fractional statistics. We can
also compute the ground-state degeneracy on the torus—this turns out to be directly
computable from this theory: if we write

L =
KIJ

4π
εμνλaIμ∂νa

J
λ, (6.18)

then the ground-state degeneracy is |detK|. In this case, K = σx, and there is a
unique ground state.

Given that we have an SRE phase, we can deduce two important consequences
from this theory. The first concerns edge states, which can be shown to be equivalent
to that derived before, and the quantized Hall conductivity. The latter is obtained by
integrating out the a fields to obtain an action purely in terms of the external probe
fields A. The current is then defined as jA = δS/δAA, where Z = eiS . A Gaussian
integration of (6.16) yields

Stopo = −
∫
dx dy dt

εμνλ

2π
AAμ ∂νA

B
λ , (6.19)

and thus we have

jμA = − 1
2π
εμνλ∂νA

B
λ . (6.20)

If we consider the spatial components of this equation, we find: jxA = (1/2π)EyB , where
EB is the electric field applied to species ‘B’. Thus, we have a crossed-response Hall
conductivity σABxy = 1/2π, which, on replacing charge Qa for the bosons and �, gives
σABxy = QAQB/h.

We would like to apply these insights to electronic systems, where one may combine
pairs of electrons to form Cooper pairs with chargeQ = 2e. However, in that case, there
is a single conservation law. Topological phases with a single U(1) can be described
by the above field theory, (6.16), if we assume that the two species of bosons can
tunnel into one another and collapse the combined U(1)× U(1) symmetry into a
single common U(1). This amounts to replacing the pair of external vector potentials
by a single one, and the resulting topological response theory is

Stopo = −
∫
dx dy dt

εμνλ

2π
Aμ∂νAλ. (6.21)

Now, differentiating with respect to the vector potential, we get two contributions,
and hence jμ = (2/2π)εμνλ∂νAλ, which implies a Hall conductivity, in units of the
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boson charge, of σxy = 2Q2/h. This is the bosonic IQH (BIQH) phase. Somewhat
surprisingly, its Hall conductance is always an even integer. Potential realizations of
this phase in bilayer systems of bosons in the lowest Landau level with net filling ν = 2
have been discussed in numerical work [11, 22, 37].

Note that we have assumed commensurate filling to admit an insulator. Also, these
models are not exactly soluble in the same way that the previous models were—for
other approaches to constructing models in this phase, see [12].

6.4.3 Implications for IQH state of electrons

It is well known that free-fermion IQH states have a quantized Hall conductance
σxy = ne2/h. At the same time, they have a quantized thermal Hall effect κxy/T =
cπ2k2

B/3h, where c = n. The latter simply counts the difference between the numbers
of right-moving and left-moving edge states. This equality is an expression of the
Wiedemann–Franz law that relates thermal and electrical conductivities for weakly
interacting electrons. This leads to the familiar integer classification of the IQH in
terms of Z. How is this modified in the presence of interactions? We will continue to
assume SRE—so FQH states are excluded from our discussion. It has long been known
that n must remain an integer if charge is to remain unfractionalized. However, the
equality n = c can be modified. In fact, if we assume that the electrons can combine
into Cooper pairs, which form the BIQH state, then the latter has Hall conductance
σxy = 8e2/h, but κxy = 0. Thus, we can have n− c = 8m. Indeed, this implies that
the classification of interacting quantum Hall states of electrons with SRE is in terms
of Z× Z at least. Note, that this also predicts a phase where n = 0 but c = 8. This
can be achieved by combining an n = 8 free-fermion quantum Hall state with a BIQH
state of Cooper pairs to cancel the electrical Hall conductance. The remaining thermal
Hall conductance is c = 8. It can be shown that a π flux inserted in this state has
trivial statistics and can be condensed—which implies that all electrons are confined
into bosonic particles without disturbing the topological response of this phase [14].
Alternatively, one can show that neutral bosons with short-range interaction can lead
to a topological phase with chiral edge states, if they appear in multiples of eight.
Indeed, one can write down a multicomponent Chern–Simons theory to describe this
topological phase of neutral bosons, in terms of a K-matrix as described in detail
below [17].

A phase without topological order is characterized by a symmetric K-matrix
that satisfies | detK| = 1. A chiral state in (2 + 1) dimensions requires the signature
(n+, n−) of its K-matrix to satisfy n+ �= n−. We therefore seek a K-matrix with the
following properties:

1. |detK| = 1.
2. The diagonal elementsKI,I are all even integers so that all excitations are bosons.
3. There is a maximally chiral phase, where all the edge states propagate in a single

direction. Then, all eigenvalues of K must have the same sign (say positive), so
K is a positive-definite symmetric unimodular matrix.
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It is helpful to map the problem of finding such a K to the following crystallographic
problem. By diagonalizing K and multiplying each normalized eigenvector by the
square root of its eigenvalue, one obtains a set of primitive lattice vectors eI such
that KIJ = eI · eJ . The inner product of a pair of vectors lIeI and l′IeI is given by
l′IKIJ lJ , while the volume of the unit cell is given by (detK)1/2. The latter can be
seen by writing the components of the vectors as a square matrix: [k]aI = [eI ]a. Then,
det k is the volume of the unit cell. However, KIJ =

∑
a kaIkaJ = (kT k)IJ . Thus,

detK = (det k)2.
Thus, for a phase without topological order, we require the volume of the lattice

unit cell to be unity: det k = 1 (unimodular lattice). Furthermore, for a bosonic state,
we require that all lattice vectors have even length, lIKIJ lJ = even integer, since the
K-matrix has even diagonal entries (even lattice). It is known that the minimum
dimension in which this can occur is eight. In fact, the root lattice of the exceptional
Lie group E8 is the smallest-dimensional unimodular even lattice.1 Such lattices occur
only in dimensions that are multiples of 8. See [3] for more details.

A specific form of the K-matrix is

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 −1
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 −1 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.22)

This matrix has unit determinant and all of its eigenvalues are positive. It defines a
topological phase of bosons without topological order, with eight chiral bosons at the
edge. We will call this the E8 state since it is related to the E8 group.

6.5 SPT phases of bosons in three dimensions

We would like to understand how to describe the surface states of a 3D SRE topological
phase of bosons. While for free fermions one has Dirac or Majorana surface cones, the
bosonic analogue is less clear, particularly since the surface is 2D and one does not
have access to bosonization and other powerful tools available for the previous problem
of 1D edges.

Based on our previous experience with 1D edges, we will consider the surface dir-
ectly and ask how symmetry can act in an anomalous way, to produce a topological

1 See the Wikipedia entry for the E8 root lattice (Gosset lattice): https://en.wikipedia.org/

wiki/E8 lattice.
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surface [31]. The simplest example to consider is a system with U(1) and time-reversal
(T ) symmetry, where the U(1) may be considered as a conserved spin component
(Sz) rather than charge. This corresponds to U(1)× T . One option is to break the
symmetry at the surface—this is a valid surface state even for a topological bulk.
Say we break the U(1) to get an ordered surface (which we will call a ‘superfluid’
since it breaks a U(1) symmetry). To restore this symmetry, we would like to pro-
liferate vortices, which can revert us to the fully symmetric state. However, for the
surface of a topological bulk, there should be an obstruction to proliferating vortices.
Rolling is a potential mechanism—note that the vortices here preserve time-reversal
symmetry, i.e. a vortex is mapped to a vortex under T . This follows from the fact
that our phase degree of freedom transforms like magnetic order with φ→ φ+ π un-
der time reversal, so that eiφ → −eiφ. The vorticity, which is defined via ∇×∇φ,
is invariant under this operation. Hence we can ask—how does a vortex transform
under T ?

There are two physically distinct options: namely whether the vortex transforms as
a regular or as a projective representation. In the former case, there is no obstruction
to condensing vortices and restoring the symmetric phase—hence this cannot represent
a topological surface state. However, the vortices can also transform as a projective
representation, since they are non-local objects. On a closed surface, one must make a
vortex–antivortex pair. Taken together, these must transform as T 2 = +1. However,
individually, they can transform as T 2 = −1, i.e. the vortex is a Kramers doublet.
Denote by ψσ the two-component vortex field σ =↑, ↓, which transforms as ψ↑ →
ψ↓, ψ↓ → −ψ↑ under time reversal. The effective Lagrangian is

L = |(∂μ − iaμ)ψσ|2 + (∂μaν − ∂νaμ)2 +m|ψσ|2 + . . . , (6.23)

where the gauge field is determined by the boson 3-current jμ, which includes the
boson charge density j0 and current j1,2:

εμνλ∂νaλ = 2πjμ. (6.24)

The vortex–gauge field coupling is intuitively rationalized by the fact that a vortex
moving around a boson acquires a 2π phase. Hence, the gauge potential a that im-
plements this satisfies ∂xay − ∂yax = 2πj0. This is one component of (6.24), while the
other components follow from the continuity equation ∂μjμ = 0.

In this dual language, when the vortices are gapped, the U(1) symmetry is bro-
ken, while if they are condensed, the U(1) symmetry is restored. The key difference
between a single-component vortex field and the Kramers doublet vortex is that in
the latter case the vortex condensate always breaks time-reversal symmetry. This can
be seen by considering the operator ψ†σσ

a
σσ′ψσ = na, where σa are Pauli matrices.

Since it is a product of a vortex–antivortex pair, it is a local operator, unlike an
operator that insets a vortex. In a vortex condensate, this operator will acquire a
non-zero expectation value. Under time reversal, it is readily seen that na → −na,
indicating that time-reversal symmetry is broken. Thus, the U(1) symmetry is re-
stored at the expense of breaking T . This is a candidate for a topological surface
state.
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Exercise 6.5 Establish the above result by introducing an external ‘probe’ electromagnet field
that couples to the bosons, Lint = jμAμ = Aμε

μνλ∂νaλ/2π, and integrate out the other fields to
obtain an effective action in terms of A. Consider doing this in the two limits m > 0 and m < 0,
where vortices are respectively gapped and condensed. Show that when the vortices are gapped,
the effective Lagrangian is Leff ∼ A2

⊥, where A⊥ is the transverse part, and this represents a
U(1)-broken phase (a ‘superfluid’). On the other hand, when the vortices are condensed, show
that Leff ∼ (∂μAν − ∂νAμ)2 (an ‘insulator’).

We now turn to two other possible surface states that can occur in this theory.

6.5.1 The m = 0 critical point

The first is the critical point at m = 0, where symmetries are unbroken but the surface
is gapless. This is the bosonic analog of the gapless Dirac cone of fermionic topological
insulators. However, since bosons are either gapped or condensed, this requires tuning
of a parameter for its realization. This field theory (the non-compact CP 1 model [21])
has appeared before in the theory of ‘deconfined quantum critical points’, describing
a direct transition between Néel and valence bond solid order in spin models on a
square lattice [25, 26]. However, there the vortices transformed projectively under
spatial symmetries, such as translation and rotation. Here, an internal symmetry (time
reversal) is involved—which can only occur on the surface of a 3D topological phase.

6.5.2 Surface topological order of 3D bosonic SRE phases

The second possibility is to consider condensing a pair of vortices Φ = εσσ′ψσ(r)ψ′σ(r
′),

which is a Kramers singlet. This leads to a restoration of the U(1) symmetry (insula-
tor), while preserving T . However, this is an ‘exotic’ insulator with topological order
(excitations that have fractional statistics). Note that the bulk 3D state is still SRE
and the exotic excitations are confined to the surface. It is readily shown that the
topological order is the same as that in the toric code. To show this, we need to
identify an e and an m particle that are bosons but with π mutual statistics. The
m particle is just the unpaired vortex, which remains as a gapped excitation in this
phase. Additionally, we can discuss defects in the 2-vortex condensate. These are noth-
ing but particles—however, the 2-condensate allows for a fractional particle. To see
this, consider the the effective 2-vortex theory

L2v = |(∂μ − 2iaμ)Φ|2 + (∂μaν − ∂νaμ)2 +m2|Φ|2 + . . . , (6.25)

which can be obtained from (6.23) by considering an interaction that pairs vor-
tices and by ignoring the gapped single vortices. In the 2-vortex condensate, one
can consider vortices, which are obtained from the flux-quantization condition
2(∂xay − ∂yax) = 2π; however, since the flux is related to particle density, this implies
a particle with charge one-half that of the fundamental bosons. Clearly, taking a half
charge around a vortex leads to a π phase. Hence, this is the m particle.

This surface topological order provides a powerful way to characterize a 3D topo-
logical phase [31]. The surfaces of SRE topological phases should be distinct from
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states that can be realized purely in the lower dimension. The way this works with
surface topological order is that although the topological order itself can be realized in
2D, the way the excitations transform under symmetry cannot be realized in a purely
2D setup. For example, here the m particle is a Kramers doublet, while the e particle
carries half the charge of the boson (and may or may not be a Kramers doublet).

While in this case it is not immediately apparent that this is forbidden in 2D, we
can give another example that arises where this is obvious. Consider the situation
where both e and m particles carry half charge—this is one of the surface topological
orders associated with U(1) charge and T symmetry. We can show that this state
cannot be T -symmetric if realized in 2D, where it can be described by a K-matrix
Chern–Simons theory:

LCS =
2
2π
�a1 · �∇× �a2 −

�∇× �A

2π
· (�a1 + �a2). (6.26)

Coupling to the external �A ensures that we can keep track of the charge. Note that
K = 2σx ensures that we have toric-code-type Z2 topological order (|detK| = 4).
Now, by integrating out �a, we obtain

Leff = − 1
4π

�A · �∇× �A. (6.27)

This implies that if this state is realized in 2D, then it will have a non-vanishing Hall
conductance σxy = Q2/h, contradicting the fact that it is T -symmetric. However, it
can be realized while still retaining T symmetry on the surface of a topological phase.

The simplest way to argue this is through the following coupled-layer construction
[34], analogous to the 1D and 2D cases that we discussed before. Consider layers of
2D toric-code models where just the e particle carries half charge. Now, in parallel
to the constructions in lower dimensions, we consider a set of three layers, and form
a bound state of eimi+1ei+2. This is a boson, which commutes with other triplets.
For example, e0m1e2 and e1m2e3 are mutual bosons. Also, it has integer charge and
can be neutralized by a physical boson. Hence, condensing these triplets leads to
an SRE 3D state, with all symmetries. However, it leaves behind an edge state: for
example, e0 is not confined. Similarly, m0e1 also commutes with the condensate. This
is the new m particle of the toric-code topological order, which is confined to the top
layer. Note that it carries half charge, which is precisely what we wanted to construct.
Here, time reversal is explicitly preserved. Realizing this state on the surface of a 3D
system ensures that we never have to declare the edge physics (which would break
time-reversal symmetry).

This state corresponds to the surface of a 3D bosonic topological insulator (3D
BTI), and models a surface that is ‘half’ the 2D bosonic IQH phase, which has σxy =
Q2/h. Note that one can draw the following analogy to the free-fermion topological
insulator. A time-reversal symmetry-breaking perturbation can render the surface of
the 3D topological insulator insulating. However, a domain wall between two opposite
T -breaking domains on the surface necessarily has a single chiral mode along it; see
Fig. 6.5. Therefore, the difference in Hall conductivity between the two domains is
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Chiral mode on
surface domain walls.

σxy = – 1
2

Kxy = – 1
2

σxy = + 1
2

Kxy = + 1
2

Fig. 6.5 [Colour online] Magnetic domains on the surface of a 3D free-electron topological
insulator. The resulting insulating surface has σxy = ± 1

2
e2/h and κxy = ± 1

2
, since the domain

wall carries a single chiral edge mode.

Δσxy = 1(e2/h). Also Δκxy = 1. By time-reversal symmetry, the two domains should
have opposite Hall conductivities—hence, we are forced to assign σxy = + 1

2
e2/h, κxy =

+ 1
2 , and the time-reversed version to the other domain. Since a purely 2D free-fermion

system cannot have fractional Hall conductivities, it is not possible to screen this with
a 2D layer. In a similar way, we can build a 3D topological phase from the 2D IQH
state of bosons by including time-reversal symmetry. This is the 3D BTI, whose surface
state is described above.

In a very similar fashion, one can model a state with a surface that is ‘half’ the
chiral E8 state, but time-reversal-symmetric when realized in 3D. This is the 3D
bosonic topological superconductor (3D BTSc), and, although a symmetry-protected
topological phase, it is not captured by the ‘cohomology’ approach [5, 6]. The
surface topological order is the fermionic variant of the toric code—it has three
non-trivial particles that have mutual π statistics, like the toric code, but all three
particles have fermionic statistics. At first sight, it might appear that this state is
time-reversal-symmetric, but in fact it must carry chiral edge modes if realized in
2D. An explicit Chern–Simons representation of this state is provided through the
K-matrix

K =

⎛⎜⎜⎜⎝
2 −1 −1 −1
−1 2 0 0
−1 0 2 0
−1 0 0 2

⎞⎟⎟⎟⎠ . (6.28)

The eigenvalues of this matrix are all the same sign, implying that there are four chiral
modes if this state is realized in 2D, and hence the state always breaks T symmetry.
However, it may be realized on the surface of a 3D topological state with T . Again,
this result can be obtained via a coupled-layer construction. A different approach [2] to
realizing this phase is via an exactly soluble model, based on the following observation.
It is well known in the context of the 2D FQH effect that ground-state wavefunctions
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can be related to correlation functions of the edge conformal field theory. The two
coordinates of particles in the wavefunction are traded for a single spatial coordinate
at the edge together with time. Can a similar approach be taken for 3D topological
phases? While the obvious generalization is to relate the wavefunction written in
terms of particle coordinates, a useful generalization is obtained by representing the
wavefunction in terms of loops. Now, the amplitude of a particular loop configuration
C in 3D space, Ψ(C), is related to the space–time amplitude for a process in which
the loops are imagined as world lines of particles in the surface topological order.
Hence, the loops come in different ‘colours’ corresponding to the non-trivial particles
in the theory, and rules concerning how they fuse together etc. are determined by the
topological data of the surface theory. For example, in the case of the three-fermion
topological order, the amplitude is

Ψ(C) =
∫
Da exp

(
i

∮
C
jμI a

I
μ

)
exp

(
iKIJ

∫
εμνλaIμ∂νa

J
λ

)
, (6.29)

where the j define the loop structure. This can be converted into a exactly soluble
model (the Walker–Wang model) on a cubic lattice.

6.6 Surface topological order of fermionic topological insulators
and superconductors

The well-known fermionic Z2 topological insulator is usually associated with a sin-
gle Dirac-cone surface state. Breaking time-reversal symmetry at the surface (e.g.
by introducing magnetic moments that order) can open a surface gap and render it
insulating. However, this is not the only way to obtain an insulating surface—one
can preserve all symmetries and obtain an insulator with topological order as for the
bosonic SRE phases. Note that, by the same logic as for the 3D BTI and 3D BTSc,
the topological order is such that when realized in purely 3D, it breaks T symmetry
and has σxy = 1

2e
2/h and κxy = 1

2 . That is, it is a candidate for an FQH effect of
electrons in a half-filled Landau level. The most famous such candidate is the Moore–
Read Pfaffian state, which may be thought of as Ising× U(1)8. More physically, one
can imagine beginning with a superconductor of electrons, in a px + ipy state, where
the Cooper pairs are effectively at νCooper = 1

8 filling (νCooper = 1
4νelectron, since there

are half as many Cooper pairs as electrons, and the magnetic field measured in units
of the new flux quantum h/2e is twice as large). When the Cooper pairs form a
bosonic Laughlin state, the Moore–Read state results. Unfortunately, while this state
has the right σxy, it has κxy = 3

2
. Moreover, a quick glance at the topological spins

of the quasiparticles reveals that it cannot be made time-reversal-symmetric even on
the surface of a 3D topological insulator. Fortunately, a simple variant is much more
promising [1, 4]: one considers a px − ipy superconductor in conjunction with the same
Cooper-pair Laughlin state, i.e. Ising∗ × U(1)8. This state, dubbed the T-Pfaffian [4],
can be made time-reversal-symmetric on the surface of a 3D topological insulator, but
of course breaks this symmetry in 2D since it has a finite Hall conductance. A different
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but equivalent solution [20, 32] features the Moore–Read state in conjunction with a
neutral antisemion theory U(1)−2. The surface topological order helps to understand
how this classification is augmented in the presence of strong interactions wherein
the electrons may pair to form bosons that exhibit a topological phase. The electrons
could form Cooper pairs that then go into a 3D BTI phase. Or the electrons could
combine into neutral bosons that then enter a 3D BTSc phase. Both of these extend
the original Z2 classification by an additional factor of Z2. Wang, Potter, and Senthil
[33] showed that this exhausts the set of 3D topological phases of interacting electrons
with charge conservation and T symmetry.

Table 6.1 shows the topological phases with SRE that can exist in 3D, together
with their physically most relevant symmetries.

Topological superconductors in 3D are protected by T , and, for the physical case
of T 2 = −1 when acting on fermions, this gives rise to an integer set of topological
phases. One might imagine that by combining pairs of electrons into neutral bosons,
one could augment this classification by Z2, by including the 3D BTSc in this list.
However, it turns out that this phase is already present in the free-fermion classification
and corresponds to ν = 8 of the Z classification [9]. Hence, there is no new phase. On
the other hand, since this phase has a Z2 classification, this implies that the case
with two copies of ν = 8, i.e. ν = 16, is trivial. Therefore, the interacting topological
superconductor classification is reduced from the free-fermion one: Z → Z16 [9, 15].
This observation is interesting since it represents a non-perturbative result in (2 +
1) dimensions and has been verified by other means [13, 18, 35, 36]. The surface
of a topological superconductor with ν = 1 has a Majorana cone with low-energy
dispersion:

H = −iχT (σx∂x + σz∂y)χ, (6.30)

where χT = (χ1, χ2). The surface with index ν then has ν flavours with the above
dispersion. It is readily verified that weak interactions at the surface are irrelevant.
From (6.30), requiring that the action corresponding to the kinetic term be dimen-
sionless (and that time and space have the same dimensions [t] = [x] ∼ L), the scaling
dimensions of the χ fields are [χ] ∼ 1/L. The interaction term, written schematically
as Sint ∼

∫
d2 dt (χTa σyχa)(χ

T
b σyχb), then has scaling dimension [Sint] ∼ 1/L, which

means that it is irrelevant at long scales. Therefore, the way ν = 16 is connected
to ν = 0 is via strong interactions, as shown in Fig. 6.6. Establishing this therefore

Table 6.1 Topological phases in 3D with SRE. The physically most relevant symmetries,
corresponding to the topological insulator and topological superconductor (TSc), are shown

SYMMETRIES FREE FERMIONS INTERACTING INTERACTING

BOSONS FERMIONS

U(1) (charge) and T Z2 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Topological insulator Class AII
T Z Z2 × Z2 Z16

T 2 = (−1)NF TSc Class DIII



262 Topological insulators and related phases with strong interactions

U

ν =16 ν =0

Fig. 6.6 Interaction effects on the surface of a 3D topological superconductor are irrelevant
for weak interactions, given the linear dispersion of the Majorana cone surface states. However,
strong interactions U can connect two surfaces without a phase transition—which implies that
the bulk phases are equivalent in the presence of interactions. Establishing this requires non-
perturbative techniques.

requires a non-perturbative analysis. While bosonization provides such a tool for a
(1 + 1)-dimensional edge, establishing this for (2 + 1) dimensions requires new non-
perturbative tools, such as working with the surface topological order or with a dual
vortex/monopole theory [19]. A nice review of these recent developments can be found
in [24].
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7.1 Introduction

In these lectures, I will focus exclusively on two-dimensional realizations of fractional
topological insulators. However, before doing so, I need to revisit the definition of
non-interacting topological phases of matter for fermions and, for this matter, I would
like to attempt to place some of the recurrent concepts that have been used during
this school on a time line that starts in 1931.

Topology in physics entered the scene in 1931 when Dirac [23] showed that the
existence of magnetic monopoles in quantum mechanics implies the quantization of
electric and magnetic charge.

In the same decade, Tamm [118] and Shockley [113] surmised from the band theory
of Bloch that surface states can appear at the boundaries of band insulators (see
Fig. 7.1).

The dramatic importance of static and local disorder for electronic quantum
transport was overlooked until 1957, when Anderson [3] showed that sufficiently
strong disorder ‘generically’ localizes a bulk electron. That there can be exceptions
to this rule follows from reinterpreting the demonstration in 1953 by Dyson [24]
that disordered phonons in a linear chain can acquire a diverging density of
states at zero energy with the help of bosonization tools in one-dimensional space
(see Fig. 7.2).
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Fig. 7.1 [Colour online] Single-particle spectrum of a Bogoliubov–de Gennes superconductor
in a cylindrical geometry that is the direct sum of a px + ipy and of a px − ipy superconductor.
A twofold-degenerate dispersion of two chiral edge states is seen to cross the mean-field super-
conducting gap. There is a single pair of Kramers-degenerate edge states that disperses along
one edge of the cylinder. (Adapted from [15]. c© IOP Publishing. Reproduced with permission.
All rights reserved.)
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Fig. 7.2 [Colour online] (a) The beta function of the dimensionless conductance g is plotted
(qualitatively) as a function of the linear system size L in the orthogonal symmetry class (β = 1)
for space dimensions d = 1, 2, and 3. (b) The dependence of the mean Landauer conductance
〈g〉 for a quasi-one-dimensional wire as a function of the length of the wire L in symmetry class
BD1. The number N of channels is varied, as well as the chemical potential ε of the leads. (Part
(b) taken from [11].)

Following the proposal by Wigner to model nuclear interactions with the help of
random matrix theory, Dyson [25] in 1962 introduced the threefold way, i.e. the study
of the joint probability distribution

P (θ1, . . . , θN ) ∝
∏

1≤j<k≤N

∣∣eiθj − eiθk
∣∣β , β = 1, 2, 4, (7.1)

for the eigenvalues of unitary matrices of rank N generated by random Hamiltonians
without any symmetry (β = 2), by random Hamiltonians with time-reversal symmetry
corresponding to spin-0 particles (β = 1), and by random Hamiltonians with time-
reversal symmetry corresponding to spin- 1

2
particles (β = 4).

Topology acquired a mainstream status in physics in 1973 with the discovery by
Berezinskii [7] and by Kosterlitz and Thouless [65, 66] that topological defects in
magnetic classical textures can drive a phase transition. In turn, there is an intimate
connection between topological defects of classical background fields in the presence of
which electrons propagate and fermionic zero modes, as demonstrated by Jackiw and
Rebbi [51] in 1976 (see Fig. 7.3); see also the work by Su, Schrieffer, and Heeger [117].

The 1970s witnessed the birth of lattice gauge theory as a means to regularize quan-
tum chromodynamics (QCD4). Regularizing the standard model on the lattice proved
to be more difficult because of the Nielsen–Ninomiya no-go theorem that prohibits
defining a theory of chiral fermions on a lattice in odd-dimensional space without
violating locality or time-reversal symmetry [92–94]. This is known as the fermion-
doubling problem when regularizing the Dirac equation in d-dimensional space on a
d-dimensional lattice.

The 1980s opened with a big bang. The integer quantum Hall effect (IQHE) was
discovered in 1980 by von Klitzing, Dorda, and Pepper [63] (see Fig. 7.4), while the
fractional quantum Hall effect (FQHE) was discovered in 1982 by Tsui, Stormer, and
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(a) (b)
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Fig. 7.3 (a) Nearest-neighbour hopping of a spinless fermion along a ring with a real-valued
hopping amplitude that is larger on the thick bonds than on the thin bonds. There are two
defective sites, each of which is shared by two thick bonds. (b) The single-particle spectrum is
gapped at half-filling. There are two bound states within this gap, each exponentially localized
around one of the defective sites, whose energy is split from the band centre by an energy that
decreases exponentially fast with the separation of the two defects. (Reprinted with permission
from [104]. Copyright 2012 by the American Physical Society.)
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Fig. 7.4 [Colour online] (a) The Hall conductivity is a linear function of the electron density if
Galilean invariance holds. (b) Galilean invariance is broken in the presence of disorder, so that
plateaus become evident at integral filling fractions of the Landau levels. (c) Graphene deposited
on SiO2/Si at T = 1.6K and B = 9T (the inset is for T = 30mK) supports the integer quantum
Hall effect at filling fractions ν = ±2,±6,±10, . . . = ±2(2n+ 1), n ∈ N. (Part (c) taken from
[137]. Reprinted by permission from Macmillan Publishers Ltd: Nature, copyright 2005.)
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Gossard [122]. At integer fillings of the Landau levels, the non-interacting ground state
is unique and the screened Coulomb interaction Vint can be treated perturbatively, as
long as transitions between Landau levels or outside the confining potential Vconf

along the magnetic field are suppressed by the single-particle gaps �ωc and Vconf,
respectively:

Vint � �ωc � Vconf, ωc =
eB

mc
. (7.2)

When Galilean invariance is not broken, the conductivity tensor is then given by the
classical Drude formula

lim
τ→∞

j =

(
0 + (BRH)−1

− (BRH)−1 0

)
E , R−1

H := −nec, (7.3)

that relates the (expectation value of the) electronic current density j ∈ R2 to an ap-
plied electric field E ∈ R2 within the plane perpendicular to the applied static and
uniform magnetic field B in the ballistic regime (τ →∞ is the scattering time). The
electronic density, the electronic charge, and the speed of light are denoted by n, e,
and c, respectively. Moderate disorder is an essential ingredient to observe the IQHE,
since it allows the Hall conductivity to develop plateaus at sufficiently low temper-
atures that are readily visible experimentally (see Fig. 7.4). These plateaus are a
consequence of the fact that most single-particle states in a Landau level are localized
by disorder, according to Anderson’s insight that any quantum interference induced
by a static and local disorder almost always leads to localization in one- and two-
dimensional space. The caveat ‘almost’ is crucial here, since the very observation of
transitions between Landau plateaus implies that not all single-particle Landau levels
are localized.

The explanation for the IQHE followed rapidly after its discovery owing to a very
general argument of Laughlin [68] based on gauge invariance that implies that the Hall
conductivity must take a fractional value if the longitudinal conductivity vanishes
(mobility gap). This argument was complemented by an argument of Halperin [47]
stressing the crucial role played by edge states when electrons in the quantum Hall
effect are confined to a strip geometry (see Fig. 7.5), while works from Thouless,
Kohmoto, Nightingale, den Nijs, and Niu [95, 96, 114, 120] demonstrated that the Hall
response is, within linear response theory, proportional to the topological invariant

C := − i
2π

∫ 2π

0

dφ
∫ 2π

0

dϕ
[〈

∂Ψ
∂φ

∣∣∣∣ ∂Ψ
∂ϕ

〉
−
〈
∂Ψ
∂ϕ

∣∣∣∣ ∂Ψ
∂φ

〉]
(7.4)

that characterizes the many-body ground state |Ψ〉 obeying twisted boundary con-
ditions in the quantum Hall effect. Together, these arguments constitute the first
example of the bulk–edge correspondence with observable consequences, namely the
distinctive signatures of both the integer and fractional quantum Hall effects.

The transitions between plateaus in the quantum Hall effect are the manifestations
at finite temperature and for a system of finite size of a continuous quantum phase
transition, i.e. of a singular dependence of the conductivity tensor on the magnetic field
(filling fraction) that is rounded by a non-vanishing temperature or by the finite linear
size of a sample. In the non-interacting limit, as was the case for the Dyson singularity
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Fig. 7.5 [Colour online] (a) A gas of electrons confined to the geometry of a punctured disc
is subjected to a uniform magnetic field B perpendicular to the disc. (b) The classical skip-
ping orbits of electrons confined to the geometry of a Hall bar. The Hall-bar geometry of (b)
is topologically equivalent to the Corbino geometry of (a). (c) Chiral edges are immune to
backscattering within each traffic lane.

at the band centre, an isolated bulk single-particle state must become critical in the
presence of not-too-strong disorder. The one-parameter scaling theory of Anderson
localization that had been initiated by Wegner and was encoded by a class of nonlinear
sigma models (NLSMs) has to be incomplete [1, 50, 127]. Khmelnitskii [57], on the
one hand, and Levine, Libby, and Pruisken [72, 99], on the other, introduced in 1983 a
two-parameter scaling theory for the IQHE on phenomenological grounds. They also
argued that the NLSM for the IQHE, when augmented by a topological θ term, would
reproduce the two-parameter flow diagram (see Fig. 7.6). This remarkable development
took place simultaneously with the work of Haldane [42, 44] on encoding the difference
between half-integer and integer spin chains (Haldane’s conjecture) by the presence of a
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d ln g
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φ = π

(a)

SU(2)1

O (3)NLSM O (3)NLSM + θ = π

g g

Fig. 7.6 [Colour online] (a) A topological θ = π term modifies the renormalization group flow
to strong coupling in the two-dimensional O(3) nonlinear sigma model (NLSM). There exists a
stable critical point at intermediate coupling that realizes the conformal field theory SU(2)1.
(b) Pruisken argued that the phenomenological two-parameter flow diagram of Khmelnitskii is
a consequence of augmenting the NLSM in the unitary symmetry class by a topological term.
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θ = π topological term in the O(3) NLSM and by the work of Witten [134] on principal
chiral models augmented by a Wess–Zumino–Novikov–Witten (WZNW) term.

Deciphering the critical theory for the plateau transition is perhaps the most tan-
talizing challenge in the theory of Anderson localization. Among the many interesting
avenues that have been proposed to reach this goal (which so far remains elusive),
Ludwig, Fisher, Shankar, and Grinstein [76] studied random Dirac fermions in two-
dimensional space in 1994 (see Fig. 7.7), motivated as they were by the fact that a
massive Dirac fermion in two-dimensional space carries the fractional value

σDirac
H = ±1

2
e2

h
(7.5)

according to Deser, Jackiw, and Templeton [22] and that it is possible to regularize two
such massive Dirac fermions on a two-band lattice model realizing a Chern insulator
according to Haldane [45].

The early 1990s were also the golden age of mesoscopic physics, the application
of random matrix theory to condensed matter physics. The threefold way had been
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Fig. 7.7 [Colour online] (a) A single (non-degenerate) cone of Dirac fermions in two-
dimensional space realizes a critical point between two massive phases of Dirac fermions, each of
which carries the Hall conductance σDirac

H = ± 1
2

in units of e2/h. (b) A generic static and local
random perturbation of a single Dirac cone is encoded by three channels. There is a random
vector potential that realizes the symmetry class AIII if it is the only one present. There is
a random scalar potential that realizes the symmetry class AII if it is the only one present.
There is a random mass that realizes the symmetry class D if it is the only one present. It is
conjectured in [76] that in the presence of all three channels, the renormalization group flow
to strong coupling (the variance of the disorder in each channel) is to the plateau transition
in the universality class of the IQHE. (c) Unit cell of the honeycomb lattice with the pattern
of nearest- and next-nearest-neighbour hopping amplitude that realizes a Chern insulator with
two bands, shown in (d), each of which carries Chern number ±1.



274 Fractional Abelian topological phases of matter for fermions in two-dimensional space

applied successfully to quantum dots and quantum transport in quasi-one-dimensional
geometries. Zirnbauer [138] in 1996 and Altland and Zirnbauer [2] in 1997 extended
the threefold way of Dyson to the tenfold way by including three symmetry classes of
relevance to quantum chromodynamics called the chiral classes, and four symmetry
classes of relevance to superconducting quantum dots (see Table 7.1) [49]. Quantum

Table 7.1 The ten Altland–Zirnbauer (AZ) symmetry classes of single-particle Hamiltonians
H, classified according to their behaviour under time-reversal symmetry T , charge conjugation
(particle–hole) symmetry C, and ‘sublattice’ (‘chiral’) symmetry S. The entries in the columns
headed T, C, and S indicate the presence/absence of these respective symmetries as well as their
types. These operations square to + or − times the unit operator when they are symmetries.
An entry 0 indicates that the operation is not a symmetry. The column ‘Hamiltonian’ lists, for
each AZ symmetry class, the symmetric space of which the quantum mechanical time-evolution
operator exp(itH) is an element. The column ‘Cartan label’ shows the name given to the
corresponding symmetric space listed in the column ‘Hamiltonian’ in Élie Cartan’s classification
scheme (dating back to the year 1926). The column ‘G/H (fermionic NLSM)’ lists the (compact
sectors of the) target space of the NLSM describing the physics of Anderson localization at long
wavelength in the given symmetry class.

CARTAN LABEL T C S HAMILTONIAN G/H (FERMIONIC

NLSM)

A (unitary) 0 0 0 U(N)
U(2n)

U(n)× U(n)

AI (orthogonal) +1 0 0
U(N)
O(N)

Sp(2n)
Sp(n)× Sp(n)

AII (symplectic) −1 0 0
U(2N)
Sp(2N)

O(2n)
O(n)×O(n)

AIII (chiral unitary) 0 0 +1
U(N +M)

U(N)× U(M)
U(n)

BDI (chiral orthogonal) +1 +1 +1
O(N +M)

O(N)×O(M)
U(2n)
Sp(2n)

CII (chiral symplectic) −1 −1 +1
Sp(N +M)

Sp(N)× Sp(M)
U(2n)
O(2n)

D (BdG) 0 +1 0 SO(2N)
O(2n)
U(n)

C (BdG) 0 −1 0 Sp(2N)
Sp(2n)
U(n)

DIII (BdG) −1 +1 −1
SO(2N)
U(N)

O(2n)

CI (BdG) +1 −1 −1
Sp(2N)
U(N)

Sp(2n)
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Table 7.2 AZ symmetry classes for disordered quantum wires. Symmetry classes are defined
by the presence or absence of time-reversal symmetry and spin-rotation symmetry (SRS) and by
the single-particle spectral symmetries of sublattice symmetry (SLS) (random hopping model
at the band centre) also known as chiral symmetries, and particle–hole symmetry (zero-energy
quasiparticles in superconductors). For historical reasons, the first three rows are referred
to as the orthogonal (O), unitary (U), and symplectic (S) symmetry classes when the dis-
order is generic. A prefix ‘ch’ (‘chiral’) is added when the disorder respects a SLS, as in the
next three rows. The last four rows correspond to dirty superconductors and are named after
the symmetric spaces associated with their Hamiltonians. mo± and ml are the multiplicities of
the ordinary and long roots of the symmetric spaces associated with the transfer matrix. For the
three chiral classes, mo+ = 0, mo− = mo; otherwise, mo+ = mo− = mo. D is the degeneracy
of the transfer matrix eigenvalues. The next two columns show the symbols for the symmetric
spaces associated with the transfer matrix M and the Hamiltonian H. With g denoting the
dimensionless Landauer conductance and ρ(ε) the (self-averaging) density of states (DOS) per
unit energy and per unit length, the last three columns list theoretical results for the weak-
localization correction δg for � L N�, the disorder average ln g of ln g for L� N�, and
the DOS near ε = 0. The results for ln g and ρ(ε) in the chiral classes are for even N . For odd
N , ln g and ρ(ε) are the same as in class D.

SYMMETRY

CLASS

mo ml D M H δg −ln g ρ(ε) for 0 < ετc  1

AI 1 1 2 CI AI −2
3

2L/(γ�) ρ0

A 2 1 2(1) AIII A 0 2L/(γ�) ρ0

AII 4 1 2 DIII AII +
1
3

2L/(γ�) ρ0

BDI 1 0 2 AI BDI 0 2moL/(γ�) ρ0| ln |ετc||
AIII 2 0 2(1) A AIII 0 2moL/(γ�) πρ0|ετc ln |ετc||

CII 4 0 2 AII CII 0 2moL/(γ�)
1
3
πρ0|(ετc)3 ln |ετc||

CI 2 2 4 C CI −4
3

2mlL/(γ�) 1
2
πρ0|ετc|

C 4 3 4 CII C −2
3

2mlL/(γ�) ρ0|ετc|2

DIII 2 0 2 D DIII +
2
3

4
√
L/(2πγ�) πρ0/|ετc ln3 |ετc||

D 1 0 1 BDI D +
1
3

4
√
L/(2πγ�) πρ0/|ετc ln3 |ετc||

transport in quasi-one-dimensional wires belonging to the chiral and superconducting
classes was studied by Brouwer, Mudry, Simons, and Altland and by Brouwer, Fu-
rusaki, Gruzberg, and Mudry, respectively [10–13] (see Fig. 7.8 in Section 7.2.3).
In contrast to the threefold way, the three chiral symmetry classes and two of the
four superconducting classes (symmetry classes D and DIII) were shown to realize a
quantum critical point separating localized phases in quasi-one-dimensional arrays of
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wires. The diverging nature of the density of states at the band centre (the disorder
is of vanishing mean) for five of the ten symmetry classes in Table 7.2 is a signa-
ture of topologically protected zero modes bound to point defects. These point defects
are vanishing values of an order parameter (domain walls). The order parameter, if
translation symmetry holds, is here also responsible for a spectral gap.

Lattice realizations of Z2 topological band insulators in two-dimensional space were
proposed by Kane and Mele [54, 55] and in three-dimensional space by Moore and Ba-
lents [83], Roy [102], and Fu, Kane, and Mele [34]. This theoretical discovery initiated a
search by Ryu, Mudry, Ludwig, Obuse, and Furusaki [104, 105] for Dirac Hamiltonians
belonging to the two-dimensional symmetry classes AII and CII from Table 7.1, for
which the corresponding NLSMs encoding the effects of static and local disorder were
augmented by a topological term so as to evade Anderson localization on the bound-
ary of a d = 3-dimensional topological insulator. Following this route for all symmetry

Table 7.3 Classification of topological insulators and superconductors as a function of spatial
dimension d and AZ symmetry class, indicated by the Cartan label (first column). The def-
inition of the ten AZ symmetry classes of single-particle Hamiltonians is given in Table 7.1.
The symmetry classes are grouped in two separate lists of complex and real cases, respectively,
depending on whether the Hamiltonian is complex or whether one (or more) reality conditions
(arising from time-reversal or charge conjugation symmetries) are imposed on it; the AZ sym-
metry classes are ordered in such a way that a periodic pattern in dimensionality becomes
visible [58]. Entries Z, 2Z, and Z2 indicate that the topologically distinct phases within a given
symmetry class of topological insulators (superconductors) are characterized by an integer in-
variant, an even-integer invariant, or a Z2 quantity, respectively. An entry ‘0’ indicates that
there exists no topological insulator (superconductor), i.e. a case where all quantum ground
states are topologically equivalent to the trivial state.

CARTAN LABEL d =0 1 2 3 4 5 6 7 8 9 10 11 . . .

Complex case

A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 . . .

AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z . . .

Real case

AI Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 . . .

BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 . . .

D Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 . . .

DIII 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z . . .

AII 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 . . .

CII 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 . . .

C 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 · · ·
CI 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z . . .
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classes and for all dimensions, Ryu, Schnyder, Furusaki, and Ludwig [106, 109, 110]
arrived at the periodic table shown here as Table 7.3. The same table was derived
independently by Kitaev [58] using a mathematical construction known as K-theory,
which he applied to gapped Hamiltonians in the bulk (upon the imposition of, for
example, periodic boundary conditions) in the clean limit. This table specifies, in any
given dimension d of space, the symmetry classes for which it is possible to realize
a many-body ground state for non-interacting fermions subject to a static and local
disorder such that all bulk states are localized but there exist a certain (topological)
number of boundary states that remain delocalized.

The goals of these lectures are the following: first, to rederive the tenfold way for
non-interacting fermions in the presence of local interactions and static local disorder,
and, second, to determine whether interactions between fermions can produce topo-
logical phases of matter with protected boundary states that are not captured by the
tenfold way. This programme will be applied in two-dimensional space.

Section 7.2 motivates the tenfold way by deriving it explicitly in quasi-one-
dimensional space. Section 7.3 reviews Abelian chiral bosonization, a technical tool
allowing one to go beyond the tenfold way to incorporate the effects of many-body
interactions. Abelian chiral bosonization is applied in Section 7.4 to demonstrate the
stability of the gapless helical edge states in symmetry class AII in the presence of dis-
order and many-body interactions and then in Section 7.5 to construct microscopically
long-ranged entangled phases of two-dimensional quantum matter. Sections 7.4 and
7.5 follow the presentations made in [91] and [89], respectively.

7.2 The tenfold way in quasi-one-dimensional space

This section is dedicated to a non-vanishing density of non-interacting fermions hop-
ping between the sites of quasi-one-dimensional lattices or between the sites defining
the one-dimensional boundary of a two-dimensional lattice. According to the Pauli
exclusion principle, the non-interacting ground state is obtained by filling all the single-
particle energy eigenstates up to the Fermi energy fixed by the fermion density. The
fate of this single-particle energy eigenstate when a static and local random potential
is present is known as the problem of Anderson localization. The effect of disorder on
a single-particle extended energy eigenstate state can be threefold:

• The extended nature of the single-particle energy eigenstate is robust to disorder.
• The extended single-particle energy eigenstate is turned into a critical state.
• The extended single-particle energy eigenstate is turned into a localized state.

There are several methods allowing one to decide which of these three outcomes takes
place. Irrespective of the dimensionality d of space, the symmetries obeyed by the
static and local random potential matter for the outcome in a dramatic fashion. To
illustrate this point, let us consider the problem of Anderson localization in quasi-one-
dimensional space.

7.2.1 Symmetries for the case of one one-dimensional channel

For simplicity, consider first the case of an infinitely long one-dimensional chain with
lattice spacing a ≡ 1 along which a non-vanishing but finite density of spinless fermions
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hop with the uniform nearest-neighbour hopping amplitude t. If periodic boundary
conditions are imposed, then the single-particle Hamiltonian is the direct sum over all
momenta −π ≤ k ≤ +π within the first Brillouin zone of

H(k) := −2t cos k. (7.6)

The Fermi energy εF intersects the dispersion (7.6) at the two Fermi points ±kF.
Linearization of the dispersion (7.6) about these two Fermi points delivers the Dirac
Hamiltonian

HD := −τ3i∂x, (7.7a)

in units defined by

� ≡ 1, vF = 2t| sin kF| ≡ 1. (7.7b)

Here, τ3 is the third Pauli matrix among the four 2× 2 matrices

τ0 :=
(

1 0
0 1

)
, τ1 :=

(
0 1
1 0

)
, τ2 :=

(
0 −i
+i 0

)
, τ3 :=

(
+1 0
0 −1

)
.

(7.7c)
The momentum eigenstate

ΨR,p(x) := e+ipx

(
1
0

)
(7.8a)

is an eigenstate with single-particle energy εR(p) = +p. The momentum eigenstate

ΨL,p(x) := e+ipx

(
0
1

)
(7.8b)

is an eigenstate with single-particle energy εL(p) = −p. The plane waves

ΨR,p(x, t) := e+ip(x−t)
(

1
0

)
(7.9a)

and

ΨL,p(x, t) := e+ip(x+t)

(
0
1

)
(7.9b)

are respectively right-moving and left-moving solutions to the massless Dirac equation

i∂tΨ = HDΨ. (7.9c)

We perturb the massless Dirac Hamiltonian (7.7) with the most generic static and
local one-body potential

V(x) := a0(x)τ0 +m1(x)τ1 +m2(x)τ2 + a1(x)τ3. (7.10)

The real-valued function a0 is a space-dependent chemical potential. It couples to the
spinless fermions as the scalar part of the electromagnetic gauge potential does. The
real-valued function a1 is a space-dependent modulation of the Fermi point. It couples
to the spinless fermions as the vector part of the electromagnetic gauge potential
does. Both a0 and a1 multiply Pauli matrices such that each commutes with the
massless Dirac Hamiltonian (7.7). Neither channel is confining (localizing). The real-
valued functions m1 and m2 are space-dependent mass terms, since they multiply
Pauli matrices such that each anticommutes with the massless Dirac Hamiltonian and
with each other. Each channel is confining (localizing).
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7.2.1.1 Symmetry class A

The only symmetry preserved by

H := HD + V(x) (7.11)

with V defined in (7.10) is the global symmetry under multiplication of all states
in the single-particle Hilbert space over which H acts by the same U(1) phase.
Correspondingly, the local two-current

Jμ(x, t) := (Ψ†Ψ,Ψ†τ3Ψ)(x, t), (7.12)

obeys the continuity equation

∂μJ
μ = 0, with ∂0 := ∂t, ∂1 := ∂x. (7.13)

The family of Hamiltonians (7.11) labelled by the potential V of the form (7.10) is
said to belong to symmetry class A because of the conservation law (7.13).

One would like to reverse time in the Dirac equation

(i∂tΨ)(x, t) = (HΨ)(x, t), (7.14)

where H is defined by (7.11). Under time reversal,

t = −t′, (7.15)

the Dirac equation (7.14) becomes

(−i∂t′Ψ)(x,−t′) = (HΨ) (x,−t′). (7.16)

Complex conjugation removes the minus sign on the left-hand side:

(i∂t′Ψ∗)(x,−t′) = (HΨ)∗(x,−t′). (7.17)

Form invariance of the Dirac equation under time reversal then follows if one postulates
the existence of a unitary 2× 2 matrix UT and of a phase 0 ≤ φT < 2π such that (with
complex conjugation denoted by K)

(UT K)2 = eiφT τ0, Ψ∗(x,−t) =: UT ΨT (x, t), HT := U−1
T H∗UT , (7.18a)

in which case

(i∂tΨT )(x, t) = (HTΨT )(x, t). (7.18b)

Time-reversal symmetry then holds if and only if

U−1
T H∗UT = H. (7.19)

Time-reversal symmetry must hold for the massless Dirac equation. By inspection
of the right- and left-moving solutions (7.9), one deduces that UT must interchange
right- and left-movers. There are two possibilities: either

UT = τ2, φT = π, (7.20)

or

UT = τ1, φT = 0. (7.21)



280 Fractional Abelian topological phases of matter for fermions in two-dimensional space

7.2.1.2 Symmetry class AII

Imposing time-reversal symmetry using the definition (7.20) restricts the family of
Dirac Hamiltonians (7.11) to

H(x) := −iτ3∂t + a0(x)τ0. (7.22)

The family of Hamiltonians (7.11) labelled by the potential V of the form (7.22) is
said to belong to symmetry class AII because of the conservation law (7.13) and of
the time-reversal symmetry (7.19) with the representation (7.20).

7.2.1.3 Symmetry class AI

Imposing time-reversal symmetry using the definition (7.21) restricts the family of
Dirac Hamiltonians (7.11) to

H(x) := −iτ3∂t + a0(x)τ0 +m1(x)τ1 +m2(x)τ2. (7.23)

The family of Hamiltonians (7.11) labelled by the potential V of the form (7.23) is
said to belong to symmetry class AI because of the conservation law (7.13) and of the
time-reversal symmetry (7.19) with the representation (7.21).

Let us take advantage of the fact that the dispersion relation (7.6) obeys the
symmetry

H(k) = −H(k + π). (7.24)

This spectral symmetry is a consequence of the fact that the lattice Hamiltonian an-
ticommutes with the local gauge transformation that maps the basis of single-particle
localized wavefunctions

ψi : Z → C, j �→ ψi(j) := δij (7.25)

into the basis

ψ′i : Z → C, j �→ ψ′i(j) := (−1)jδij . (7.26)

Such a spectral symmetry is an example of a sublattice symmetry in condensed matter
physics. So far, the chemical potential

εF ≡ −2t cos kF (7.27)

defined in (7.6) has been arbitrary. However, in view of the spectral symmetry (7.24),
the single-particle energy eigenvalue

0 = εF ≡ −2t cos kF, kF =
1
2
π, (7.28)

is special. It is the centre of symmetry of the single-particle spectrum (7.6). The
spectral symmetry (7.24) is also known as a chiral symmetry of the Dirac equation
(7.7a) by which

HD = −τ1HDτ1, (7.29)

after an expansion to leading order in powers of the deviation of the momenta away
from the two Fermi points ±1

2π.
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7.2.1.4 Symmetry class AIII

If charge conservation holds together with the chiral symmetry

H = −τ1Hτ1, (7.30a)

then

H = −τ3i∂x + a1(x)τ3 +m2(x)τ2 (7.30b)

is said to belong to symmetry class AIII.

7.2.1.5 Symmetry class CII

It is not possible to write down a 2× 2 Dirac equation in symmetry class CII.
For example, if charge conservation holds together with the chiral and time-reversal
symmetries

H = −τ1Hτ1, H = +τ2H∗τ2, (7.31a)

respectively, then

H = −τ3i∂x (7.31b)

does not belong to symmetry class CII, since the composition of the chiral transform-
ation with time reversal squares to unity instead of minus unity.

7.2.1.6 Symmetry class BDI

If charge conservation holds together with the chiral and time-reversal symmetries

H = −τ1Hτ1, H = +τ1H∗τ1, (7.32a)

then

H = −τ3i∂x +m2(x)τ2 (7.32b)

is said to belong to symmetry class BDI.
The global U(1) gauge symmetry responsible for the continuity equation (7.13)

demands that one treats the two components of the Dirac spinors as independent.
This is not desirable if the global U(1) gauge symmetry is to be restricted to a global
Z2 gauge symmetry, as occurs in a mean-field treatment of superconductivity. If the
possibility of restricting the global U(1) to a global Z2 gauge symmetry is to be
accounted for, then four more symmetry classes are permissible.
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7.2.1.7 Symmetry class D

If we impose a particle–hole symmetry through

H = −H∗, (7.33a)

then

H = −τ3i∂x +m2(x)τ2 (7.33b)

is said to belong to symmetry class D.

7.2.1.8 Symmetry class DIII

If we impose particle–hole and time-reversal symmetries through

H = −H∗, H = +τ2H∗τ2, (7.34a)

respectively, then

H = −τ3i∂x (7.34b)

is said to belong to symmetry class DIII.

7.2.1.9 Symmetry class C

If we impose a particle–hole symmetry through

H = −τ2H∗τ2, (7.35a)

then

H = a1(x)τ3 +m2(x)τ2 +m1(x)τ1 (7.35b)

is said to belong to symmetry class C. The Dirac kinetic energy is prohibited for a
2× 2 Dirac Hamiltonian from symmetry class C.

7.2.1.10 Symmetry class CI

If we impose particle–hole and time-reversal symmetries through

H = −τ2H∗τ2, H = +τ1H∗τ1, (7.36a)

respectively, then

H = m2(x)τ2 +m1(x)τ1 (7.36b)

is said to belong to symmetry class CI. The Dirac kinetic energy is prohibited for a
2× 2 Dirac Hamiltonian from symmetry class CI.
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7.2.2 Symmetries for the case of two
one-dimensional channels

Imagine two coupled linear chains along which non-interacting spinless fermions
are allowed to hop. If the two chains are decoupled and the hopping is a uniform
nearest-neighbour hopping along any one of the two chains, then the low-energy and
long-wavelength effective single-particle Hamiltonian in the vicinity of the chemical
potential εF = 0 is the tensor product of the massless Dirac Hamiltonian (7.7a) with
the 2× 2 unit matrix σ0. Let the three Pauli matrices σ act on the same vector space
as σ0 does. For convenience, introduce the 16 Hermitian 4× 4 matrices

Xμν := τμ ⊗ σν , μ, ν = 0, 1, 2, 3. (7.37)

7.2.2.1 Symmetry class A

The generic Dirac Hamiltonian of rank r = 4 is

H := −X30i∂x + a1,ν(x)X3ν +m2,ν(x)X2ν +m1,ν(x)X1ν + a0,ν(x)X0ν . (7.38)

The summation convention over the repeated index ν = 0, 1, 2, 3 is implied. There
are four real-valued parameters for the components a1,ν with ν = 0, 1, 2, 3 of a U(2)
vector potential, eight for the components m1,ν and m2,ν with ν = 0, 1, 2, 3 of two
independent U(2) masses, and four for the components a0,ν with ν = 0, 1, 2, 3 of a U(2)
scalar potential. As it should be, there are 16 real-valued free parameters (functions,
if one opts to break translation invariance). If all components of the spinors solving
the eigenvalue problem

HΨ(x) = εΨ(x) (7.39)

are independent, then the Dirac Hamiltonian (7.38) belongs to symmetry class A.
In addition to conservation of the fermion number, one can impose time-reversal

symmetry on the Dirac Hamiltonian (7.38) There are two possibilities to do this.

7.2.2.2 Symmetry class AII

If charge conservation holds together with time-reversal symmetry through

H = +X12H∗X12, (7.40a)

then

H = −X30i∂x +
∑

ν=1,2,3

a1,ν(x)X3ν +m2,0(x)X20 +m1,0(x)X10 + a0,0(x)X00

(7.40b)
is said to belong to symmetry class AII.
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7.2.2.3 Symmetry class AI

If charge conservation holds together with time-reversal symmetry through

H = +X10H∗X10, (7.41a)

then

H = −X30i∂x + a1,2(x)X32 +
∑

ν=0,1,3

[m2,ν(x)X2ν +m1,ν(x)X1ν + a0,ν(x)X0ν ]

(7.41b)
is said to belong to symmetry class AI.

The standard symmetry classes A, AII, and AI can be further constrained by
imposing chiral symmetry. This gives the following three possibilities.

7.2.2.4 Symmetry class AIII

If charge conservation holds together with the chiral symmetry

H = −X10HX01, (7.42a)

then

H = −X30i∂x + a1,ν(x)X3ν +m2,ν(x)X2ν (7.42b)

is said to belong to symmetry class AIII.

7.2.2.5 Symmetry class CII

If charge conservation holds together with the chiral and time-reversal symmetries

H = −X10HX10, H = +X12H∗X12, (7.43a)

respectively, then

H = −X30i∂x +
∑

ν=1,2,3

a1,ν(x)X3ν +m2,0(x)X20 (7.43b)

is said to belong to symmetry class CII.

7.2.2.6 Symmetry class BDI

If charge conservation holds together with the chiral and time-reversal symmetries

H = −X10HX10, H = +X10H∗X10, (7.44a)

respectively, then

H = −X30i∂x + a1,2(x)X32 +
∑

ν=0,1,3

m2,ν(x)X2ν (7.44b)

is said to belong to symmetry class BDI.
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Now, we move to the four Bogoliubov–de Gennes (BdG) symmetry classes by
relaxing the condition that all components of a spinor on which the Hamiltonian
acts be independent. This means that changing each component of a spinor by a
multiplicative global phase factor is no longer legitimate. However, changing each
component of a spinor by a global sign remains legitimate. The constraints among the
components of a spinor come about by imposing a particle–hole symmetry.

7.2.2.7 Symmetry class D

If we impose particle–hole symmetry through

H = −H∗, (7.45a)

then

H = −X30i∂x + a1,2(x)X32 +
∑

ν=0,1,3

m2,ν(x)X2ν +m1,2(x)X12 + a0,2(x)X02

(7.45b)
is said to belong to symmetry class D.

7.2.2.8 Symmetry class DIII

If we impose particle–hole and time-reversal symmetries through

H = −H∗, H = +X20H∗X20, (7.46a)

respectively, then

H = −X30i∂x + a1,2(x)X32 +m1,2(x)X12 (7.46b)

is said to belong to symmetry class DIII.

7.2.2.9 Symmetry class C

If we impose particle–hole symmetry through

H = −X02H∗X02, (7.47a)

respectively, then

H = −X30i∂x +
∑

ν=1,2,3

a1,ν(x)X3ν +m2,0(x)X20 +
∑

ν=1,2,3

[m1,ν(x)X1ν + a0,ν(x)X0ν ]

(7.47b)
is said to belong to symmetry class C.
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7.2.2.10 Symmetry class CI

If we impose particle–hole and time-reversal symmetries through

H = −X02H∗X02, H = +X10H∗X10, (7.48a)

respectively, then

H = −X30i∂x + a1,2(x)X32 +m2,0(x)X20 +m1,1(x)X11 +m1,3(x)X13 + a0,3(x)X03

(7.48b)

is said to belong to symmetry class CI.

7.2.3 Definition of the minimum rank

In Sections 7.2.1 and 7.2.2, we have imposed ten symmetry restrictions corresponding
to the tenfold way introduced by Altland and Zirnbauer on Dirac Hamiltonians with
Dirac matrices of rank r = 2 and 4, respectively. These Dirac Hamiltonians describe
the propagation of single-particle states in one-dimensional space. These ten symmetry
classes will be called the Altland–Zirnbauer (AZ) symmetry classes.

Observe that some of the AZ symmetries can be very restrictive for those Dirac
Hamiltonians with Dirac matrices of small rank r. For example, it is not possible
to write down a Dirac Hamiltonian of rank r = 2 in symmetry class CII, symmetry
classes C and CI do not admit a Dirac kinetic energy of rank r = 2, and symmetry
classes AII and DIII do not admit Dirac masses in their Dirac Hamiltonians of rank
r = 2.

This observation suggests the definition of a minimum rank rmin for which the Dirac
Hamiltonian describing propagation in d-dimensional space for a given AZ symmetry
class admits a Dirac mass. Hence, rmin depends implicitly on the dimensionality of
space and on the AZ symmetry class. In one-dimensional space, we have found that

rAmin = 2, rAII
min = 4, rAI

min = 2,

rAIII
min = 2, rCII

min = 4, rBDI
min = 2,

rDmin = 2, rDIII
min = 4, rCmin = 4, rCI

min = 4.

(7.49)

This definition is useful for a number of reasons.
First, Anderson localization in a given AZ symmetry class is impossible for any

random Dirac Hamiltonian with Dirac matrices of rank r smaller than rmin. This is
the case for symmetry classes AII and DIII for a Dirac Hamiltonian of rank r = 2 in
one-dimensional space. The lattice realization of these Dirac Hamiltonians is along the
boundary of a two-dimensional insulator in symmetry classes AII and DIII when the
bulk realizes a topologically non-trivial insulating phase owing to the fermion-doubling
problem. This is why an odd number of helical pairs of edge states in symmetry class
AII and an odd number of helical pairs of Majorana edge states in symmetry class DIII
can evade Anderson localization. The r = 2 limit for the Dirac Hamiltonians encoding
one-dimensional propagation in symmetry classes AII and DIII are the signatures for
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the topologically non-trivial entries of the group Z2 in the d = 2 column of Table 7.3.
For symmetry classes A and D, we can consider the r = 1 limit as a special limit
that shares with a Dirac Hamiltonian the property that it is a first-order differential
operator in space, but, unlike a Dirac Hamiltonian, this limit does no treat right-
and left-movers on equal footing (and thus breaks time-reversal symmetry explicitly).
Such a first-order differential operator encodes the propagation of right-movers on the
inner boundary of a two-dimensional ring (the Corbino geometry of Fig. 7.5), while its
complex conjugate encodes the propagation of left-movers on the outer boundary of a
two-dimensional ring or vice versa. For symmetry class C, one must consider two copies
of opposite spins of the r = 1 limit of symmetry class D. The r = 1 limits for Dirac
Hamiltonians encoding one-dimensional propagation in symmetry classes A, D, and
C are realized on the boundaries of two-dimensional insulating phases supporting the
IQHE, the thermal IQHE, and the spin-resolved thermal IQHE, respectively. These
limits are the signatures for the non-trivial entries ±1 and ±2 of the groups Z and 2Z,
respectively, in the d = 2 column of Table 7.3.

Second, one can always define the quasi-d-dimensional Dirac Hamiltonian

H(x ) := −i(α⊗ I) · ∂
∂x

+ V(x ), (7.50a)

where α and β are a set of matrices that anticommute pairwise and square to the
rmin × rmin unit matrix, I is the N ×N unit matrix, and

V(x ) = m(x )β ⊗ I + . . . , (7.50b)

with ‘. . .’ representing all other masses, vector potentials, and scalar potentials al-
lowed by the AZ symmetry class. For one-dimensional space, the stationary eigenvalue
problem

H(x)Ψ(x; ε) = εΨ(x; ε) (7.51)

with the given ‘initial value’ Ψ(y; ε) is solved through the transfer matrix

Ψ(x; ε) = M(x|y; ε)Ψ(y; ε) (7.52a)

where

M(x|y; ε) := Px′ exp
(∫ x

y

dx′ i(α⊗ I)[ε− V(x′)]
)
. (7.52b)

The symbol Px′ represents path ordering. The limit N →∞ with all entries of V
independently and identically distributed (iid) up to the AZ symmetry constraints
(averaging over the disorder is denoted by an overline),

Vij(x) ∝ vij , (7.53a)

[Vij(x)− vij ] [Vkl(y)− vkl] ∝ g2e−|x−y|/ξdis , (7.53b)

for i, j, k, l = 1, . . . , rminN , defines the thick-quantum-wire limit.
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The consequences of (7.52) are as follows. First, the local symmetries defining
symmetry classes A, AII, and AI obeyed by ε− V(x′) carry through to the transfer
matrix at any single-particle energy ε. The local unitary spectral symmetries defining
symmetry classes AIII, CII, and BDI and the local antiunitary spectral symmetries
defining symmetry classes D, DIII, C, and CI carry through to the transfer matrix
at the single-particle energy ε = 0. Second, the diagonal matrix entering the polar
decomposition of the transfer matrix at the band centre ε = 0 is related to the non-
compact symmetric spaces from the M column of Table 7.2. Third, the composition
law obeyed by the transfer matrix that encodes enlarging the length of a disordered
wire coupled to perfect leads is matrix multiplication. It is then possible to derive a
Fokker–Planck equation for the joint probability obeyed by the radial coordinates on
the non-compact symmetric spaces from the M column of Table 7.2 as the length L
of of a disordered wire coupled to perfect leads is increased. In this way, the moments
of the dimensionless Landauer conductance g in the δg and −ln g columns of Table 7.2
can be computed An infinitesimal increase in the length of the disordered region
for one of the ten symmetry classes induces an infinitesimal Brownian motion (see
Fig. 7.8) of the Lyapunov exponents that is solely controlled by the multiplicities
of the ordinary, long, and short roots of the corresponding classical semisimple Lie
algebra under suitable assumptions on the disorder (locality, weakness, and isotropy
between all channels). When the transfer matrix describes the stability of the metallic
phase in the thick-quantum-wire limit of non-interacting fermions perturbed by static
one-body random potentials with local correlations and of vanishing means in the bulk
of a quasi-one-dimensional lattice model, the multiplicities of the short root entering
the Brownian motion of the Lyapunov exponents always vanish. However, when the
transfer matrix describes the quasi-one-dimensional boundary of a two-dimensional
topological band insulator moderately perturbed by static one-body random potentials
with local correlations, the multiplicities of the short root are non-vanishing in the
Brownian motion of the Lyapunov exponents in the five AZ symmetry classes A, AII,
D, DIII, and C. Correspondingly, the conductance is of order unity along the infinitely

–xn(L)˝n =1,...,N *

–xn(0)˝n =1,...,N *

–xn(L +δL)˝n =1,...,N *

Fig. 7.8 [Colour online] The ‘radial coordinate’ of the transfer matrix M from Table 7.2
is responsible for Brownian motion on an associated non-compact symmetric space. (Taken
from [11].)
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long boundary, i.e. the insulating bulk supports extended edge states. These extended
edge states can be thought of as realizing a quasi-one-dimensional ballistic phase of
quantum matter robust to disorder.

7.2.4 Topological spaces for the normalized Dirac masses

To study systematically the effects of static and local disorder on the insulating phases
of quasi-d-dimensional phases, it is very useful to explore the topological properties of
the normalized Dirac masses entering a generic random Dirac Hamiltonian of the form
(7.50) within any given AZ symmetry class. This approach allows us to construct the
periodic table in Table 7.3 [85]. The d = 1, . . . , 8 columns of Table 7.3 can be derived
by brute force if one constructs the generic Dirac Hamiltonian with Dirac matrices
of rank rmin belonging to any one of the ten AZ symmetry classes and repeats this
construction with Dirac matrices of rank 2rmin, 3rmin, and so on. It then becomes
apparent that for any dimension d:

1. Five of the ten AZ symmetry classes accommodate one normalized Dirac matrix
up to sign when the Dirac matrices have rank r = rmin. These are the sym-
metry classes that realize topologically distinct localized phases of d-dimensional
quantum matter.
(a) Three of these symmetry classes are characterized by having one normalized

Dirac mass matrix that commutes with all other Dirac matrices when r =
Nrmin, with N = 2, 3, . . .. These are the entries with the group Z (or 2Z
when there is a degeneracy of 2) in Table 7.3. Mathematically, the group Z
is the zeroth homotopy group of the normalized Dirac masses in the limit
N →∞.

(b) Two of these symmetry classes are characterized by the fact that the sum
of all mass terms can be associated with a 2N × 2N Hermitian and anti-
symmetric matrix for any r = rminN , with N = 1, 2, . . .. The sign ambiguity
of the Pfaffian of this matrix indexes the two group elements in the entries
with the group Z2 in Table 7.3. Mathematically, the group Z2 is the zeroth
homotopy group of the normalized Dirac masses for N sufficiently large.

2. The topological space of normalized Dirac masses is compact and path-connected
for the remaining five symmetry classes, i.e. its zeroth homotopy group is trivial.
No Dirac mass is singled out. The localized phase of matter is topologically
trivial.

The observed periodicity of two for the complex classes and of eight for the real classes
in Table 7.3 follows from Bott periodicity in K-theory.

7.3 Fractionalization from Abelian bosonization

7.3.1 Introduction

Abelian bosonization is attributed to Coleman [21], Mandelstam [79], and Luther and
Peschel [77]. However, Abelian bosonization can be traced to the much older works of
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Kronig [67], Tomonaga [121], and Luttinger [78], in which it is observed that gapless
fermions in one-dimensional space are equivalent to gapless phonons. Here, we follow
the more general formulation of Abelian bosonization given by Haldane [46], since it
lends itself to a description of one-dimensional quantum effective field theories arising
in the low-energy sector along the boundary in space of (2 + 1)-dimensional topological
quantum field theories.

7.3.2 Definition

Let us define the quantum Hamiltonian (in units with the electric charge e, the
characteristic speed, and � set equal to 1)

Ĥ :=
∫ L

0

dx
[

1
4π
Vij (Dxûi) (Dxûj) + A0

( qi
2π
K−1
ij (Dxûj)

)]
(t, x),

Dxûi(t, x) := (∂xûi + qiA1)(t, x).
(7.54a)

The indices i, j = 1, . . . , N label the bosonic modes. Summation over repeated indices
is implied. TheN real-valued quantum fields ûi(t, x) obey the equal-time commutation
relations

[ûi(t, x), ûj(t, y)] := iπ[Kij sgn(x− y) + Lij ] (7.54b)

for any pair i, j = 1, . . . , N . The function sgn(x) = −sgn(−x) gives the sign of the real
variable x and will be assumed to be periodic with periodicity L. The N ×N matrix
K is symmetric, invertible, and integer-valued. Given the pair i, j = 1, . . . , N , any of
its matrix elements thus obey

Kij = Kji ∈ Z, K−1
ij = K−1

ji ∈ Q. (7.54c)

The N ×N matrix L is antisymmetric:

Lij = −Lji =

{
0 if i = j,

sgn(i− j)(Kij + qiqj) otherwise,
(7.54d)

for i, j = 1, . . . , N . The sign function sgn(i) of any integer i is here not made periodic
and is taken to vanish at the origin of Z. The external scalar gauge potential A0(t, x)
and vector gauge potential A1(t, x) are real-valued functions of the time t and space x
coordinates. They are also chosen to be periodic under x �→ x+ L. The N ×N matrix
V is symmetric and positive-definite:

Vij = Vji ∈ R, viVijvj > 0, i, j = 1, . . . , N, (7.54e)

for any non-vanishing vector v = (vi) ∈ RN . The charges qi are integer-valued and
satisfy

(−1)Kii = (−1)qi , i = 1, . . . , N. (7.54f)
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Finally, we shall impose the boundary conditions

ûi(t, x+ L) = ûi(t, x) + 2πni, ni ∈ Z, (7.54g)

and

(∂xûi)(t, x+ L) = (∂xûi)(t, x), (7.54h)

for any i = 1, . . . , N .

7.3.3 Chiral equations of motion

For any i, j = 1, . . . , N , one verifies with the help of the equal-time commutation
relations

[ûi(t, x),Dyûj(t, y)] = −2πiKijδ(x− y) (7.55)

that the equations of motions are

i(∂tûi)(t, x) := [ûi(t, x), Ĥ]

= − iKijVjk(∂xûk + qkA1)(t, x)− iqiA0(t, x). (7.56)

We introduce the covariant derivatives

Dμûk := ∂μûk + qkAμ, with ∂0 ≡ ∂t, ∂1 ≡ ∂x, (7.57)

for μ = 0, 1 and k = 1, . . . , N . The equations of motion

0 = δikD0ûk +KijVjkD1ûk (7.58)

are chiral. Making the substitutions ûi �→ v̂i and K �→ −K everywhere in (7.54)
delivers the chiral equations of motion

0 = δikD0v̂k −KijVjkD1v̂k, (7.59)

with the opposite chirality. Evidently, the chiral equations of motion (7.58) and (7.59)
are first-order differential equations, in contrast to the Klein–Gordon equations of
motion obeyed by a relativistic quantum scalar field.
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7.3.4 Gauge invariance

The chiral equations of motion (7.58) and (7.59) are invariant under the local U(1)
gauge symmetry

ûi(t, x) =: û′i(t, x) + qiχ(t, x),

A0(t, x) =: A′0(t, x)− (∂tχ)(t, x),

A1(t, x) =: A′1(t, x)− (∂xχ)(t, x),

(7.60a)

for any real-valued function χ that satisfies the periodic boundary conditions

χ(t, x+ L) = χ(t, x). (7.60b)

Functional differentiation of the Hamiltonian (7.54a) with respect to the gauge
potentials allows us to define the 2-current with components

Ĵ0(t, x) :=
δĤ

δA0(t, x)
=

1
2π
qiK

−1
ij (D1ûj)(t, x), (7.61a)

Ĵ1(t, x) :=
δĤ

δA1(t, x)
=

1
2π
qiVij(D1ûj)(t, x) +

1
2π

(qiK−1
ij qj)A0(t, x). (7.61b)

We introduce the shorthand notation

σH :=
1
2π

(qiK−1
ij qj) ∈

1
2π

Q (7.62)

for the second term on the right-hand side of (7.61b). The subscript stands for ‘Hall’
as we shall shortly interpret σH as a dimensionless Hall conductance.

The transformation law of the 2-current (7.61) under the local gauge transform-
ation (7.60) is

Ĵ0(t, x) = Ĵ0′(t, x), (7.63a)

Ĵ1(t, x) = Ĵ1′(t, x)− σH(∂tχ)(t, x). (7.63b)

The 2-current (7.61) is only invariant under gauge transformations (7.60) that are
static when σH �= 0.

With the help of

[Dxûi(t, x),Dyûj(t, y)] = −2πiKijδ
′(x− y) (7.64)

for i, j = 1, . . . , N , one verifies that the time derivative of Ĵ0(t, x) is

∂tĴ
0 = −i[Ĵ0, Ĥ] + σH∂tA1

= −∂xĴ1 + σH∂tA1.
(7.65)
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The continuity equation

∂μĴ
μ = 0 (7.66)

then follows, provided that A1 is time-independent or σH = 0. This continuity equation
delivers a conserved total charge if and only if A0 and A1 are both static for arbitrary
σH �= 0.

For any non-vanishing σH, the continuity equation

∂μĴ
μ = σH∂tA1 (7.67)

is anomalous as soon as the vector gauge potential A1 is time-dependent. The edge
theory (7.54) is said to be chiral when σH �= 0, in which case the continuity equation
(7.67) is anomalous. The anomalous continuity equation (7.67) is form-covariant under
any smooth gauge transformation (7.60). The choice of gauge may be fixed by the
condition

∂xA0 = 0, (7.68a)

for which the anomalous continuity equation (7.67) then becomes

(∂μĴμ)(t, x) = +σHE(t, x), (7.68b)

where

E(t, x) := +(∂tA1)(t, x) ≡ −(∂tA1)(t, x) (7.68c)

represents the electric field in this gauge.
To interpret the anomalous continuity equation (7.68) of the bosonic chiral edge

theory (7.54), we recall that x is a compact coordinate because of the periodic
boundary conditions (7.54g), (7.54f), and (7.60). For simplicity, we assume

E(t, x) = E(t). (7.69)

The interval 0 ≤ x ≤ L is thought of as a circle of perimeter L centred at the origin
of the three-dimensional Euclidean space as shown in Fig. 7.9. The vector potential
A1(t) and the electric field E(t) = −(∂tA1)(t) along the circle of radius R ≡ L/2π are
then the polar components of a three-dimensional gauge field Aμ(t, r) = (A0,A)(t, r)
in a cylindrical geometry with the electromagnetic fields

E(t, r ) = −(∇A0)(t, r)− (∂tA)(t, r), B(t, r) = (∇×A)(t, r). (7.70)

The dimensionless Hall conductance σH encodes the linear response of spin-
polarized electrons confined to move along this circle in the presence of a uniform and
static magnetic field normal to the plane that contains this circle. The time-dependent
anomalous term on the right-hand side of the anomalous continuity equation (7.68b) is
caused by a solenoid of radius rsln � r � R in a puncture of the plane that contains
the circle of radius rsln supporting a time-dependent flux. The combination of this
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Fig. 7.9 (a) A ring of outer radiusR ≡ L/2π and inner radius r in which electrons are confined.
A uniform and static magnetic field B normal to the ring is present. The hierarchy �B  r  R

of lengthscales is assumed, where �B ≡ �c/|eB| is the magnetic length. A time-dependent vector
potential A(t, r) is induced by a time-dependent flux supported within a solenoid of radius
rsln  r. This Corbino geometry has cylindrical symmetry. (b) The classical motion of electrons
confined to a plane normal to a uniform static magnetic field is circular. In the limit R → ∞
with R/r held fixed, the Corbino disc turns into a Hall bar. An electron within a magnetic
length of the boundary undergoes a classical skipping orbit. On quantization, a classical electron
undergoing a skipping orbit turns into a chiral electron. On bosonization, a chiral electron turns
into a chiral boson.

time-dependent flux with the uniform static magnetic field exerts a Lorentz force on
spin-polarized electrons moving along circles in the ring with inner edge of radius r
and outer edge of radius R. This Lorentz force causes a net transfer of charge between
the inner and outer edges,

1
L

∫ T

0

dtQ(T ) :=
∫ T

0

dt 〈Ĵ0(t)〉 = σH

∫ T

0

dt E(t), (7.71)

during the adiabatic evolution with period T of the normalized many-body ground
state of the outer edge, provided that we may identify the anomalous continuity equa-
tion (7.68b) with that of chiral spin-polarized electrons propagating along the outer
edge in Fig. 7.9. Here, for the many-body ground state at the outer edge to be sep-
arated from all spin-polarized electrons supported between the inner and outer edges,
it is necessary for there to exist an energy scale separating the ground state from
the many-body states in which these bulk spin-polarized electrons participate and for
the inverse of this energy scale, a lengthscale, to be much smaller than R− r. This
energy scale is brought about by the uniform and static magnetic field B in Fig. 7.9.
That none of this pumped charge is lost in the shaded region of the ring follows if it
is assumed that the spin-polarized electrons are unable to transport (dissipatively) a
charge current across any circle of radius less than R and greater than r. The Hall
conductance in the Corbino geometry of Fig. 7.9 is then a rank-two antisymmetric
tensor proportional to the rank-two Levi–Civita antisymmetric tensor with σH the
proportionality constant in units of e2/h. The charge density and current density for
the ring obey a continuity equation as full gauge invariance is restored in the ring.
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The chiral bosonic theory (7.54) is nothing but a theory for chiral electrons at the
outer edge of the Corbino disc, as we still have to demonstrate. Chiral fermions are a
fraction of the original fermion (a spin-polarized electron). More precisely, low-energy
fermions have been split into one half that propagate on the outer edge and another
half that propagate on the inner edge of the Corbino disc. The price for this fraction-
alization is an apparent breakdown of gauge invariance and charge conservation, with
each chiral edge being treated independently from the other. Manifest charge conser-
vation and gauge invariance are only restored if all low-energy degrees of freedom from
the Corbino disc are treated on an equal footing.

7.3.5 Conserved topological charges

Let us turn off the external gauge potentials:

A0(t, x) = A1(t, x) = 0. (7.72)

For any i = 1, . . . , N , we define the operator

N̂i(t) :=
1
2π

∫ L

0

dx (∂xûi)(t, x)

=
1
2π

[ûi(t, L)− ûi(t, 0)].

(7.73)

This operator is conserved if and only if

(∂xûi)(t, x) = (∂xûi)(t, x+ L), 0 ≤ x ≤ L, (7.74)

for

i(∂tN̂i)(t) = − i
2π
KikVkl[(∂xûl)(t, L)− (∂xûl)(t, 0)]. (7.75)

Furthermore, if we demand that there exists an ni∈ Z such that

ûi(t, x+ L) = ûi(t, x)− 2πni, (7.76)

then it follows that

N̂i = ni. (7.77)

A corollary to (7.77) is that the N conserved topological charges Ni with
i = 1, . . . , N commute pairwise. The same conclusion follows from the brute force
manipulations

[N̂i, N̂j ] =
1
2π

∫ L

0

dy [N̂i, (∂yûj)(y)]

=
1
2π

∫ L

0

dy ∂y[N̂i, ûj(y)], (7.78)
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where j = 1, . . . , N and

[N̂i, ûj(y)] = iKij (7.79)

is independent of y.
The local counterpart to the global conservation of the topological charge is

∂tρ̂
top
i + ∂xĵ

top
i = 0, (7.80a)

where the local topological density operator is defined by

ρ̂top
i (t, x) :=

1
2π

(∂xûi)(t, x) (7.80b)

and the local topological current operator is defined by

ĵtopi (t, x) :=
1
2π
KikVkl(∂xûl)(t, x) (7.80c)

for i = 1, . . . , N . The local topological density operator obeys the equal-time algebra

[ρ̂top
i (t, x), ρ̂top

j (t, y)] = − i
2π
Kij∂xδ(x− y) (7.81a)

for any i, j = 1, . . . , N . The local topological current operator obeys the equal-time
algebra

[ĵtopi (t, x), ĵtopj (t, y)] = − i
2π
KikVklKjk′Vk′l′Kll′∂xδ(x− y) (7.81b)

for any i, j = 1, . . . , N . Finally,

[ρ̂top
i (t, x), ĵtopj (t, y)] = − i

2π
KjkVklKil∂xδ(x− y) (7.81c)

for any i, j = 1, . . . , N .
Let us introduce the local charges and currents

ρ̂i(t, x) := K−1
ij ρ̂

top
j (t, x) (7.82a)

and

ĵi(t, x) := K−1
ij ĵ

top
j (t, x), (7.82b)

respectively, for any i = 1, . . . , N . The continuity equation (7.80a) is unchanged under
this linear transformation:

∂tρ̂i + ∂xĵi = 0 (7.82c)
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for any i = 1, . . . , N . The topological current algebra (7.81) transforms into

[ρ̂i(t, x), ρ̂j(t, y)] = − i
2π
K−1
ij ∂xδ(x− y), (7.83a)

[ĵi(t, x), ĵj(t, y)] = − i
2π
VikVjlKkl∂xδ(x− y), (7.83b)

[ρ̂i(t, x), ĵj(t, y)] = − i
2π
Vij∂xδ(x− y) (7.83c)

for any i, j = 1, . . . , N .
Finally, if we contract the continuity equation (7.82c) with the integer-valued

charge vector, we obtain the flavour-global continuity equation

∂tρ̂+ ∂xĵ = 0, (7.84a)

where the local flavour-global charge operator is

ρ̂(t, x) := qiK
−1
ij ρ̂

top
j (t, x) (7.84b)

and the local flavour-global current operator is

ĵ(t, x) := qiK
−1
ij ĵ

top
j (t, x). (7.84c)

The flavour-resolved current algebra (7.83) turns into the flavour-global current
algebra

[ρ̂(t, x), ρ̂(t, y)] = − i
2π

(qiK−1
ij qj)∂xδ(x− y), (7.85a)

[ĵ(t, x), ĵ(t, y)] = − i
2π

(qiVikKklVljqj)∂xδ(x− y), (7.85b)

[ρ̂(t, x), ĵ(t, y)] = − i
2π

(qiVijqj)∂xδ(x− y). (7.85c)

7.3.6 Quasiparticle and particle excitations

When (7.72) holds, there exist N conserved global topological (i.e. integer-valued)
charges N̂i, with i = 1, . . . , N , defined in (7.73) that commute pairwise. We define the
N global charges

Q̂i :=
∫ L

0

dx ρ̂i(t, x) = K−1
ij N̂j , i = 1, . . . , N. (7.86)

These charges will shortly be interpreted as the elementary Fermi–Bose charges.
For any i = 1, . . . , N , we define the following pair of vertex operators:

Ψ̂†q-p,i(t, x) := e−iK−1
ij ûj(t,x), (7.87a)

Ψ̂†f-b,i(t, x) := e−iδij ûj(t,x). (7.87b)
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The quasiparticle vertex operator Ψ̂†q-p,i(t, x) is multivalued under a shift by 2π of
all ûj(t, x), where j = 1, . . . , N . The Fermi–Bose vertex operator Ψ̂†f-b,i(t, x) is single-
valued under a shift by 2π of all ûj(t, x), where j = 1, . . . , N .

For any pair i, j = 1, . . . , N , the commutator (7.79) delivers the identities

[N̂i, Ψ̂†q-p,j(t, x)] = δijΨ̂
†
q-p,j(t, x), [N̂i, Ψ̂†f-b,j(t, x)] = KijΨ̂

†
f-b,j(t, x), (7.88)

[Q̂i, Ψ̂
†
q-p,j(t, x)] = K−1

ij Ψ̂†q-p,j(t, x), [Q̂i, Ψ̂
†
f-b,j(t, x)] = δijΨ̂

†
f-b,j(t, x). (7.89)

The quasiparticle vertex operator Ψ̂†q-p,i(t, x) is an eigenstate of the topological num-
ber operator N̂i with eigenvalue 1. The Fermi–Bose vertex operator Ψ̂†f-b,i(t, x) is an
eigenstate of the charge number operator Q̂i with eigenvalue 1.

The Baker–Campbell–Hausdorff formula implies that

eÂeB̂ = eÂ+B̂e+ 1
2 [Â,B̂] = eB̂eÂe[Â,B̂] (7.90)

whenever two operators Â and B̂ have a C-number as their commutator. A first
application of the Baker–Campbell–Hausdorff formula to any pair of quasiparticle
vertex operators at equal time t but two distinct space coordinates x �= y gives

Ψ̂†q-p,i(t, x)Ψ̂
†
q-p,j(t, y) = e−iπΘq-p

ij Ψ̂†q-p,j(t, y)Ψ̂
†
q-p,i(t, x), (7.91a)

where

Θq-p
ij := K−1

ji sgn(x− y) + (K−1
ik K

−1
jl Kkl + qkK

−1
ik K

−1
jl ql) sgn(k − l). (7.91b)

Here and below, it is understood that

sgn(k − l) = 0 (7.92)

when k = l = 1, . . . , N . Hence, the quasiparticle vertex operators obey neither bosonic
nor fermionic statistics, since K−1

ij ∈ Q.
The same exercise applied to the Fermi–Bose vertex operators yields

Ψ̂†f-b,i(t, x)Ψ̂
†
f-b,j(t, y) =

⎧⎨⎩(−1)KiiΨ̂†f-b,i(t, y)Ψ̂
†
f-b,i(t, x) if i = j,

(−1)qiqj Ψ̂†f-b,j(t, y)Ψ̂
†
f-b,i(t, x) if i �= j,

(7.93)

when x �= y. The self-statistics of the Fermi–Bose vertex operators is carried by the
diagonal matrix elements Kii ∈ Z. The mutual statistics of any pair of Fermi–Bose ver-
tex operators labelled by i �= j is carried by the product qiqj ∈ Z of the integer-valued
charges qi and qj . Had we not assumed that Kij with i �= j are integers, the mutual
statistics would not be Fermi–Bose, because of the non-local term Kij sgn(x− y).
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A third application of the Baker–Campbell–Hausdorff formula allows us to de-
termine the boundary conditions obeyed by the quasiparticle and Fermi–Bose vertex
operators:

Ψ̂†q-p,i(t, x+ L) = Ψ̂†q-p,i(t, x)e
−2πiK−1

ij N̂j e−πiK−1
ii , (7.94)

Ψ̂†f-b,i(t, x+ L) = Ψ̂†f-b,i(t, x)e
−2πiN̂ie−πiKii . (7.95)

The quasiparticle vertex operators obey twisted boundary conditions, the Fermi vertex
operators obey antiperiodic boundary conditions, and the Bose vertex operators obey
periodic boundary conditions.

We close this discussion with the following definitions. We introduce the operators

Q̂ := qiQ̂i, (7.96)

Ψ̂†q-p,m := e−imiK
−1
ij ûj(t,x), (7.97)

Ψ̂†f-b,m := e−imiδij ûj(t,x), (7.98)

where m ∈ ZN is the vector with integer-valued components mi for any i = 1, . . . , N .
The N charges qi with i = 1, . . . , N that enter the Hamiltonian (7.54a) can also be
viewed as the components of the vector q ∈ ZN . Let us define the functions

q : ZN → Z,

m �→ q(m) := qimi ≡ q ·m ,
(7.99a)

and

K : ZN → Z,

m �→ K(m) := miKijmj .
(7.99b)

On the one hand, for any distinct pair of space coordinates x �= y, we deduce from
(7.89), (7.91), and (7.94), respectively, that

[Q̂, Ψ̂†q-p,m(t, x)] = (qiK−1
ij mj)Ψ̂†q-p,m (t, x), (7.100a)

Ψ̂†q-p,m (t, x)Ψ̂†q-p,n (t, y) = e−iπmiΘ
q-p
ij nj Ψ̂†q-p,n(t, y)Ψ̂†q-p,m(t, x), (7.100b)

Ψ̂†q-p,m(t, x+ L) = Ψ̂†q-p,m(t, x)e−2πimiK
−1
ij N̂j e−πimiK

−1
ij mj . (7.100c)

On the other hand, for any distinct pair of space coordinates x �= y, we deduce
from (7.89), (7.93), and (7.95), respectively, that

[Q̂, Ψ̂†f-b,m (t, x)] = q(m)Ψ̂†f-b,m(t, x), (7.101a)

Ψ̂†f-b,m (t, x)Ψ̂†f-b,n (t, y) = e−iπmiΘ
f-b
ij nj Ψ̂†f-b,n (t, y)Ψ̂†f-b,m (t, x), (7.101b)

Ψ̂†f-b,m (t, x+ L) = Ψ̂†f-b,m(t, x)e−2πimiN̂ie−πimiKijmj , (7.101c)
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where

Θf-b
ij := Kij sgn(x− y) + (Kij + qiqj) sgn(i− j). (7.101d)

The integer quadratic form K(m) thus dictates whether the vertex operator
Ψ̂†f-b,m(t, x) realizes a fermion or a boson: Ψ̂†f-b,m (t, x) realizes

• a fermion if and only if K(m) is an odd integer;
• a boson if and only if K(m) is an even integer.

Because of the assumption (7.54f),

(−1)K(m) = (−1)q(m). (7.102)

Hence, the vertex operator Ψ̂†f-b,m(t, x) realizes

• a fermion if and only if q(m) is an odd integer;
• a boson if and only if q(m) is an even integer.

7.3.7 Bosonization rules

We are going to relate the theory of chiral bosons (7.54) without external gauge fields
to a massless Dirac Hamiltonian. To this end, we proceed in three steps.

Step 1 Make the following choices in (7.54):

N = 2, i, j = 1, 2 ≡ −,+, (7.103a)

K :=
(

+1 0
0 −1

)
, V :=

(
+1 0
0 +1

)
, q =

(
1
1

)
. (7.103b)

With these choices, the free-bosonic Hamiltonian on the real line is

ĤB =
∫

R

dx
1
4π

[(∂xû−)2 + (∂xû+)2], (7.104a)

where

[û−(t, x), û−(t, y)] = +iπ sgn(x− y), (7.104b)

[û+(t, x), û+(t, y)] = −iπ sgn(x− y), (7.104c)

[û−(t, x), û+(t, y)] = +iπ. (7.104d)

From this, there follow the chiral equations of motion (recall (7.56))

∂tû− = −∂xû−, ∂tû+ = +∂xû+ (7.105)
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obeyed by the right-mover û− and the left-mover û+, the current algebra

[ρ̂(t, x), ρ̂(t, y)] = 0, (7.106a)

[ĵ(t, x), ĵ(t, y)] = 0, (7.106b)

[ρ̂(t, x), ĵ(t, y)] = − i
π
∂xδ(x− y) (7.106c)

obeyed by the density and current density1

ρ̂ = +
1
2π

(∂xû− − ∂xû+) ≡ ĵ− + ĵ+, (7.106d)

ĵ = +
1
2π

(∂xû− + ∂xû+) ≡ ĵ− − ĵ+, (7.106e)

respectively, and the identification of the pair of vertex operators (recall (7.87b))

ψ̂†− :=

√
1

4πa
e−iû− , ψ̂†+ :=

√
1

4πa
e+iû+ (7.107)

with a pair of creation operators for fermions. The multiplicative prefactor 1/
√

4π is
a matter of convention and the constant a carries the dimension of length, i.e. the
fermion fields carry the dimension of 1/

√
length. By construction, the chiral currents

ĵ− := +
1
2π
∂xû−, ĵ+ := − 1

2π
∂xû+ (7.108)

obey the chiral equations of motion

∂tĵ− = −∂xĵ−, ∂tĵ+ = +∂xĵ+, (7.109)

i.e. they depend solely on (t− x) and (t+ x), respectively. As with the chiral fields
û− and û+, the chiral currents ĵ− and ĵ+ are right-moving and left-moving solutions,
respectively, of the Klein–Gordon equation

(∂2
t − ∂2

x)f(t, x) = (∂t − ∂x)(∂t + ∂x)f(t, x) = 0. (7.110)

Step 2 Let us define the free Dirac Hamiltonian

ĤD := −
∫

R

dx ψ̂†γ0γ1i∂xψ̂ ≡
∫

R

dx ˆ̄ψγ1i∂xψ̂, (7.111a)

where

{ψα(t, x), ψ̂†β(t, y)} = δαβδ(x− y) (7.111b)

1 Notice that the chiral equations of motion imply that ĵ = − 1

2π
(∂tû− − ∂tû+).
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delivers the only non-vanishing equal-time anticommutators. If we define the chiral
projections (γ5 ≡ −γ5 ≡ −γ0γ1)

ψ̂†∓ := ψ̂†
1
2
(1∓ γ5), ψ̂∓ :=

1
2
(1∓ γ5)ψ̂, (7.112a)

we then have the chiral equations of motion

∂tψ̂− = −∂xψ̂−, ∂tψ̂+ = +∂xψ̂+. (7.112b)

The annihilation operator ψ̂− removes a right-moving fermion and the annihilation
operator ψ̂+ a left-moving fermion. Moreover, for the Lagrangian density

L̂D := ψ̂†γ0iγμ∂μψ̂, (7.113)

there is an additive decomposition

L̂D = ψ̂†−i(∂0 + ∂1)ψ̂− + ψ̂†+i(∂0 − ∂1)ψ̂+, (7.114)

with two independent chiral currents

ĵD− := 2ψ̂†−ψ̂−, ĵD+ := 2ψ̂†+ψ̂+ (7.115a)

obeying the independent conservation laws

∂tĵD− = −∂xĵD−, ∂tĵD+ = +∂xĵD+. (7.115b)

Finally, it can be shown that if the chiral currents are normal-ordered with respect to
the filled Fermi sea with a vanishing chemical potential, then the only non-vanishing
equal-time commutators are

[ĵD−(t, x), ĵD−(t, y)] = − i
2π
∂xδ(x− y), (7.116a)

[ĵD+(t, x), ĵD+(t, y)] = +
i

2π
∂xδ(x− y). (7.116b)

Step 3 The Dirac chiral current algebra (7.116) is equivalent to the bosonic chiral
current algebra (7.106). This equivalence can be interpreted as (i) the bosonic theory
(7.104) being equivalent to the Dirac theory (7.111) and (ii) the existence of a one-to-
one correspondence between the following operators acting on their respective Fock
spaces. To establish this one-to-one correspondence, we introduce the pair of bosonic
fields

φ̂(x0, x1) := û−(x0 − x1) + û+(x0 + x1), (7.117a)

θ̂(x0, x1) := û−(x0 − x1)− û+(x0 + x1). (7.117b)

Now, the relevant one-to-one correspondence between operators in the Dirac theory
for fermions and operators in the chiral bosonic theory is given in Table 7.4.
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Table 7.4 Abelian bosonization rules in two-dimensional Minkowski space. The conventions
with regard to the scalar mass ˆ̄ψψ̂ and the pseudoscalar mass ˆ̄ψγ5ψ̂ are ˆ̄ψ = ψ̂†γ0 with ψ̂† =
(ψ̂†

−, ψ̂
†
+), whereby γ0 = τ1 and γ1 = iτ2 so that γ5 = −γ5 = +γ0γ1 = −τ3.

FERMIONS BOSONS

Kinetic energy ˆ̄ψiγμ∂μψ̂
1
8π

(∂μφ̂)(∂μφ̂)

Current ˆ̄ψγμψ̂
1
2π
εμν∂ν φ̂

Chiral currents 2ψ̂†∓ψ̂∓ ± 1
2π
∂xû∓

Right- and left-movers ψ̂†∓

√
1

4πa
e∓iû∓

Backward scattering ψ̂†−ψ̂+
1

4πa
e−iφ̂

Cooper pairing ψ̂†−ψ̂
†
+

1
4πa

e−iθ̂

Scalar mass ψ̂†−ψ̂+ + ψ̂†+ψ̂−
1

2πa
cos φ̂

Pseudoscalar mass ψ̂†−ψ̂+ − ψ̂†+ψ̂−
−i
2πa

sin φ̂

7.3.8 From the Hamiltonian to the Lagrangian formalism

What is the Minkowski path integral that is equivalent to the quantum theory defined
by (7.54)? In other words, we seek the path integrals

Z(±) :=
∫
D[u] eiS(±)[u] (7.118a)

with the Minkowski actions

S(±)[u] :=
∫ +∞

−∞
dt L(±)[u] ≡

∫ +∞

−∞
dt
∫ L

0

dxL(±)[u](t, x) (7.118b)

such that one of the two Hamiltonians

H(±) :=
∫ L

0

dx {Π(±)
i (∂tui)− L(±)[u]} (7.119)

can be identified with Ĥ in (7.54a) after elevating the classical fields

ui(t, x) and Π(±)
i (t, x) :=

δL(±)

δ(∂tui)(t, x)
(7.120a)
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entering L(±)[u] to the status of quantum fields ûi(t, x) and Π̂(±)
j (t, y) upon imposing

the equal-time commutation relations

[ûi(t, x), Π̂
(±)
j (t, y)] = ± 1

2 iδijδ(x− y) (7.120b)

for any i, j = 1, . . . , N . The unusual factor ±1
2 (instead of 1) on the right-hand side

of the commutator between pairs of canonically conjugate fields arises because each
scalar field ui with i = 1, . . . , N is chiral, i.e. it represents ‘one-half’ of a canonical
scalar field.

Without loss of generality, we set A0 = A1 = 0 in (7.54a). We try

L(±) :=
1
4π

[∓(∂xui)K−1
ij (∂tuj)− (∂xui)Vij(∂xuj)] (7.121a)

with the chiral equations of motion

0 = ∂μ
δL(±)

δ∂μui
− δL(±)

δui

= ∂t
δL(±)

δ∂tui
+ ∂x

δL(±)

δ∂xui
− δL(±)

δui

=
1
4π

(∓K−1
ji ∂t∂x ∓K−1

ij ∂x∂t − 2Vij∂x∂x)uj

= ∓
K−1
ij

2π
∂x(δjl∂t ±KjkVkl∂x)ul (7.121b)

for any i = 1, . . . , N . Observe that the term that mixes time t and space x derivatives
becomes imaginary only in Euclidean time τ = it.

Proof The canonical momentum for the field ui is

Π(±)
i (t, x) :=

δL(±)

δ(∂tui)(t, x)

= ∓ 1
4π
K−1
ij (∂xuj)(t, x) (7.122)

for any i = 1, . . . , N owing to the symmetry of the matrix K. Evidently, the Legendre
transform

H(±) := Π(±)
i (∂tui)− L(±) (7.123)

gives

H(±) =
1
4π

(∂xui)Vij(∂xuj). (7.124)

The right-hand side does not depend on the chiral index ±. We now quantize the
theory by elevating the classical fields ui to the status of operators ûi obeying the



Fractionalization from Abelian bosonization 305

algebra (7.54b). This gives a quantum theory that meets all the demands of the
quantum chiral edge theory (7.54) and is compatible with the canonical quantization
rules (7.120b), since

[ûi(t, x), Π̂
(±)
j (t, y)] = ∓ 1

4π
K−1
jk ∂y [ûi(t, x), ûk(t, y)]

= ∓ 1
4π
K−1
jk (πi)Kik(−2)δ(x− y) [from (7.54b)]

= ±1
2
iK−1

jk Kkiδ(x− y) [since Kik = Kki]

= ±1
2
iδijδ(x− y), (7.125)

where i, j = 1, . . . , N . �
Finally, analytical continuation to Euclidean time

τ = it (7.126a)

allows us to define the finite-temperature quantum chiral theory through the path
integral

Z
(±)
β :=

∫
D[u] exp

(
−
∫ β

0

dτ
∫ L

0

dxL(±)

)
, (7.126b)

L(±) :=
1
4π

[(±)i(∂xui)K−1
ij (∂τuj) + (∂xui)Vij(∂xuj)]

+ J
( qi

2π
K−1
ij (∂xuj)

)
, (7.126c)

in the presence of an external source field J that couples to the charges qi like a scalar
potential would do.

7.3.9 Applications to polyacetylene

Consider the Dirac Hamiltonian

ĤD := ĤD0 + ĤD1, (7.127a)

where the free-field and massless contribution is

ĤD0 :=
∫

R

dx(ψ̂†+i∂xψ̂+ − ψ̂†−i∂xψ̂−), (7.127b)

while

ĤD1 :=
∫

R

dx [φ1(ψ̂
†
−ψ̂+ + ψ̂†+ψ̂−) + iφ2(ψ̂

†
−ψ̂+ − ψ̂†+ψ̂−)] (7.127c)

couples the Dirac field to two real-valued and classical scalar fields φ1 and φ2. The only
non-vanishing equal-time anticommutators are given by (7.111b). This Hamiltonian
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was considered by Goldstone and Wilczek [36] in their study of charge fractionalization
for polyacetylene.

According to the bosonization rules from Table 7.4 and with the help of the polar
decomposition

φ1(t, x) = |φ(t, x)| cosϕ(t, x), φ2(t, x) = |φ(t, x)| sinϕ(t, x), (7.128)

the many-body bosonic Hamiltonian that is equivalent to the Dirac Hamiltonian
(7.127) is

ĤB := ĤB0 + ĤB1, (7.129a)

where

ĤB0 :=
∫

R

dx
1
8π

[Π̂2 + (∂xφ̂)2], (7.129b)

while

ĤB1 :=
∫

R

dx
1

2πa
|φ| cos(φ̂− ϕ). (7.129c)

Here, the canonical momentum

Π̂(t, x) := (∂tφ̂)(t, x) (7.130a)

shares with φ̂(t, x) the only non-vanishing equal-time commutator

[φ̂(t, x), Π̂(t, y)] = iδ(x− y). (7.130b)

The Hamiltonian (7.129) is interacting, and its interaction (7.129c) can be traced
to the mass contributions in the non-interacting Dirac Hamiltonian (7.127). The
interaction (7.129c) is minimized when the operator identity

φ̂(t, x) = ϕ(t, x) + π (7.131)

holds. This identity can only be met in the limit

|φ(t, x)| → ∞ (7.132)

for all times t and positions x in view of the algebra (7.130) and the competition
between the contributions (7.129b) and (7.129c).

Close to the limit (7.132), the bosonization formula for the conserved current

ˆ̄ψγμψ̂ → 1
2π
εμν∂ν φ̂ (7.133)

simplifies to

1
2π
εμν∂ν φ̂ ≈

1
2π
εμν∂νϕ. (7.134)
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On the one hand, the conserved charge

Q̂ :=
∫

R

dx ( ˆ̄ψγ0ψ̂)(t, x) → ε01

2π
[φ̂(t, x = +∞)− φ̂(t, x = −∞)] (7.135)

for the static profile ϕ(x) is given approximately by

Q̂ ≈ ε01

2π
[ϕ(x = +∞)− ϕ(x = −∞)] . (7.136)

On the other hand, the number of electrons per period T = 2π/ω that flow across a
point x,

Î :=
∫ T

0

dt ( ˆ̄ψγ1ψ̂)(t, x) → ε10

2π
[φ̂(T, x)− φ̂(0, x)], (7.137)

for the uniform profile ϕ(t) = ωt, is given approximately by

Î ≈ ε10

2π
ωT = ε10. (7.138)

The results (7.136) and (7.138) are sharp operator identities in the limit (7.132). The
small parameter in both expansions is 1/m where m := limx→∞ |φ(t, x)|.

7.4 Stability analysis for the edge theory in symmetry
class AII

7.4.1 Introduction

The hallmark of the IQHE in an open geometry is the localized nature of all two-
dimensional (bulk) states while an integer number of chiral edge states freely propagate
along the one-dimensional boundaries [47, 63, 68]. These chiral edge states are immune
to the physics of Anderson localization as long as backward scattering between edge
states of opposite chiralities is negligible [47, 68].

Many-body interactions among electrons can be treated perturbatively in the
IQHE provided that the characteristic many-body energy scale is less than the single-
particle gap between Landau levels. This is no longer true if the chemical potential
lies within a Landau level, since the non-interacting many-body ground state is then
macroscopically degenerate. The lifting of this extensive degeneracy by the many-body
interactions is a non-perturbative effect. At some ‘magic’ filling fractions that deliver
the FQHE [43, 69, 116, 122], a screened Coulomb interaction selects a finitely degen-
erate family of ground states, each of which describes a featureless liquid separated
from excitations by an energy gap in a closed geometry. Such a ground state is called
an incompressible fractional Hall liquid. The FQHE is an example of topological or-
der [128, 129, 133]. In an open geometry, there are branches of excitations that disperse
across the spectral gap of the two-dimensional bulk, but these excitations are local-
ized along the direction normal to the boundary, while they propagate freely along
the boundary [130–133]. In contrast to the IQHE, these excitations need not all share
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the same chirality. However, they are nevertheless immune to the physics of Anderson
localization, provided that scattering induced by the disorder between distinct edges
in an open geometry is negligible.

The IQHE is the archetype of a two-dimensional topological band insulator. The
two-dimensional Z2 topological band insulator is a close relative of the IQHE that
occurs in semiconductors with sufficiently large spin–orbit coupling but no breaking
of time-reversal symmetry [8, 9, 54, 55, 64]. As with the IQHE, the smoking gun for
the Z2 topological band insulator is the existence of gapless Kramers-degenerate pairs
of edge states that are delocalized along the boundaries of an open geometry as long
as disorder-induced scattering between distinct boundaries is negligible. In contrast to
the IQHE, it is the odd parity in the number of Kramers pairs of edge states that is
robust to the physics of Anderson localization.

A simple example of a two-dimensional Z2 topological band insulator can be ob-
tained by putting together two copies of an IQHE system with opposite chiralities for
up and down spins. For instance, one could take two copies of Haldane’s model [45]
each of which realizes an IQHE on the honeycomb lattice but with Hall conductance
differing in sign. In this case, the spin current is conserved, a consequence of the in-
dependent conservation of the up and down currents, and the spin Hall conductance
inherits its quantization from the IQHE of each spin species. This example thus realizes
an integer quantum spin Hall effect (IQSHE). However, although simple, this example
is not generic. The Z2 topological band insulator does not necessarily have conserved
spin currents, let alone quantized responses.

Along the same line of reasoning, two copies of an FQHE system put together,
again with opposite chiralities for up and down particles, would realize a fractional
quantum spin Hall effect (FQSHE), as proposed by Bernevig and Zhang [9] (see also
[32] and [48]). Levin and Stern [71] proposed to characterize two-dimensional frac-
tional topological liquids supporting the FQSHE by the criterion that their edge states
are stable against disorder provided that they do not break time-reversal symmetry
spontaneously.

In the discussion here, the condition that projection about some quantization axis
of the electron spin from the underlying microscopic model is a good quantum number
will not be imposed. Only time-reversal symmetry is assumed to hold. The generic
cases of fractional topological liquids with time-reversal symmetry from the special
cases of fractional topological liquids with time-reversal symmetry and with residual
spin- 1

2 U(1) rotation symmetry will thus be distinguished. In the former cases, the
electronic spin is not a good quantum number. In the latter cases, conservation of
spin allows the FQSHE.

The subclass of incompressible time-reversal-symmetric liquids that we con-
struct here is closely related to Abelian Chern–Simons theories. Other possibilities,
which will not be discussed here, may include non-Abelian Chern–Simons theor-
ies [33, 82] or theories that include, additionally, conventional local order parameters
(Higgs fields) [103].

The relevant effective action for the Abelian Chern–Simons theory is of the
form [128, 130, 131, 133]

S := S0 + Se + Ss, (7.139a)
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where

S0 := −
∫

dtd2x εμνρ
1
4π
Kija

i
μ∂νa

j
ρ, (7.139b)

Se :=
∫

dtd2x εμνρ
e

2π
QiAμ∂νa

i
ρ, (7.139c)

Ss :=
∫

dtd2x εμνρ
s

2π
SiBμ∂νa

i
ρ. (7.139d)

The indices i and j run from 1 to 2N and any pair thereof labels an integer-valued
matrix element Kij of the symmetric and invertible 2N × 2N matrix K. The indices
μ, ν, and ρ run from 0 to 2. They label the component xμ of the coordinates (t, x ) in
(2 + 1)-dimensional spacetime or the component Aμ(t,x ) of an external electromag-
netic gauge potential, or the component Bμ(t,x ) of an external gauge potential that
couples to the spin-1

2
degrees of freedom along some quantization axis, or the compo-

nents of 2N flavours of dynamical Chern–Simons fields aiμ(t,x ). The integer-valued
component Qi of the 2N -dimensional vector Q represents the ith electric charge in
units of the electronic charge e and obeys the compatibility condition

(−1)Qi = (−1)Kii (7.139e)

for any i = 1, . . . , 2N in order for bulk quasiparticles or, in an open geometry, quasi-
particles on edges to obey a consistent statistics. The integer-valued component Si of
the 2N -dimensional vector S represents the ith spin charge in units of the spin charge
s along some conserved quantization axis. The operation of time reversal is the map

Aμ(t, x ) �→ +gμνAν(−t,x ), (7.140a)

Bμ(t, x ) �→ −gμνbν(−t,x ), (7.140b)

aiμ(t, x ) �→ −gμνai+Nν (−t,x ) (7.140c)

for i = 1, . . . , N . Here, gμν = diag(+1,−1,−1) is the Lorentz metric in (2 + 1)-
dimensional spacetime. It will be shown that time-reversal symmetry imposes that
the matrix K be of the block form

K =

(
κ Δ

ΔT −κ

)
, (7.141a)

κT = κ, ΔT = −Δ, (7.141b)

where κ and Δ are N ×N matrices, while the integer-charge vectors Q and S are of
the block forms

Q =
(
�
�

)
, S =

(
�
−�

)
. (7.141c)
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The matrixK together with the charge vectorQ and spin vector S that characterize
the topological field theory with the action (7.139a) define the charge filling fraction,
a rational number,

νe := QTK−1Q, (7.142a)

and the spin filling fraction, another rational number,

νs := 1
2Q

TK−1S. (7.142b)

The block forms of K and Q in (7.141) imply that

νe = 0. (7.142c)

The ‘zero charge filling fraction’ (7.142c) states nothing but the fact that there is no
charge Hall conductance when time-reversal symmetry holds. On the other hand, time-
reversal symmetry of the action (7.139a) is compatible with a non-vanishing FQSHE
as measured by the non-vanishing quantized spin Hall conductance

σsH :=
e

2π
× νs. (7.142d)

The origin of the FQSHE in the action (7.139a) is the U(1)× U(1) gauge symmetry
when (2 + 1)-dimensional spacetime has the same topology as a manifold without
boundary. It is always assumed in these lectures that the U(1) symmetry associated
with charge conservation holds. However, we shall not make the same assumption
regarding the U(1) symmetry responsible for the conservation of the ‘spin’ quantum
number.

The special cases of the FQSHE treated in [9] and [71] correspond to imposing the
condition

Δ = 0 (7.143)

on the matrix K in (7.141a). This restriction is, however, not necessary to treat either
the FQSHE or the generic case when there is no residual spin- 1

2 U(1) symmetry in the
underlying microscopic model.

The effective topological field theory (7.139) with the condition for time-reversal
symmetry (7.141) is made of 2N Abelian Chern–Simons fields. As is the case with
the FQHE, when two-dimensional space is a manifold without boundary of genus 1,
i.e. when two-dimensional space is topologically equivalent to a torus, this theory is
characterized by distinct topological sectors [128, 129, 133]. All topological sectors are
in one-to-one correspondence with a finite number NGS of topologically degenerate
ground states of the underlying microscopic theory [128, 129, 133]. This degeneracy is
nothing but the magnitude of the determinant of K in (7.139a), which is, because of
the block structure (7.141a), given in turn by
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NGS =

∣∣∣∣∣det

(
κ Δ
ΔT −κ

)∣∣∣∣∣
=

∣∣∣∣∣det

(
ΔT −κ
κ Δ

)∣∣∣∣∣
=

∣∣∣∣∣Pf

(
ΔT −κ
κ Δ

)∣∣∣∣∣
2

= (integer)2. (7.144)

To reach the last line, the fact that the matrix K is integer-valued was used. It is
thus predicted that the class of two-dimensional time-reversal-symmetric fractional
topological liquids, whose universal properties are captured by (7.139) and (7.141),
are characterized by a topological ground-state degeneracy that is always the square
of an integer, even if Δ �= 0, when space is topologically equivalent to a torus. (Notice
that the condition that Δ is antisymmetric implies that non-vanishing Δ can occur
only for N > 1.)

The stability of the edge states associated with the bulk Chern–Simons action
(7.139) obeying the condition for time-reversal symmetry (7.141) will now be discussed
in detail. A single one-dimensional edge is considered and an interacting quantum
field theory for 1 ≤ NK ≤ N pairs of Kramers-degenerate electrons subject to strong
disorder that preserves time-reversal symmetry is constructed, where the integer 2NK

is the number of odd charges entering the charge vector Q.2 The conditions under
which at least one Kramers-degenerate pair of electrons remains gapless in spite of the
interactions and disorder are identified. The approach here is inspired by the stability
analysis of the edge states performed by Haldane [46] for the single-layer FQHE (see
also [53, 84]), by that of Naud et al. [87, 88] for the bilayer FQHE, and especially by
that of Levin and Stern [71] for the FQSHE and that of Neupert et al. [91]. As for the
FQSHE, our analysis departs from the analysis by Haldane in that we impose time-
reversal symmetry. We also depart here from [71] by considering explicitly the effects
of the off-diagonal elements Δ in the matrix K. Such terms are generically present
for any realistic underlying microscopic model independently of whether or not this
model supports the FQSHE. When considering the stability of the edge theory, we
allow the residual spin-1

2 U(1) symmetry responsible for the FQSHE to be broken
by interactions among the edge modes or by a disorder potential. Hence, we seek a
criterion for the stability of the edge theory that does not rely on the existence of a
quantized spin Hall conductance in the bulk as was done in [71].

The stability of the edge states against disorder hinges on whether the integer

R := r�T(κ−Δ)−1� (7.145)

2 More precisely, to guarantee that there are NK Kramers-degenerate pairs of electrons in the
theory, we demand that there exists a space- and time-independent transformation O = +Σ1OΣ1 ∈
SL(2N, Z) such that K �→ OTKO, V �→ OTV O, and Q �→ OTQ, with the transformed charge vector

containing 2NK odd integers.
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is odd (stable) or even (unstable). The vector � together with the matrices κ and Δ
were defined in (7.141). The integer r is the smallest integer such that all N com-
ponents of the vector r(κ−Δ)−1� are integers. We can quickly check a few simple
examples. First, observe that, in the limit Δ = 0, we recover the criterion derived
in [71]. Second, when we impose a residual spin-1

2 U(1) symmetry by appropriately
restricting the interactions between edge channels, ν↑ = −ν↓ = �T(κ−Δ)−1� can be
interpreted as the Hall conductivity σxy in units of e2/h for each of the separately
conserved spin components along the spin quantization axis. The integer r has the
interpretation of the number of fluxes needed to pump a unit of charge, or the inverse
of the ‘minimum charge’ of [71]. Further restricting to the case where κ = 1N (where
1N is the N ×N unit matrix) gives R = N , i.e. we have recovered the same criterion
as for the two-dimensional non-interacting Z2 topological band insulator.

When there is no residual spin-1
2 U(1) symmetry, one can no longer relate the index

R to a physical spin Hall conductance. Nevertheless, the index R defined in (7.145)
discriminates in all cases between whether there is or is not a remaining branch of
gapless modes dispersing along the edge.

7.4.2 Definitions

Let us consider an interacting model for electrons in a two-dimensional cylindrical
geometry as depicted in Fig. 7.10. We demand that (i) charge conservation and
time-reversal symmetry are the only intrinsic symmetries of the microscopic quantum
Hamiltonian, (ii) neither is broken spontaneously by the many-body ground state, and
(iii) if periodic boundary conditions are assumed along the y coordinate in Fig. 7.10,
then there is at most a finite number of degenerate many-body ground states and each
many-body ground state is separated from its tower of many-body excited states by an
energy gap. Had the condition of time-reversal symmetry been relaxed, the remaining
assumptions would be realized for the FQHE.

In the open geometry of Fig. 7.10, the only possible excitations with an energy
smaller than the bulk gap in the closed geometry of a torus must be localized along
the y coordinate in the vicinities of the edges at ± 1

2Ly. If Ly is much larger than
the characteristic linear extension into the bulk of edge states, then the two edges
decouple from each other. It is then meaningful to define a low-energy and long-
wavelength quantum field theory for the edge states propagating along either of the
two boundaries in Fig. 7.10, which we take to be of length L each.

The low-energy and long-wavelength effective quantum field theory for the edge
that we are going to construct is inspired by the construction by Wen of the chiral
Luttinger edge theory for the FQHE [128, 130, 131]. As for the FQHE, this time-
reversal-symmetric boundary quantum field theory has a correspondence to the
effective time-reversal symmetric bulk topological quantum field theory built out of
2N Abelian Chern–Simons fields.

The simplest class of quantum Hamiltonians that fulfils requirements (i)–(iii) can
be represented in terms of 2N real-valued chiral scalar quantum fields Φ̂i(t, x) with
i = 1, . . . , 2N that form the components of the quantum vector field Φ̂(t, x). After
setting the electronic charge e, the characteristic speed, and � all equal to unity, the
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Hamiltonian for the system is given by3

Ĥ := Ĥ0 + Ĥint, (7.146a)

where

Ĥ0 :=
∫ L

0

dx
1
4π

(∂xΦ̂T)(t, x)V (x)(∂xΦ̂)(t, x), (7.146b)

with V (x) a 2N × 2N symmetric and positive-definite matrix that accounts, in
this bosonic representation, for the screened density–density interactions between
electrons. The theory is quantized according to the equal-time commutators

[Φ̂i(t, x), Φ̂j(t, x′)] = −iπ[K−1
ij sgn(x− x′) + Θij ], (7.146c)

where K is a 2N × 2N symmetric and invertible matrix with integer-valued matrix
elements, and the matrix Θ accounts for Klein factors that ensure that charged ex-
citations in the theory (vertex operators) satisfy the proper commutation relations.
Fermionic or bosonic charged excitations are represented by the normal-ordered vertex
operators

Ψ̂†T (t, x) := : e−iTiKijΦ̂j(t,x) : , (7.146d)

where the integer-valued 2N -dimensional vector T determines the charge (and
statistics) of the operator. The operator that measures the total charge density is

ρ̂(t, x) =
1
2π
Qi(∂xΦ̂i)(t, x), (7.146e)

y

1
2

– Ly
1
2

+ Ly

Fig. 7.10 Cylindrical geometry for a two-dimensional band insulator. The cylinder axis is la-
belled by the coordinate y. Periodic boundary conditions are imposed in the transverse direction
labelled by the coordinate x. There is an edge at y = − 1

2
Ly and another at y = + 1

2
Ly. Bulk

states have support on the shaded surface of the cylinder. Edge states are confined in the y
direction to the vicinity of the edges y = ± 1

2
Ly. Topological band insulators have the property

that, even in the presence of disorder, there are edge states freely propagating in the x direction
with mean free path �, provided that the limit �/Ly  1 holds.

3 Perform the linear transformation ûi ≡ KijΦ̂j in (7.54), recalling that the matrix K and its

inverse K−1 are symmetric, so that we can write Θij ≡ K−1
ii′ Li′j′K

−1
j′j .
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where the integer-valued 2N -dimensional charge vectorQ, together with the matrixK,
specify the universal properties of the edge theory. The charge qT of the vertex operator
in (7.146d) follows from its commutation with the charge density operator in (7.146e),
yielding qT = TTQ.

Tunnelling of electronic charge among the different edge branches is accounted
for by

Ĥint := −
∫ L

0

dx
∑
T∈L

hT (x) : cos[TTKΦ̂(t, x) + αT (x)] : . (7.146f)

The real functions hT (x) ≥ 0 and 0 ≤ αT (x) ≤ 2π encode information about the
disorder along the edge when position-dependent. The set

L :=
{
T ∈ Z2N | TTQ = 0

}
, (7.146g)

encodes all the possible charge-neutral tunnelling processes (i.e. those that just re-
arrange charge among the branches). This charge-neutrality condition implies that
the operator Ψ̂†T (t, x) that makes up (7.146f) is bosonic, since it has even charge.
Observe that set L forms a lattice. Consequently, if T belongs to L so does −T . In
turn, relabelling T to −T in Ĥint implies that hT (x) = +h−T (x), whereas αT (x) =
−α−T (x).

The theory (7.146) inherently encodes interactions. The terms Ĥ0 and Ĥint encode
single-particle as well as many-body interactions with matrix elements that preserve
and break translation symmetry, respectively. Recovering the single-particle kinetic en-
ergy of N Kramers-degenerate pairs of electrons from (7.146b) corresponds to choosing
the matrix V to be proportional to the 2N × 2N unit matrix, with the proportionality
constant being fixed by the condition that the scaling dimension of each electron is
1
2 at the bosonic free-field fixed point defined by the Hamiltonian Ĥ0. Of course, to
implement the fermionic statistics for all 2N fermions, one must also demand that all
diagonal entries of K be odd integers in some basis.4

7.4.3 Time-reversal symmetry of the edge theory

The operation of time reversal on the Φ̂ fields is defined by

T Φ̂(t, x)T −1 := Σ1Φ̂(−t, x) + πK−1Σ↓Q, (7.147a)

where

Σ1 =
(

0 1
1 0

)
, Σ↓ =

(
0 0
0 1

)
. (7.147b)

This definition ensures that the fermionic and bosonic vertex operators defined in
(7.146d) are properly transformed under time reversal. More precisely, one can then

4 See footnote 2.
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construct a pair of fermionic operators Ψ̂†1 and Ψ̂†2 of the form (7.146d) by suitably
choosing a pair of vectors T1 and T2, respectively, in such a way that the time-reversal
operation maps Ψ̂†1 into +Ψ̂†2 whereas it maps Ψ̂†2 into −Ψ̂†1. Thus, it is meaningful to
interpret the block structure displayed in (7.147b) as arising from the upper or lower
projection along some spin-1

2 quantization axis.
Time-reversal symmetry of the chiral edge theory (7.146) demands that

V = +Σ1V Σ1, (7.148a)

K = −Σ1KΣ1, (7.148b)

Q = Σ1Q, (7.148c)

hT (x) = hΣ1T (x), (7.148d)

αT (x) = −αΣ1T (x) + πTTΣ↓Q mod 2π. (7.148e)

Proof The first two conditions, (7.148a) and (7.148b), follow from the requirement
that Ĥ0 be time-reversal-invariant. In particular, the decomposition

K =

(
κ Δ

ΔT −κ

)
, κT = κ, ΔT = −Δ, (7.149)

where κ and Δ are N ×N matrices, follows from (7.148b) and K = KT.
The third condition, (7.148c), states that the charge density is invariant under time

reversal. In particular, the decomposition

Q =
(
�
�

)
(7.150)

follows.
Finally, T ĤintT −1 = Ĥint requires that∑
T∈L

hT (x) cos[TTKΦ̂(t, x) + αT (x)]

=
∑
T∈L

T {hT (x) cos[TTKΦ̂(t, x) + αT (x)]}T −1

=
∑
T∈L

hT (x) cos[−(Σ1T )TKΦ̂(−t, x) + αT (x)− πTTΣ↓Q]

=
∑
T∈L

hΣ1T (x) cos[−TTKΦ̂(−t, x) + αΣ1T (x)− π(Σ1T )TΣ↓Q]

=
∑
T∈L

hΣ1T (x) cos[TTKΦ̂(−t, x)− αΣ1T (x) + π(Σ1T )TΣ↓Q], (7.151)

as the conditions needed to match the two trigonometric expansions. This leads to the
last two relations, (7.148d) and (7.148e). �
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Disorder parametrized by hT (x) = +h−T (x) and αT (x) = −α−T (x) and for which
the matrix T obeys

Σ1T = −T, (7.152a)

and

TTΣ↓Q is an odd integer (7.152b)

cannot satisfy the condition (7.148e) for time-reversal symmetry. Such disorder is thus
prohibited from entering Ĥint in (7.146f), since it would break time-reversal symmetry
explicitly. Moreover, we also prohibit any ground state that provides exp[iTTKΦ̂(t, x)]
with an expectation value when T satisfies (7.152), since it would spontaneously break
time-reversal symmetry.

7.4.4 Pinning the edge fields with disorder
potentials: the Haldane criterion

Solving the interacting theory (7.146) is beyond the scope of these lectures. What can
be done, however, is to identify those fixed points of the interacting theory (7.146)
that are pertinent to the question of whether or not some edge modes remain extended
along the edge in the limit of strong disorder hT (x)→∞ for all tunnelling matrices
T ∈ L entering the interaction (7.146f).

This question is related to one posed and answered by Haldane [46] for Abelian
FQH states and which, in the context of these lectures, can be formulated as follows.
Given an interaction potential caused by weak disorder on the edges as defined by the
Hamiltonian (7.146f), what are the tunnelling vectors T ∈ L that can, in principle,
describe relevant perturbations that will cause the system to flow to a strong-coupling
fixed point characterized by hT →∞ away from the fixed point Ĥ0? (See [135] for an
answer to this weak-coupling question in the context of the IQSHE and Z2 topological
band insulators.) By focusing on the strong-coupling limit from the outset, we avoid
the issue of following the renormalization group flow from weak to strong coupling.
Evidently, this point of view presumes that the strong-coupling fixed point is stable
and that no intermediate fixed point prevents it from being reached.

To identify the fixed points of the interacting theory (7.146) in the strong-coupling
limit (strong-disorder limit) hT →∞, we ignore the contribution Ĥ0 and restrict the
sum over the tunnelling matrices in Ĥint to a subset H of L (H ⊂ L) with a precise
definition of H that will follow in (7.159). For any choice of H, there follows the
strong-coupling fixed-point Hamiltonian

ĤH := −
∫ L

0

dx
∑
T∈H

hT (x) : cos[TTKΦ̂(x) + αT (x)] : . (7.153)

Let us assume that the fixed-point Hamiltonian (7.153) is stable if and only if the
set H is ‘maximal’. The study of the renormalization group flows relating the weak,
moderate (if any), and strong fixed points in the infinite-dimensional parameter space



Stability analysis for the edge theory in symmetry class AII 317

spanned by the non-universal data V , hT (x), and αT (x) is again beyond the scope of
these lectures.

One might wonder why we cannot simply choose H = L. As emphasized by
Haldane [46], this is a consequence of the chiral equal-time commutation rela-
tions (7.146c), which prevent simultaneous locking of the phases of all the cosines
through the condition, for some time-independent and real-valued function CT (x),

∂x[TTKΦ̂(t, x) + αT (x)] = CT (x) (7.154)

on the canonical momentum

(4π)−1K(∂xΦ̂)(t, x) (7.155)

conjugate to Φ̂(t, x), when applied to the ground state. The locking condition (7.154)
removes a pair of chiral bosonic modes with opposite chiralities from the gapless de-
grees of freedom of the theory. However, even in the strong-coupling limit, there are
quantum fluctuations as a consequence of the chiral equal-time commutation rela-
tions (7.146c) that prevent minimizing the interaction Ĥint by minimizing separately
each contribution to the trigonometric expansion (7.146f). Finding the ground state
in the strong-coupling limit is a strongly frustrated optimization problem.

To construct a maximal set H, we demand that any T ∈ H must satisfy the locking
condition (7.154). Furthermore, we require that the phases of the cosines entering the
fixed-point Hamiltonian (7.153) be constants of motion:

[∂x(TTKΦ̂(t, x)), ĤH] = 0. (7.156)

To find the tunnelling vectors T ∈ H, we thus need to consider the commutator∫ L

0

dx′ [∂x(TTKΦ̂(t, x)), hT ′(x′) cos(T ′TKΦ̂(t, x′) + αT ′(x′))]

= −i2πTTKT ′hT ′(x) sin(T ′TKΦ̂(t, x) + αT ′(x)), (7.157)

and demand that it vanishes. This is achieved if TTKT ′ = 0. Equation (7.157) implies
that any set H is composed of the charge-neutral vectors satisfying

TTKT ′ = 0. (7.158)

It is by choosing a set H to be ‘maximal’ that we shall obtain the desired Haldane
criterion for stability.

7.4.5 Stability criterion for edge modes

Section 7.4.1 presented and briefly discussed the criteria for at least one branch of
edge excitations to remain delocalized even in the presence of strong disorder. Here,
we prove these criteria.
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The idea is to count the maximum possible number of edge modes that can be
pinned (localized) along the edge by tunnelling processes. The set of pinning processes
must satisfy

TTQ = 0, TTKT ′ = 0, (7.159)

which defines the set H introduced in Section 7.4.4. (Note, however, that H is not
uniquely determined by this condition.) Let us define the real extension V of a set H
by allowing the tunnelling vectors T that satisfy (7.159) to take real values instead of
integer values. Notice that V is a vector space over the real numbers. We demand that
H form a lattice that is as dense as the lattice L by imposing

V ∩ L = H. (7.160)

For any vector T ∈ V, we consider the vector KT . It follows from (7.159) that
KT ⊥ T ′ ∀T ′ ∈ V. So K maps the space V into an orthogonal space V⊥. Since K is
invertible, we have V⊥ = KV, as well as V = K−1V⊥, and thus dim V = dim V⊥. Since
dim V + dim V⊥ ≤ 2N , it follows that dim V ≤ N . Therefore (as could be anticipated
physically) the maximum number of Kramers pairs of edge modes that can be pinned
is N . If that happens, the edge has no gapless delocalized mode.

Next, we look at the conditions for which the maximum dimension N is achieved
in order to establish a contradiction.

Let us assume that dim V = dim V⊥ = N . It follows that V⊕ V⊥ = R2N , exhaust-
ing the space of available vectors. In this case, the charge vector Q ∈ V⊥ because of
(7.159). Consequently, K−1Q ∈ V. We can then construct an integer vector T̄ ‖ K−1Q
by scaling K−1Q with the minimum integer r that accomplishes this. (This is always
possible, because K−1 is a matrix with rational entries and Q is a vector of integers.)
Because the inverse of K is not known, it seems hopeless to write K−1Q in closed
form. However, K−1 must anticommute with Σ1, given that K anticommutes with
Σ1, while Σ1 squares to the unit matrix. Hence, K−1Q is an eigenstate of Σ1 with
eigenvalue −1. Now,

T̄ := r

(
+(κ−Δ)−1�

−(κ−Δ)−1�

)
(7.161)

is also an eigenstate of Σ1 with eigenvalue −1. This suggests that we may use T̄ instead
of K−1Q. Indeed, the existence of (κ−Δ)−1 follows from detK �= 0 and

detK = (−1)N [det(κ−Δ)]2. (7.162)

Moreover, we verify that T̄ is orthogonal to the charge vector Q and that KT̄ is
orthogonal to T̄ .

Equipped with T̄ , we construct the integer

R := −T̄TΣ↓Q. (7.163)

It is the parity of this integer that will allow us to establish a contradiction, i.e. it is
the parity of R that determines whether it is possible to localize all the modes with the
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N tunnelling operators. To establish the contradiction, we employ (7.148e) together
with the fact that Σ1T̄ = −T̄ . In other words,

πR = −πT̄TΣ↓Q

= −αT̄ (x)− αΣ1T̄ (x) mod 2π

= −αT̄ (x)− α−T̄ (x) mod 2π

= 0 mod 2π, (7.164)

where in the last line αT (x) = −α−T (x) for all T ∈ L has been used. If T̄ satisfies
(7.164), then R must be an even integer. If (7.164) is violated (i.e. if R is an odd
integer), then T̄ is not allowed to enter Ĥint since it would then break time-reversal
symmetry (thus, hT̄ (x) = 0 must always hold in this case to prevent T̄ from entering
Ĥint). One therefore arrives at the condition that

• if the maximum number of edge modes are localized or gaped, then R must be
even.

A corollary is that

• if R is odd, then at least one edge branch is gapless and delocalized.

It remains to prove that if R is even, then one can indeed reach the maximum
dimension N for the space of pinning vectors. This is done by construction. Take
all eigenvectors of Σ1 with +1 eigenvalue. Choose N − 1 such vectors, namely all
those orthogonal to Q. For the last vector, choose T̄ . One can check that these N
vectors satisfy (7.159) with the help of Σ1KΣ1 = −K (given in (7.148b)) and of T̄ ‖
K−1Q. Now, the N − 1 vectors Σ1T = +T are of the form TT = (tT, tT), where we
need to satisfy TTQ = 2tT� = 0. This leads to TTΣ↓Q being even, and then (7.148e)
brings no further conditions whatsoever. So we can take all these N − 1 tunnelling
vectors. Finally, we take T̄ as constructed above, which is a legitimate choice since R
is assumed to be even and thus consistent with (7.164). Hence, we have constructed
the N tunnelling vectors that gap or localize all edge modes, and we can state that

• if R is even, then the maximum number of edge modes are localized or gaped.

As a by-product, we see that it is always possible to localize along the boundary
at least all but one Kramers-degenerate pair of edge states via the N − 1 tunnelling
vectors that satisfy Σ1T = +T . Thus, either one or no Kramers-degenerate pair of edge
state remains delocalized along the boundary when translation invariance is strongly
broken along the boundary.

We close this subsection by demonstrating5 that the spin Hall conductance (7.142d)
is related to the pair of integers r and R defined by (7.161) and (7.163), respectively,
through

σsH :=
e

2π
× R

r
⇐⇒ νs =

R

r
. (7.165)

5 Private communication from Jyong-Hao Chen.
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If we interpret

e� :=
e

r
(7.166)

as the minimal quasiparticle charge, we can state the stability criterion for the helical
edge states in symmetry class AII to interactions or static disorder as the condition
that the spin Hall conductance divided by e�/2π must be an odd integer. This criterion
was first established by Levin and Stern [71] for the FQSHE when the spin-1

2 rotation
symmetry is broken to its U(1) subgroup. We have shown that the same criterion
holds even in the absence of any U(1) residual symmetry of the spin-SU(2) symmetry
group.

Proof By the definitions of the charge vector Q, the spin vector S, and the matrix T̄
(recall (7.141c) and (7.161)),

T̄TS = rQTK−1S. (7.167)

The dimensionless spin Hall conductance defined by (7.142b) is thus nothing but

νs =
1
2r
STT̄

= ρT(κ−Δ)−1ρ. (7.168)

From the definition of R in (7.163),

R = −
(

0
ρ

)T

T̄

= +rρT(κ−Δ)−1ρ

= +rνs. (7.169)

�

7.4.6 The stability criterion for edge modes in the FQSHE

What is the fate of the stability criterion when we impose the residual spin-1
2
U(1)

symmetry in the model so as to describe an underlying microscopic model that sup-
ports the FQSHE? The residual spin-1

2 U(1) symmetry is imposed on the interacting
theory (7.146) by positing the existence of a spin vector S = −Σ1S ∈ Z2N associated
with a conserved U(1) spin current. This spin vector is the counterpart of the charge
vector Q = +Σ1Q ∈ Z2N . The condition

S = −Σ1S (7.170a)

is required for compatibility with time-reversal symmetry and is the counterpart
of (7.148c). Compatibility of Q and S with time-reversal symmetry thus implies that
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they are orthogonal: QTS = 0. If we restrict the interaction (7.146f) by demanding
that the tunnelling matrices obey

TTS = 0, (7.170b)

we probe the stability of the FQSHE described by Ĥ0 when perturbed by Ĥint.6

To answer this question, we supplement the condition TTQ = 0 on tunnelling vec-
tors that belong to L and H by TTS = 0. By construction, S is orthogonal to Q.
Hence, it remains true that H is made of at most N linearly independent tunnelling
vectors.

The strategy for establishing the condition for the strong-coupling limit of Ĥint to
open a mobility gap for all the extended modes of Ĥ0 thus remains that of constructing
the largest set H out of as few tunnelling vectors with T = −Σ1T as possible, since
these tunnelling vectors might spontaneously break time-reversal symmetry.

As before, there are N − 1 linearly independent tunnelling vectors with T = +Σ1T ,
while the tunnelling matrix T̄ from (7.161) must belong to any H with N linearly
independent tunnelling vectors.

At this stage, we need to distinguish the case

T̄TS = 0 (7.171a)

from the case

T̄TS �= 0. (7.171b)

In the former case, the spin-neutrality condition (7.170b) holds for T̄ , and thus the
stability criterion is unchanged for the FQSHE. In the latter case, (7.170b) is vio-
lated, so that Ĥint is independent of any tunnelling matrix proportional to T̄ . Thus,
when (7.171b) holds, as could be the case when κ ∝ 1N and Δ = 0 say, the FQSHE
carried by at least one Kramers pair of edge states of Ĥ0 is robust to the strong-
coupling limit of the time-reversal-symmetric and residual spin- 1

2 U(1)-symmetric
perturbation Ĥint.

6 It is important to observe that the quadratic Hamiltonian (7.146b) has a much larger symmetry
group than the interacting Hamiltonian (7.146f). For example, Ĥ0 commutes with the transformation

Φ̂(t, x) → Φ̂(t, x) + πK−1Σ↓S. One verifies that the transformation law of a Kramers doublet of

fermions under this transformation is that expected from a rotation about the quantization axis of
the residual spin- 1

2
U(1) symmetry, provided that the parities of the components of S are the same as

those of Q. Hence, Ĥ0 has, by construction, a residual spin- 1
2

U(1) symmetry, even though a generic

microscopic model with time-reversal symmetry does not. This residual spin- 1
2

U(1) symmetry of Ĥ0

is broken by Ĥint, unless one imposes the additional constraint (7.170b) on the tunnelling matrices

T ∈ L allowed to enter the interacting theory defined in (7.146).
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7.5 Construction of two-dimensional topological
phases from coupled wires

7.5.1 Introduction

One accomplishment in the study of topological phases of matter has been the
theoretical prediction and experimental discovery of two-dimensional topological insu-
lators [8, 9, 54, 55, 64]. The IQHE is an early example of how states can be classified
into distinct topological classes using an integer, the Chern number, to express the
quantized Hall conductivity [63, 68, 120]. In the IQHE, the number of delocalized
edge channels is proportional to the quantized Hall conductivity through the Chern
number. More recently, it has been found that symmetry under time reversal protects
the parity in the number of edge modes in (bulk) insulators with strong spin–orbit
interactions in two and three dimensions [34, 54]. Correspondingly, these systems are
characterized by a Z2 topological invariant.

The discovery of Z2 topological insulators initiated a search for a classification
of phases of fermionic matter that are distinguished by some topological attribute.
For non-interacting electrons, a complete classification, the tenfold way, has been
accomplished in arbitrary dimensions [58, 106, 109, 110]. In this scheme, three dis-
crete symmetries that act locally in position space—time-reversal symmetry (TRS),
particle–hole symmetry (PHS), and chiral or sublattice symmetry (SLS)—play a cen-
tral role when defining the quantum numbers that identify the topological insulating
fermionic phases of matter within one of the ten symmetry classes (see the first three
columns in Table 7.5).

The tenfold way is believed to be robust to a perturbative treatment of short-ranged
electron–electron interactions for the following reasons. First, the unperturbed ground
state in the clean limit and in a closed geometry is non-degenerate. It is given by the
filled bands of a band insulator. The band gap provides a small expansion parameter,
namely the ratio of the characteristic interacting energy scale to the band gap. Sec-
ond, the quantized topological invariant that characterizes the filled bands, provided
that its definition and topological character survive the presence of electron–electron
interactions as is the case for symmetry class A in two spatial dimensions, cannot
change in a perturbative treatment of short-range electron–electron interactions [41].

On the other hand, the fate of the tenfold way when electron–electron interactions
are strong is rather subtle [27, 41, 80, 126]. For example, short-range interactions
can drive the system through a topological phase transition at which the energy gap
closes [14, 100]. They may also break spontaneously a defining symmetry of the topo-
logical phase. Even when short-range interactions neither spontaneously break the
symmetries nor close the gap, it may be that two phases from the non-interacting
tenfold way cease to be distinguishable in the presence of interactions. Indeed, it was
shown for symmetry class BDI in one dimension by Fidkowski and Kitaev that the
non-interacting Z classification is too fine in that it must be replaced by a Z8 classifica-
tion when generic short-range interactions are allowed. How to construct a counterpart
to the tenfold way for interacting fermion (and boson) systems has thus attracted a
lot of interest [16–18, 28, 39, 40, 74, 75, 98, 111, 123].
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The FQHE is the paradigm for a situation by which interactions select topologic-
ally ordered ground states of a very different kind from the non-degenerate ground
states of the tenfold way. On a closed two-dimensional manifold of genus g, inter-
actions can stabilize incompressible many-body ground states with a g-dependent
degeneracy. Excited states in the bulk must then carry fractional quantum numbers
(see [132] and references therein). Such phases of matter, that follow the FQHE para-
digm appear in the literature under different names: fractional topological insulators,
long-range entangled phases, topologically ordered phases, or symmetry enriched topo-
logical phases. In this section, the terminology ‘long-range entangled (LRE)’ phase is
used for all phases with non-trivial g-dependent ground-state degeneracy. All other
phases, i.e. those that follow the IQHE paradigm, are called ‘short-range entangled
(SRE)’ phases. (In doing so, we are borrowing the terminology of [74]. It differs slightly
from that used in [17], which counts all chiral phases irrespective of their ground-state
degeneracy as LRE.)

While there are non-trivial SRE and LRE phases in the absence of any symmetry
constraint, many SRE and LRE phases are defined by some symmetry that they obey.
If this symmetry is broken, then the topological attribute of the phase is no longer
well defined. However, there is a sense in which LRE phases are more robust than SRE
phases against a weak breaking of the defining symmetry. The topological attributes
of LRE phases are not confined to the boundary in space between two distinct topo-
logical realizations of these phases, as they are for SRE phases. They also characterize
intrinsic bulk properties such as the existence of gapped deconfined fractionalized exci-
tations. Hence, whereas gapless edge states are gapped by any breaking of the defining
symmetry, topological bulk properties are robust to a weak breaking of the defining
symmetry as long as the characteristic energy scale for this symmetry breaking is small
compared with the bulk gap in the LRE phase, since a small breaking of the protecting
symmetry does not wipe out the gapped deconfined fractionalized bulk excitations.

The purpose of this section is to implement a classification scheme for interacting
electronic systems in two spatial dimensions that treats SRE and LRE phases on
an equal footing. To this end, a coupled-wire construction for each of the symmetry
classes from the tenfold way is used. This approach was pioneered in [136] and [70]
for the IQHE and in [56] and [119] for the FQHE (see also related work in [60, 62, 81,
112, 115, 125]).

The main idea here is the following. To begin with, non-chiral Luttinger liquids
are placed in a periodic array of coupled wires. In doing so, forward-scattering two-
body interactions are naturally accounted for within each wire. Backscatterings (i.e.
tunnelling) within a given wire or between neighbouring wires are assumed to be the
dominant energy scales. Imposing symmetries constrains these allowed tunnellings.
Whether a given arrangement of tunnellings truly gaps out all bulk modes, except for
some non-gapped edge states on the first and last wires, is verified with the help of a
condition that applies to the limit of strong tunnelling. This condition is nothing but
the Haldane criterion of Section 7.4.4 [46]. It will be shown that, for a proper choice of
the tunnellings, all bulk modes are gapped. Moreover, in five out of the ten symmetry
classes of the tenfold way, there remain gapless edge states, in agreement with the
tenfold way. It is the character of the tunnellings that determines whether this wire
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construction selects an SRE or an LRE phase. Hence, this construction, predicated
as it is on the strong-tunnelling limit, generalizes the tenfold way for SRE phases
to LRE phases. Evidently, this edge-centred classification scheme does not distinguish
between LRE phases of matter that do not carry protected gapless edge modes at their
interfaces. For example, some fractional, time-reversal-symmetric, incompressible, and
topological phases of matter can have fractionalized excitations in the bulk, while not
supporting protected gapless modes at their boundaries [86, 107, 130].

The discussion in this section is inspired by [89]. It is organized as follows. The
array of Luttinger liquids is defined in Section 7.5.2. The Haldane criterion, which
plays an essential role for the stability analysis of the edge theory, is reviewed in
Section 7.5.3.3. The five SRE entries and five LRE entries in Table 7.5/Fig. 7.11 are
derived in Sections 7.5.4 and 7.5.5, respectively.

The main results of this section are presented in Table 7.5 and Fig. 7.11. For
each of the symmetry classes A, AII, D, DIII, and C shown there, the ground state
supports propagating gapless edge modes localized on the first and last wire that are
immune to local and symmetry-preserving perturbations. The first column of the table
labels the symmetry classes according to the Cartan classification of symmetric spaces.
The second column dictates if the operations for reversal of time (Θ̂ with the single-
particle representation Θ), exchange of particles and holes (Π̂ with the single-particle
representation Π), and reversal of chirality (Ĉ with the single-particle representation
C) are the generators of symmetries, with their single-particle representations squaring
to +1 or −1, or are not present, in which case this is indicated by an entry 0.7 The third

Table 7.5 Realization of a two-dimensional array of quantum wires in each symmetry class of
the tenfold way.

CARTAN

LABEL

Θ2 Π2 C2 SRE TOPOLOGICAL

PHASE

LRE TOPOLOGICAL

PHASE

A 0 0 0 Z Fig. 7.11(a) Fig. 7.11(b)
AIII 0 0 + None
AII − 0 0 Z2 Fig. 7.11(c) Fig. 7.11(d)
DIII − + − Z2 Fig. 7.11(e) Fig. 7.11(f)
D 0 + 0 Z Fig. 7.11(g) Fig. 7.11(h)
BDI + + + None
AI + 0 0 None
CI + − − None
C 0 − 0 Z Fig. 7.11(i) Fig. 7.11(j)
CII − − + None

7 A chiral symmetry is present if there exists a chiral operator Ĉ that is antiunitary and commutes
with the Hamiltonian. The single-particle representation C of Ĉ is a unitary operator that anticom-

mutes with the single-particle Hamiltonian. In a basis in which C is strictly block off-diagonal,

C reverses the chirality. This chirality is unrelated to the direction of propagation of left- and
right-movers, which is also called chirality in these lectures.
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Fig. 7.11 [Colour online] Figures for Table 7.5. (Reprinted with permission from [89].
Copyright 2014 by the American Physical Society.)

column shows the set to which the topological index from the tenfold way, defined as it
is in the non-interacting limit, belongs. The fourth column indicates the corresponding
pictorial representation of the interactions (a set of tunnelling vectors T ) for the two-
dimensional array of quantum wires that delivers short-range entangled (SRE) gapless
edge states. In these pictorial representations, shown in Fig. 7.11(a, c, e, g, i), a wire is
represented by a shaded [coloured online] box with the minimum number of channels
compatible with the symmetry class. Each channel in a wire is either a right-mover
(⊗) or a left-mover ($) that may or may not carry a spin quantum number (↑, ↓) or
a particle (light [yellow] shading) or hole (dark shading) attribute. The lines describe
tunnelling processes within a wire or between consecutive wires in the array that are
of one-body type when they do not carry an arrow or of strictly many-body type when
they carry an arrow. Arrows point towards the sites on which creation operators act
and away from the sites on which annihilation operators act. For example in symmetry
class A, the single line connecting two consecutive wires in the SRE column represents a
one-body backward scattering by which left and right movers belonging to consecutive
wires are coupled. The lines have been omitted from the pictorial representations for
the LRE case (fifth column of Table 7.5 and Fig. 7.11(b, d, f, h, j)), where only the
tunnelling vectors are specified.
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7.5.2 Definitions

Let us consider an array of N parallel wires that stretch along the x direction of the
two-dimensional embedding Euclidean space (see Fig. 7.12). We label a wire by the
Latin letter i = 1, . . . , N . Each wire supports fermions that carry an even integer num-
ber M of internal degrees of freedom that discriminate between left- and right-movers,
the projection along the spin-1

2 quantization axis, and particle–hole quantum numbers,
among others (e.g. flavours). We label these internal degrees of freedom by the Greek
letter γ = 1, . . . ,M . We combine those two indices in a collective index a ≡ (i, γ). Cor-
respondingly, we introduce the M ×N pairs of creation ψ̂†a(x) and annihilation ψ̂a(x)
field operators obeying the fermionic equal-time algebra

{ψ̂a(x), ψ̂
†
a′(x

′)} = δa,a′δ(x− x′), (7.172a)

with all other anticommutators vanishing and the collective labels a, a′ =
1, . . . ,M × N . The notation

Ψ̂†(x) ≡
(
ψ̂†1(x) . . . ψ̂†MN (x)

)
, Ψ̂(x) ≡

⎛⎜⎝ ψ̂1(x)
...

ψ̂MN (x)

⎞⎟⎠ (7.172b)

is used for the operator-valued row (Ψ̂†) and column (Ψ̂) vector fields. We assume that
the many-body quantum dynamics of the fermions supported by this array of wires is
governed by the Hamiltonian Ĥ, whereby interactions within each wire are dominant
over interactions between wires so that Ĥ may be represented as N coupled Luttinger
liquids, each one of which is composed of M interacting fermionic channels.

By assumption, the M ×N fermionic channels making up the array may thus be
bosonized as was explained in Sections 7.3 and 7.4. Within Abelian bosonization [90],

T (0)

(a) (b)

j =1

j =1

j = N

j =N

Fig. 7.12 [Colour online] The boundary conditions determine whether a topological phase has
protected gapless modes or not. (a) With open boundary conditions, gapless modes exist near
the wires j = 1 and j = N . Scattering between them is forbidden by imposing locality in the
limit N → ∞. (b) Periodic boundary conditions allow the scattering vector T (0), which gaps
modes that were protected by locality before. (Reprinted with permission from [89]. Copyright
2014 by the American Physical Society.)
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this is done by first postulating that the MN ×MN matrix

K ≡ (Kaa′) (7.173a)

is symmetric with integer-valued entries. Because an array of identical wires—each of
which has its quantum dynamics governed by that of a Luttinger liquid—is assumed,
it is natural to choose K to be reducible:

Kaa′ = δii′Kγγ′ , γ, γ′ = 1, . . . ,M, i, i′ = 1, . . . , N. (7.173b)

A second MN ×MN matrix is then defined by

L ≡ (Laa′) (7.174a)

where

Laa′ := sgn(a− a′) (Kaa′ +QaQa′) , a, a′ = 1, . . . ,MN, (7.174b)

depends on the integer-valued charge vector Q ≡ (Qa) in addition to the matrix
K ≡ (Laa′). The MN compatibility conditions

(−1)Kaa = (−1)Qa , a = 1, . . . ,MN, (7.174c)

must hold. As we are after the effects of interactions between electrons, we choose
Qa = 1, so that

Laa′ := sgn(a− a′) (Kaa′ + 1) , a, a′ = 1, . . . ,MN. (7.174d)

Third, we verify that for any pair a, a′ = 1, . . . ,MN , the Hermitian fields φ̂a and φ̂a′ ,
defined as they are by the Mandelstam formula

ψ̂a(x) ≡ : exp[+iKaa′ φ̂a′(x)] : , (7.175a)

obey the bosonic equal-time algebra

[φ̂a(x), φ̂a′(x′)] = −iπ[K−1
aa′ sgn(x− x′) +K−1

ab LbcK−1
ca′ ]. (7.175b)

Here, the notation : (· · · ) : stands for normal ordering of the argument (· · · ) and the
summation convention over repeated indices is implied. In line with (7.172b), the
notation

Φ̂T(x) ≡
(
φ̂1(x) . . . φ̂MN (x)

)
, Φ̂(x) ≡

⎛⎜⎝ φ̂1(x)
...

φ̂MN(x)

⎞⎟⎠ (7.175c)

is used for the operator-valued row Φ̂T and column Φ̂ vector fields. Periodic boundary
conditions along the x direction parallel to the wires are imposed by demanding that

KΦ̂(x+ L) = KΦ̂(x) + 2πN , N ∈ ZMN . (7.175d)
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Equipped with (7.173)–(7.175), the many-body Hamiltonian Ĥ for the MN inter-
acting fermions all carrying the same electric charge e and propagating on the array
of wires is decomposed additively into

Ĥ = ĤV + Ĥ{T } + Ĥ{Q}. (7.176a)

The Hamiltonian

ĤV :=
∫

dx (∂xΦ̂T)(t, x)V(x)(∂xΦ̂)(t, x), (7.176b)

even though quadratic in the bosonic field, encodes both local one-body terms as well
as contact many-body interactions between theM fermionic channels in any given wire
from the array through the block-diagonal, real-valued, and symmetric MN ×MN
matrix

V(x) := (Vaa′(x)) ≡ (V(i,γ)(i′,γ′)(x)) = 1N ⊗ (Vγγ′(x)). (7.176c)

The Hamiltonian

Ĥ{T } :=
∫

dx
∑
T

hT (x)
2

[
e+iαT (x)

MN∏
a=1

ψ̂Ta
a (t, x) + h.c.

]

=
∫

dx
∑
T
hT (x) : cos[T TKΦ̂(t, x) + αT (x)] : (7.176d)

is not quadratic in the bosonic fields. With the understanding that the operator multi-
plication of identical fermion fields at the same point x along the wire requires point
splitting, and with the shorthand notation ψ̂−1

a (x) ≡ ψ̂†a(x), Ĥ{T } is interpreted as a
sum of all (possibly many-body) tunnellings between the fermionic channels. The set
{T } comprises here all integer-valued tunnelling vectors

T ≡ (Ta) (7.176e)

obeying the condition

MN∑
a=1

Ta =

{
0 mod 2 for D, DIII, C, and CI,

0 otherwise.
(7.176f)

Moreover, each T from the set {T } is assigned the real-valued functions

hT (x) = h∗T (x) ≥ 0 (7.176g)

αT (x) = α∗T (x). (7.176h)

The condition (7.176f) ensures that these tunnelling events preserve the parity of the
total fermion number for the superconducting symmetry classes (symmetry classes D,
DIII, C, and CI in Table 7.5), while they preserve the total fermion number for the
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non-superconducting symmetry classes (symmetry classes A, AIII, AI, AII, BDI, and
CII in Table 7.5). The integer

q :=
MN∑
a=1

1
2
|Ta| (7.176i)

dictates that T encodes a q-body interaction in the fermion representation. The
Hamiltonian

Ĥ{Q} :=
∫

dx
1
2π
A0(x)QT(∂xΦ̂)(t, x) (7.176j)

encodes the response to a static scalar potential A0 through the charge vectorQ chosen
to be

Q =
(
1 . . . 1

)T
(7.176k)

in units of the electron charge e.
The Hamiltonian (7.176) and the commutators (7.175b) are form-invariant under

the transformation

Φ̂(t, x) =:WΦ̃(t, x), (7.177a)

Ṽ(x) :=WTV(x)W, (7.177b)

K̃ := WTKW, (7.177c)

T̃ := W−1T , (7.177d)

Q̃ := WTQ, (7.177e)

where the MN ×MN integer-valued matrix W is assumed to be invertible, but not
necessarily orthogonal! Observe that the tunnelling and charge vectors transform dif-
ferently whenever W−1 �= WT, since they enter the Hamiltonian (7.176) with and
without the matrix K, respectively.8

Even if the deviation of the matrix W from the MN ×MN unit matrix is small,
the relationship between the vertex operators

ψ̃ã(t, x) ≡ : exp[ + i(K̃Φ̃)ã(t, x)] :

= : exp[ + i(WTKΦ̂)ã(t, x)] : , ã = 1, . . . ,MN,
(7.178)

and the vertex operators (7.175a) is non-perturbative. Performing a transformation of
the form (7.177) to interpret a specific choice of interactions encoded by the tunnelling
matrices {T } will play an essential role below.

8 Alternatively, K and QQT must transform in the same way because of the Klein factors (7.174b).
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Because of the transformation laws (7.177c) and (7.177e), the dimensionless
Hall conductivity is invariant under the (not necessarily orthogonal) transformation
(7.177). Indeed,

σH :=
1
2π

(QTK−1Q)

=
1
2π

[Q̃T(W−1W)K̃−1(W−1W)TQ̃]
(7.179a)

equals

σ̃H :=
1
2π

(
Q̃TK̃−1Q̃

)
. (7.179b)

In the sequel, we shall choose a non-orthogonal integer-valuedW with |detW| = 1
when studying SRE phases of matter outside the tenfold way, while we shall choose a
non-orthogonal integer-valued W with |detW| �= 1 in order to construct LRE phases
of matter.

7.5.3 Strategy for constructing topological phases

The many-body Hamiltonian ĤV + Ĥ{T } defined in (7.176) is to be chosen so that
(i) it belongs to any one of the ten symmetry classes from the tenfold way (with the
action of symmetries defined in Section 7.5.3.1) and (ii) all excitations in the bulk
are gapped by a specific choice of the tunnelling vectors {T } entering Ĥ{T } (with the
condition for a spectral gap given in Section 7.5.3.3). The energy scales in Ĥ{T } are
assumed to be sufficiently large compared with those in ĤV so that it is ĤV that may
be thought of as a perturbation of Ĥ{T } and not the converse.

It will be shown that for five of the ten symmetry classes, there can be protected
gapless edge states because of locality and symmetry. Step (ii) for each of the five
symmetry classes supporting gapless edge states is represented pictorially as shown
in Fig. 7.11. In each symmetry class, topologically trivial states that do not support
protected gapless edge states in the tenfold classification can be constructed by gapping
all states in each individual wire from the array.

7.5.3.1 Representation of symmetries

The classification is based on the presence or the absence of the TRS and the PHS
that are represented by the antiunitary many-body operator Θ̂ and the unitary many-
body operator Π̂, respectively. Each of Θ̂ and Π̂ can exist in two varieties such that
their single-particle representations Θ and Π square to the identity operator up to a
multiplicative factor of ±1:

Θ2 = ±1, Π2 = ±1. (7.180)

By assumption, the set of all degrees of freedom in each given wire is invariant under
the actions of Θ̂ and Π̂. If so, then the actions of Θ̂ and Π̂ on the fermionic fields
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can be represented in two steps. First, we introduce two (M ×M)-dimensional ma-
trix representations PΘ and PΠ of the permutation group of M elements, which are
combined into the block-diagonal MN ×MN real-valued and orthogonal matrices

PΘ := 1N ⊗ PΘ, PΠ := 1N ⊗ PΠ, (7.181a)

where PΘ and PΠ represent products of transpositions so that

PΘ = P−1
Θ = PT

Θ, PΠ = P−1
Π = PT

Π . (7.181b)

Second, we introduce two column vectors IΘ ∈ ZM and IΠ ∈ ZM , which are combined
into two column vectors

IΘ :=

⎛⎜⎝IΘ...
IΘ

⎞⎟⎠ , IΠ :=

⎛⎜⎝IΠ...
IΠ

⎞⎟⎠ (7.181c)

and MN ×MN diagonal matrices

DΘ := diag(IΘ), DΠ := diag(IΠ), (7.181d)

with the components of the vectors IΘ and IΠ as diagonal matrix elements. The
vectors IΘ and IΠ are not chosen arbitrarily. We demand that the vectors (1 + PΘ)IΘ

and (1 + PΠ)IΠ contain only even (for the +1 in (7.180)) or only odd (for the −1 in
(7.180)) integer entries, while

e+iπDΘPΘ = ±PΘe+iπDΘ (7.181e)

and

e+iπDΠPΠ = ±PΠe+iπDΠ , (7.181f)

in order to satisfy Θ2 = ±1 and Π2 = ±1, respectively. The operations of time reversal
and interchange of particles and holes are then represented for the fermions by

Θ̂Ψ̂Θ̂−1 = e+iπDΘPΘΨ̂, (7.181g)

Π̂Ψ̂Π̂−1 = e+iπDΠPΠΨ̂, (7.181h)

and for the bosons by

Θ̂Φ̂Θ̂−1 = PΘΦ̂ + πK−1IΘ, (7.181i)

Π̂Φ̂Π̂−1 = PΠΦ̂ + πK−1IΠ, (7.181j)

We can verify that (7.180) is fulfiled.
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The Hamiltonian (7.176) is TRS if

Θ̂ĤΘ̂−1 = +Ĥ. (7.182a)

This condition is met if

PΘV P
−1
Θ = +V, (7.182b)

PΘKP
−1
Θ = −K, (7.182c)

hT (x) = h−PΘT (x), (7.182d)

αT (x) = α−PΘT (x)− πT TPΘIΘ. (7.182e)

The Hamiltonian (7.176) is PHS if

Π̂ĤΠ̂−1 = +Ĥ. (7.183a)

This condition is met if

PΠV P
−1
Π = +V, (7.183b)

PΠKP
−1
Π = +K, (7.183c)

hT (x) = h+PΠT (x), (7.183d)

αT (x) = αPΠT (x) + πT TPΠIΠ. (7.183e)

7.5.3.2 Particle–hole symmetry in interacting superconductors

The total number of fermions is a good quantum number in any metallic or insu-
lating phase of fermionic matter. This is no longer true in the mean-field treatment
of superconductivity. In a superconductor, within a mean-field approximation, charge
is conserved modulo 2 because Cooper pairs can be created and annihilated. The
existence of superconductors and the phenomenological success of the mean-field ap-
proximation suggest that the conservation of the total fermion number operator should
be relaxed down to its parity in a superconducting phase of matter. If one demands
only that the parity of the total fermion number be conserved, then one may decom-
pose any fermionic creation operator in the position basis into its real and imaginary
parts, thereby obtaining two Hermitian operators called Majorana operators. Any
Hermitian Hamiltonian that is build out of even powers of Majorana operators neces-
sarily preserves the parity of the total fermion number operator, but it might break
the conservation of the total fermion number. By definition, any such Hamiltonian
belongs to symmetry class D.

The tool of Abelian bosonization allows a fermion operator to be represented as
a single exponential of a Bose field. In Abelian bosonization, a Majorana operator is
the sum of two exponentials, and this fact makes it cumbersome to apply Abelian
bosonization for Majorana operators. It is possible to circumvent this difficulty by
representing any Hamiltonian from symmetry class D in terms of the components of
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Nambu–Gorkov spinors obeying a reality condition. Indeed, one may double the di-
mensionality of the single-particle Hilbert space by introducing Nambu–Gorkov spinors
with the understanding that (i) a reality condition on these spinors must hold within
the physical subspace of the enlarged single-particle Hilbert space and (ii) the dy-
namics dictated by the many-body Hamiltonian must be compatible with this reality
condition. The reality condition keeps track of the fact that there are many ways to
express an even polynomial of Majorana operators in terms of the components of a
Nambu–Gorkov spinor. The complication brought about by this redundancy is com-
pensated by the fact that it is straightforward to implement Abelian bosonization in
the Nambu–Gorkov representation.

To implement this particle–hole doubling, we assign to every pair of fermionic
operators ψ̂ and ψ̂† (whose indices have been omitted for simplicity) related to each
other by the reality condition

Π̂ψ̂Π̂† = ψ̂† (7.184a)

a pair of bosonic field operators φ̂ and φ̂′ related by the reality condition

Π̂φ̂Π̂† = −φ̂′. (7.184b)

Invariance under this transformation has to be imposed on the (interacting) Hamil-
tonian in the doubled (Nambu–Gorkov) representation. In addition to the PHS, when
describing the superconducting symmetry classes, we also require that the parity of
the total fermion number be conserved. This discrete global symmetry, the symmetry
of the Hamiltonian under reversal of sign of all fermion operators, becomes a con-
tinuous U(1) global symmetry that is responsible for the conservation of the electric
charge in all non-superconducting symmetry classes. In this way, all nine symmetry
classes from the tenfold way descend from symmetry class D by the imposition of a
composition of TRS, U(1) charge conservation, and the chiral (sublattice) symmetry.

The combined effect of disorder and interactions in superconductors was studied in
[29–31, 52], starting from the Nambu–Gorkov formalism to derive a nonlinear sigma
model for the Goldstone modes relevant to the interplay between the physics of An-
derson localization and that of interactions. The stability of Majorana zero modes to
interactions preserving PHS was studied in [35].

7.5.3.3 Conditions for a spectral gap

The Hamiltonian ĤV in the decomposition (7.176) has MN gapless modes. However,
ĤV does not commute with Ĥ{T } and the competition between ĤV and Ĥ{T } can gap
some, if not all, the gapless modes of ĤV . For example, a tunnelling amplitude that
scatters the right-mover into the left-mover of each flavour in each wire will gap out
the spectrum of ĤV .

A term in Ĥ{T } has the potential to gap out a gapless mode of ĤV if, for
some time-independent real-valued function CT (x), the condition (in the Heisenberg
representation) [45, 90]

∂x[T TKΦ̂(t, x) + αT (x)] = CT (x) (7.185)
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holds on the canonical momentum

(4π)−1K(∂xΦ̂)(t, x) (7.186)

that is conjugate to Φ̂(t, x), when applied to the ground state. The locking condi-
tion (7.185) removes a pair of chiral bosonic modes with opposite chiralities from the
gapless degrees of freedom of the theory. However, not all scattering vectors T can
simultaneously lead to such a locking, owing to quantum fluctuations. The set of linear
combinations {T TKΦ̂(t, x)} that can satisfy the locking condition (7.185) simultan-
eously is labelled by the subset {T }locking of all tunnelling matrices {T } defined by
(7.176e) and (7.176f) obeying the Haldane criterion [45, 90]

T TKT = 0 (7.187a)

for any T ∈ {T }locking and

T TKT ′ = 0 (7.187b)

pairwise for any T �= T ′ ∈ {T }locking.

7.5.4 Reproducing the tenfold way

The first goal is to apply the wire construction in order to reproduce the classification
of non-interacting topological insulators (symmetry classes A, AIII, AI, AII, BDI,
and CII in Table 7.5) and superconductors (symmetry classes D, DIII, C,and CI in
Table 7.5) in (2 + 1) dimension [58, 106, 109, 110]. In this subsection, the classification
scheme is carried out within the bosonized description of quantum wires. Here, the
classification is restricted to one-body tunnelling terms, i.e. q = 1 in (7.176i), for the
non-superconducting symmetry classes, and to two-body tunnelling terms, i.e. q = 2 in
(7.176i), for the superconducting symmetry classes. In Section 7.5.5, this construction
is generalized to the cases q > 1 and q > 2 of multiparticle tunnellings in the non-
superconducting and superconducting symmetry classes, respectively. The topological
stability of edge modes will be an immediate consequence of the observation that no
symmetry-respecting local terms can be added to the models to be constructed below.

Within the classification of non-interacting Hamiltonians, superconductors are
nothing but fermionic bilinears with a PHS. The physical interpretation of the de-
grees of freedom as Bogoliubov quasiparticles is of no consequence to the analysis. In
particular, they still carry an effective conserved U(1) charge in the non-interacting
description.

7.5.4.1 Symmetry class A

SRE phases in the tenfold way. Topological insulators in symmetry class A can
be realized without any symmetry aside from the U(1) charge conservation. The wire
construction starts from wires supporting spinless fermions, so that the minimal choice
M = 2 only counts left- and right-moving degrees of freedom. The K-matrix reads

K := diag(+1,−1). (7.188a)
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The entry +1 of the K-matrix corresponds to a right-mover. It is depicted by the
symbol ⊗ in Fig. 7.11(a). The entry −1 corresponds to a left-mover. It is depicted by
the symbol $ in Fig. 7.11(a). The operation for reversal of time in any one of the N
wires is represented by (one can verify that (7.181e) holds)

PΘ :=
(

0 1
1 0

)
, IΘ :=

(
0
0

)
. (7.188b)

We define Ĥ{T } by choosing N − 1 scattering vectors, whereby, for any j = 1, . . . ,
N − 1,

T (j)
(i,γ) := δi,jδγ,2 − δi−1,jδγ,1, (7.189a)

with i = 1, . . . , N and γ = 1, 2. In other words,

T (j) := (0, 0| . . . |0,+1| − 1, 0| . . . |0, 0)T (7.189b)

for j = 1, . . . , N − 1. To clarify the interpretation of the tunnelling vectors, the |’s in
(7.189b) are used to compartmentalize the elements within a given wire. Henceforth,
there are M = 2 vector components within each pair of |’s that encode the M = 2
degrees of freedom within a given wire. The jth scattering vector (7.189b) labels
a one-body interaction in the fermion representation that fulfils (7.176f) and breaks
TRS, since the scattering vector (0,+1)T is mapped into the scattering vector (+1, 0)T

by the permutation PΘ that represents time reversal in a wire by exchanging right-
with left-movers. For any j = 1, . . . , N − 1, we introduce the amplitude

hT (j)(x) ≥ 0 (7.189c)

and the phase

αT (j)(x) ∈ R (7.189d)

according to (7.182d) and (7.182e), respectively. The choices for the amplitude (7.189c)
and the phase (7.189d) are arbitrary. In particular the amplitude (7.189c) can be
chosen to be sufficiently large that it is ĤV that may be thought of as a perturbation
of Ĥ{T } and not the converse.

We can verify that all N − 1 scattering vectors (7.189a) satisfy the Haldane
criterion (7.187), i.e.

T (i)TKT (j) = 0, i, j = 1, . . . , N − 1. (7.190)

Correspondingly, the term Ĥ{T } gaps out 2(N − 1) of the 2N gapless modes of ĤV .
Two modes of opposite chirality that propagate along the first and last wires, respect-
ively, remain in the low-energy sector of the theory. These edge states are localized
on wires i = 1 and N , respectively, since their overlaps with the gapped states from
the bulk decay exponentially fast as a function of the distance away from the first
and end wires. The energy splitting between the edge state localized on wire i = 1
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and that localized on wire i = N that is brought about by the bulk states vanishes
exponentially fast with increasing N . Two gapless edge states with opposite chiralities
emerge in the two-dimensional limit N →∞.

At energies much lower than the bulk gap, the effective K-matrix for the edge
modes is

Keff := diag(+1, 0|0, 0| . . . |0, 0|0,−1). (7.191)

Here, Keff follows from replacing the entries in the 2N × 2N K-matrix for all gapped
modes by 0. The pictorial representation of the topological phase in symmetry class
A with one chiral edge state per end wire through the wire construction is shown
in Fig. 7.11(a). The generalization to an arbitrary number n of gapless edge states
sharing a given chirality on the first wire that is opposite to that of the last wire is
as follows. We enlarge M = 2 to M = 2n by making n identical copies of the model
depicted in Fig. 7.11(a). The stability of the n chiral gapless edge states in wires 1
and N is guaranteed because backscattering among these gapless edges states is not
allowed kinematically within wire 1 or wire N , while backscattering across the bulk is
exponentially suppressed for large N by locality and the gap in the bulk. The number
of robust gapless edge states of a given chirality is thus an integer. This is why the
entry in the third column of the first row of Table 7.5 is Z.

SRE phases beyond the tenfold way. It is imperative to ask whether the phases
constructed so far exhaust all possible SRE phases in symmetry class A. By demand-
ing that one-body interactions are dominant over many-body interactions, all phases
from the (exhaustive) classification for non-interacting fermions in class A—and only
those—were constructed. In these phases, the same topological invariant controls the
Hall and thermal conductivities. However, it was observed that interacting fermion
systems can host additional SRE phases in symmetry class A where this connection
is lost [74]. These phases are characterized by an edge that includes charge-neutral
chiral modes. While such modes contribute to the quantized energy transport (i.e. the
thermal Hall conductivity), they do not contribute to the quantized charge transport
(i.e. the charge Hall conductivity). Considering the thermal and charge Hall conduct-
ivities as two independent quantized topological responses enlarges the classification
of SPT phases in symmetry class A to Z× Z.

Starting from identical fermions of charge e, an explicit model for an array of
wires will be constructed that stabilizes an SRE phase of matter in symmetry class A
carrying a non-vanishing Hall conductivity but a vanishing thermal Hall conductivity.
In order to build a wire construction of such a strongly interacting SRE phase in
symmetry class A, three spinless electronic wires are grouped into one unit cell, i.e.

K := diag(+1,−1,+1,−1,+1,−1). (7.192a)

It will be useful to arrange the charges Qγ = 1 measured in units of the electron charge
e for each of the modes φ̂γ , γ = 1, . . . ,M , into a vector

Q = (1, 1, 1, 1, 1, 1)T. (7.192b)
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The physical meaning of the tunnelling vectors (interactions) to be defined below
is most transparent if we employ the following linear transformation on the bosonic
field variables:

Φ̂(x) =:WΦ̃(x), (7.193a)

K̃ := WTKW, (7.193b)

T̃ := W−1T , (7.193c)

Q̃ := WTQ, (7.193d)

whereW is aMN ×MN block-diagonal matrix with the non-orthogonal blockW hav-
ing integer entries and the determinant being of unit magnitude. The transformation
W and its inverse W−1 are given by

W :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −1 0 0 0
+1 −1 −1 0 0 0
+1 0 −1 0 0 0
0 0 0 −1 0 +1
0 0 0 −1 −1 +1
0 0 0 −1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, W−1 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0 0 0 0
0 −1 +1 0 0 0
−1 +1 −1 0 0 0
0 0 0 −1 +1 −1
0 0 0 +1 −1 0
0 0 0 0 +1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(7.194)

This brings K to the form

K̃ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 +1 0 0 0 0
+1 0 0 0 0 0
0 0 +1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (7.195)

As can be read off from (7.175b), the parity of Kγγ determines the self-statistics of
particles of type γ = 1, . . . , N . As (7.175b) is form-invariant under the transformation
(7.193), we conclude that, with the choice (7.194), the transformed modes γ = 1, 2 as
well as the modes γ = 5, 6 are pairs of bosonic degrees of freedom, while the third
and fourth modes remain fermionic. Furthermore, the charges transported by the
transformed modes φ̃γ are given by

Q̃ = WTQ = (+2,−2,−3,−3,−2,+2)T. (7.196)

Let us define the charge-conserving tunnelling vectors (j = 1, . . . , N − 1)

T̃ (j)
1 := (0, 0, 0, 0, 0, 0| . . . |0, 0,+1,−1, 0, 0| . . . |0, 0, 0, 0, 0, 0)T,

T̃ (j)
2 := (0, 0, 0, 0, 0, 0| . . . |0, 0, 0, 0,+1, 0|0,−1, 0, 0, 0, 0| . . . |0, 0, 0, 0, 0, 0)T,

T̃ (j)
3 := (0, 0, 0, 0, 0, 0| . . . |0, 0, 0, 0, 0,+1| − 1, 0, 0, 0, 0, 0| . . . |0, 0, 0, 0, 0, 0)T.

(7.197)
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In the original basis, these three families of tunnelling vectors are of order 3, 2,
and 2, respectively. They are given explicitly by

T (j)
1 := (0, 0, 0, 0, 0, 0| . . . | − 1,−1,−1,+1,+1,+1| . . . |0, 0, 0, 0, 0, 0)T,

T (j)
2 := (0, 0, 0, 0, 0, 0| . . . |0, 0, 0, 0,−1,−1| + 1,+1, 0, 0, 0, 0| . . . |0, 0, 0, 0, 0, 0)T,

T (j)
3 := (0, 0, 0, 0, 0, 0| . . . |0, 0, 0,+1,+1, 0|0,−1,−1, 0, 0, 0| . . . |0, 0, 0, 0, 0, 0)T.

(7.198)

The tunnelling vectors (7.197) gap all modes in the bulk and the remaining gapless
edge modes on the left edge are

K̃eff,left =
(

0 1
1 0

)
, Q̃eff,left =

(
+2
−2

)
. (7.199)

The only charge-conserving tunnelling vector that could gap out this effective edge
theory, T̃ = (1, 1)T, is not compatible with Haldane’s criterion (7.187). Thus, the edge
theory (7.199) is stable against charge-conserving perturbations. The Hall conductivity
supported by this edge theory is given by

Q̃T
eff,leftK̃

−1
eff,leftQ̃eff,left = −8, (7.200)

in units of e2/h. This is the minimal Hall conductivity of an SRE phase of bosons, if
each boson is interpreted as a pair of electrons carrying electronic charge 2e [74]. On
the other hand, the edge theory (7.199) supports two modes with opposite chiralities,
since the symmetric matrix K̃eff,left has the pair of eigenvalues ±1. Thus, the net
energy transported along the left edge, and with it the thermal Hall conductivity,
vanishes.

7.5.4.2 Symmetry class AII

Topological insulators in symmetry class AII can be realized by demanding that U(1)
charge conservation holds and that TRS with Θ2 = −1 holds. The wire construction
starts from wires supporting spin- 1

2 fermions because Θ2 = −1, so that the minimal
choice M = 4 counts two pairs of Kramers-degenerate left- and right-moving degrees
of freedom carrying opposite spin projections on the spin quantization axis, i.e. two
pairs of Kramers-degenerate helical modes. The K-matrix reads

K := diag(+1,−1,−1,+1). (7.201a)

The entries in the K-matrix represent, from left to right, a right-moving particle with
spin up, a left-moving particle with spin down, a left-moving particle with spin up,
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and a right-moving particle with spin down. The operation of time reversal in any one
of the N wires is represented by (we can verify that (7.181e) holds)

PΘ :=

⎛⎜⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠ , IΘ :=

⎛⎜⎜⎜⎝
0
1
0
1

⎞⎟⎟⎟⎠ . (7.201b)

We define ĤV by choosing any symmetric 4× 4 matrix V that obeys

V = PΘV P
−1
Θ . (7.201c)

We define Ĥ{TSO} by choosing 2(N − 1) scattering vectors as follows. For any
j = 1, . . . , N − 1, we introduce a pair of scattering vectors

T (j)
SO := (0, 0, 0, 0| . . . |0, 0,+1, 0| − 1, 0, 0, 0| . . . |0, 0, 0, 0)T, (7.202a)

T (j)

SO := − PΘT (j)
SO . (7.202b)

The scattering vector (7.202a) labels a one-body interaction in the fermion represen-
tation that fulfils (7.176f). It scatters a left-mover with spin up from wire j into a
right-mover with spin up on wire j + 1. For any j = 1, . . . , N − 1, we introduce the
pair of amplitudes

hT (j)
SO

(x) = hT (j)
SO

(x) ≥ 0 (7.202c)

and the pair of phases

αT (j)
SO

(x) = αT (j)
SO

(x) ∈ R (7.202d)

according to (7.182d) and (7.182e), respectively. The choices for the amplitude (7.202c)
and the phase (7.202d) are arbitrary. The subscript SO refers to the intrinsic spin–orbit
coupling. The rationale for using it will be explained shortly.

We verify that all 2(N − 1) scattering vectors (7.201c) and (7.202a) satisfy the
Haldane criterion (7.187), i.e.

T (i)T
SO KT (j)

SO = T (i)T
SO KT

(j)

SO = T (i)T
SO KT (j)

SO = 0 (7.203)

for i, j = 1, . . . , N − 1. Correspondingly, the term Ĥ{TSO} gaps out 4(N − 1) of the
4N gapless modes of ĤV . Two pairs of Kramers-degenerate helical edge states that
propagate along the first and last wires, respectively, remain in the low-energy sector
of the theory. These edge states are localized on wires i = 1 and N , respectively,
since their overlaps with the gapped states from the bulk decay exponentially fast
as a function of the distance away from the first and end wires. The energy splitting
between the edge state localized on wires i = 1 and i = N brought about by the bulk



340 Fractional Abelian topological phases of matter for fermions in two-dimensional space

states vanishes exponentially fast with increasing N . Two pairs of gapless Kramers-
degenerate helical edge states emerge in the two-dimensional limit N →∞.

At energies much lower than the bulk gap, the effective K-matrix for the two pairs
of helical edge modes is

Keff := diag(+1,−1, 0, 0|0, 0, 0, 0| . . . |0, 0, 0, 0|0, 0,−1,+1). (7.204)

Here, Keff follows from replacing the entries in the 4N × 4N K matrix for all gapped
modes by 0. It will be shown that the effective scattering vector

Teff := (+1,−1, 0, 0|0, 0, 0, 0| . . .)T, (7.205)

with the potential to gap out the pair of Kramers-degenerate helical edge modes on
wire i = 1 since it fulfils the Haldane criterion (7.187), is not allowed by TRS.9 On
the one hand, Teff maps to itself under time reversal:

Teff = −PΘTeff. (7.206)

On the other hand,

T T
effPΘIΘ = −1. (7.207)

Therefore, the condition (7.182e) for Teff to be a TRS perturbation cannot be met,
since the phase αTeff(x) associated with Teff would then obey

αTeff(x) = αTeff(x)− π, (7.208)

a condition that cannot be satisfied.
Had a TRS with Θ = +1 been imposed instead of Θ = −1 as is appropriate for

symmetry class AI, which describes spinless fermions with TRS, then we would only
need to replace IΘ in (7.201b) by the null vector. The scattering vector (7.205) would
then be compatible with TRS, since the condition (7.182e) for TRS would then become

αTeff(x) = αTeff(x) (7.209)

instead of (7.208). This is why symmetry class AI is always topologically trivial in
two-dimensional space from the point of view of the wire construction.

Note also that had we not insisted on the condition of charge neutrality (7.176f),
the tunnelling vector

T ′eff := (+1,+1, 0, 0|0, 0, 0, 0| . . .)T, (7.210)

which satisfies the Haldane criterion and is compatible with TRS, could gap out the
Kramers-degenerate pair of helical edge states.

9 Even integer multiples of Teff would gap the edge states, but they must also be discarded as

explained in [90].
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To address the question of what happens if M = 4 is changed to M = 4n, with
n any strictly positive integer, in each wire from the array, consider, without loss of
generality, the case n = 2. To this end, it suffices to repeat all the steps that led to
(7.205), except for the change

Keff := diag(+1,−1, 0, 0;+1,−1, 0, 0|0, 0, 0, 0; 0, 0, 0, 0|
. . . |0, 0, 0, 0; 0, 0, 0, 0|0, 0,−1,+1; 0, 0,−1,+1).

(7.211)

We can verify that the scattering vectors

T ′eff := (+1, 0, 0, 0; 0,−1, 0, 0|0, 0, 0, 0; 0, 0, 0, 0| · · · )T, (7.212)

T ′′eff := (0,−1, 0, 0;+1, 0, 0, 0|0, 0, 0, 0; 0, 0, 0, 0| · · · )T (7.213)

are compatible with the condition that TRS holds, in that the pair form a closed set
under time reversal:

T ′eff = −PΘT ′′eff. (7.214)

We can verify that these scattering vectors fulfil the Haldane criterion (7.187). Conse-
quently, inclusion in Ĥ{TSO} of the two cosine potentials with T ′eff and T ′′eff entering in
their arguments, respectively, gaps out the pair of Kramers-degenerate helical modes
on wire i = 1. The same treatment of wire i = N leads to the conclusion that TRS
does not protect the gapless pairs of Kramers-egenerate edge states from perturbations
when n = 2. The generalization to M = 4n channels is that it is only when n is odd
that a pair of Kramers-degenerate helical edge modes is robust to the most generic
Ĥ{TSO} of the form depicted in Fig. 7.11(c). Since it is the parity of n in the number
M = 4n of channels per wire that matters for the stability of the Kramers-degenerate
helical edge states, the group of two integers Z2 under addition modulo 2 appears in
the third column of the third row of Table 7.5.

If conservation of the projection of the spin-1
2 quantum number on the quantization

axis were imposed, then processes by which a spin is flipped would be precluded
for all scattering vectors. In particular, the scattering vectors (7.212) and (7.213)
would no longer be admissible. By imposing the U(1) residual symmetry of the full
SU(2) symmetry group for a spin- 1

2 degree of freedom, the group of integers Z under
addition that encodes the topological stability in the quantum spin Hall effect (QSHE)
is recovered.

This discussion of symmetry class AII is closed by justifying the interpretation of
the index SO as an abbreviation for the intrinsic spin–orbit coupling. To this end, we
introduce a set of N − 1 pairs of scattering vectors

T (j)
R := (0, 0, 0, 0| . . . |0,+1, 0, 0| − 1, 0, 0, 0| . . . |0, 0, 0, 0)T (7.215a)

and

T (j)

R := −PΘT (j)
R (7.215b)
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for j = 1, . . . , N − 1. The scattering vector (7.215a) labels a one-body interaction in
the fermion representation that fulfils (7.176f). The index R stands for ‘Rashba’, since
it describes a backward-scattering process by which a left-mover with spin down from
wire j is scattered into a right-mover with spin up on wire j + 1 and conversely. For
any j = 1, . . . , N − 1, we introduce the pair of amplitudes

hT (j)
R

(x) = hT (j)
R

(x) ≥ 0 (7.215c)

and the pair of phases

αT (j)
R

(x) = αT (j)
R

(x) + π ∈ R (7.215d)

according to (7.182d) and (7.182e), respectively. In contrast to the intrinsic spin–orbit
scattering vectors, the Rashba scattering vectors (7.215a) fail to meet the Haldane
criterion (7.187) since

T (j)T
R KT (j+1)

R = −1, j = 1, . . . , N − 1. (7.216)

Hence, the Rashba scattering processes fail to open a gap in the bulk, as is expected of
a Rashba coupling in a two-dimensional electron gas. On the other hand, the intrinsic
spin–orbit coupling can lead to a phase with a gap in the bulk that supports the QSHE
in a two-dimensional electron gas.

7.5.4.3 Symmetry class D

The simplest example among the topological superconductors can be found in sym-
metry class D, which is defined by the presence of a PHS with Π2 = +1 and the
absence of TRS.

With the understanding of PHS as discussed in Section 7.5.3.2, a representative
phase in symmetry D is constructed from identical wires supporting right- and left-
moving spinless fermions, each of which carries a particle or a hole label, i.e. M = 4.
The K-matrix reads

K := diag(+1,−1,−1,+1). (7.217a)

The entries in the K-matrix represent, from left to right, a right-moving particle, a
left-moving particle, a left-moving hole, and a right-moving hole. The operation of the
exchange of particles and holes in any one of the N wires is represented by (we can
verify that (7.181f) holds)

PΠ :=

⎛⎜⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎟⎠ , IΠ :=

⎛⎜⎜⎜⎝
0
0
0
0

⎞⎟⎟⎟⎠ . (7.217b)

We define ĤV by choosing any symmetric 4× 4 matrix V that obeys

V = +PΠV P
−1
Π . (7.217c)
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We define Ĥ{T } by choosing 2N − 1 scattering vectors as follows. For any wire
j = 1, . . . , N , we introduce the scattering vector

T (j) := (0, 0, 0, 0| . . . |+ 1,−1,−1,+1| . . . |0, 0, 0, 0)T. (7.218a)

Between any pair of neighbouring wires, we introduce the scattering vector

T (j)
:= (0, 0, 0, 0| . . . |0,+1,−1, 0| − 1, 0, 0,+1| . . . |0, 0, 0, 0)T (7.218b)

for j = 1, . . . , N − 1. Observe that both T (j) and T (j)
are eigenvectors of the particle–

hole transformation in that

PΠT (j) = +T (j), PΠT
(j)

= −T (j)
. (7.218c)

Thus, to comply with PHS, we demand that the phases

αT (j)(x) = 0, (7.218d)

while αT (j)(x) are unrestricted. Similarly, the amplitudes hT (j)(x) and hT (j)(x) can
take arbitrary real values.

We verify that the set of scattering vectors defined by (7.218a) and (7.218b)
satisfies the Haldane criterion. Correspondingly, the term Ĥ{T } gaps out 4N − 2 of
the 4N gapless modes of ĤV . Furthermore, we identify with

T (0) = (−1, 0, 0,+1|0, 0, 0, 0| . . . |0, 0, 0, 0|0,+1,−1, 0)T (7.219)

a unique (up to an integer multiplicative factor) scattering vector that satisfies the
Haldane criterion with all existing scattering vectors (7.218a) and (7.218b) and could
thus potentially gap out the remaining pair of modes. However, the tunnelling T (0) is
non-local since it connects the two edges of the system when open boundary conditions
are chosen. We thus conclude that the two remaining modes are exponentially localized
near wires i = 1 and N , respectively, and propagate with opposite chirality.

To give a physical interpretation of the resulting topological (edge) theory in this
wire construction, we must keep in mind that the degrees of freedom were artificially
doubled. We find, in this doubled theory, a single chiral boson (with chiral central
charge c = 1). To interpret it as the edge of a chiral (px + ipy) superconductor, the
reality condition is imposed to obtain a single chiral Majorana mode with chiral central
charge c = 1

2
.

The pictorial representation of the topological phase in symmetry class D through
the wire construction is shown in Fig. 7.11(g). The generalization to an arbitrary
number n of gapless chiral edge modes is analogous to the case discussed for symmetry
class A. The number of robust gapless chiral edge states of a given chirality is thus an
integer. This is why the group of integers Z is found in the third column of the fifth
row of Table 7.5.
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7.5.4.4 Symmetry classes DIII and C

The remaining two topologically non-trivial superconducting classes DIII (TRS with
Θ2 = −1 and PHS with Π2 = +1) and C (PHS with Π2 = −1) involve spin-1

2
fermions.

Each wire thus features no fewer thanM = 8 internal degrees of freedom corresponding
to the spin-1

2
, chirality and particle/hole indices. The construction is very similar to

the cases already presented. Details can be found in [89].
The scattering vectors that are needed to gap out the bulk for each symmetry class

DIII and C are represented pictorially in Fig. 7.11(e, i).

7.5.4.5 Summary

An explicit construction has been provided by way of an array of wires supporting
fermions that realizes all five insulating and superconducting topological phases of
matter with a non-degenerate ground state in two-dimensional space according to the
tenfold classification of band insulators and superconductors. The topological protec-
tion of edge modes in the bosonic formulation follows from imposing the Haldane
criterion (7.187) along with the appropriate symmetry constraints. It remains for us
to extend the wire construction to allow many-body tunnelling processes that deliver
fractionalized phases with degenerate ground states.

7.5.5 Fractionalized phases

The power of the wire construction goes way beyond what has been used in Sec-
tion 7.5.4 to reproduce the classification of the SRE phases. It is possible to construct
models for interacting phases of matter with intrinsic topological order and fractional-
ized excitations by relaxing the condition on the tunnellings between wires that they
be of the one-body type. While these phases are more complex, the principles for
constructing the models and proving the stability of edge modes remain the same:
all allowed tunnelling vectors have to obey the Haldane criterion (7.187) and the
respective symmetries.

7.5.5.1 Symmetry class A: fractional quantum Hall states

First, the models of quantum wires that are topologically equivalent to the Laugh-
lin state in the FQHE are reviewed [69] following the construction in [56] for
Abelian fractional quantum Hall states. Here, the choice of scattering vectors
is determined by the Haldane criterion (7.187) and at the same time prepares
the ground for the construction of fractional topological insulators with TRS in
Section 7.5.5.2.

We need the fermionic Laughlin states indexed by a positive odd integer m [69]
(using the same method, other fractional quantum Hall phases from the Abelian hier-
archy could be constructed [56]). The elementary degrees of freedom in each wire are
spinless right- and left-moving fermions with K-matrix

K = diag(+1,−1), (7.220a)
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as was used in (7.188a). Time reversal is defined through PΘ and IΘ given in (7.188b).
Instead of (7.189), the scattering vectors that describe the interactions between the
wires are now defined by

T (j) := (0, 0 |. . . |m+,−m− |m−,−m+ | . . .| 0, 0)T (7.220b)

for any j = 1, . . . , N − 1, where m± = (m± 1)/2 (see Fig. 7.11 for an illustration of
the scattering process).

For any j = 1, . . . , N − 1, the scattering (tunnelling) vectors (7.220b) preserve the
conservation of the total fermion number in that they obey (7.176f), and they encode a
tunnelling interaction of order q = m, with q defined in (7.176i). As a set, all tunnelling
interactions satisfy the Haldane criterion (7.187), since

T (i)TKT (j) = 0, i, j = 1, . . . , N − 1. (7.221)

Note that the choice of tunnelling vector in (7.220b) is unique (up to an integer multi-
plicative factor) if one insists on charge conservation, compliance with the Haldane
criterion (7.187), and only includes scattering between neighbouring wires.

The bare counting of tunnelling vectors shows that the wire model gaps out all but
two modes. However, one still needs to show that the remaining two modes (i) live on
the edge, (ii) cannot be gapped out by other (local) scattering vectors, and (iii) are
made out of fractionalized quasiparticles.

To address (i) and (ii), we note that the remaining two modes can be gapped out by
a unique (up to an integer multiplicative factor) charge-conserving scattering vector
that satisfies the Haldane criterion (7.187) with all existing scatterings, namely

T (0) := (m−,−m+|0, 0| . . . |0, 0|m+,−m−)T. (7.222)

Connecting the opposite ends of the array of wires through the tunnelling T (0) is not
an admissible perturbation, since it violates locality in the two-dimensional thermo-
dynamic limit N →∞. Had periodic boundary conditions corresponding to a cylinder
geometry (i.e. a tube as in Fig. 7.12) by which the first and last wires are nearest
neighbours been chosen, then T (0) would have been admissible. Hence, the gapless
nature of the remaining modes when open boundary conditions are chosen depends
on the boundary conditions. These gapless modes have support near the boundary
only and are topologically protected.

Applying the transformation (7.177) with

W :=

(
−m− m+

m+ −m−

)
, detW = −m, W−1 =

1
m

(
m− m+

m+ m−

)
(7.223a)

transforms the matrix K into

K̃ =WTKW =

(
−m− m+

m+ −m−

)(
+1 0
0 −1

)(
−m− m+

m+ −m−

)
=

(
−m 0
0 +m

)
. (7.223b)
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As its determinant is not unity, the linear transformation (7.223a) changes the com-
pactification radius of the new field Φ̃(x) relative to that of the old field Φ̂(x)
accordingly. Finally, the transformed tunnelling and charge vectors are given by

T̃ (j) =W−1T (j) = (0, 0| . . . |0, 0|0,+1| − 1, 0|0, 0| . . . |0, 0)T �= T (j), (7.223c)

Q̃ =WTQ = (1, 1| . . . |1, 1|1, 1|1, 1|1, 1| . . . |1, 1)T = Q, (7.223d)

respectively, where W := 1N ⊗W and j = 1, . . . , N − 1. In contrast to to the tun-
nelling vectors, the charge vector is invariant under the non-orthogonal linear
transformation (7.223a).

In view of (7.223c), the remaining effective edge theory is described by

K̃eff = diag(−m, 0|0, 0| . . . |0, 0|0,+m). (7.224)

This is a chiral theory at each edge that cannot be gapped by local perturbations.
In combination with (7.223d), (7.224) is precisely the edge theory for anyons with
statistical angle 1/m and charge e/m [132], where e is the charge of the original
fermions.

7.5.5.2 Symmetry class AII: fractional topological insulators

Having understood how fractionalized quasiparticles emerge out of a wire construction,
it is imperative to ask what other phases can be obtained when symmetries are imposed
on the topologically ordered phase. Such symmetry-enriched topological phases have
been classified by methods of group cohomology [16]. Here, the case of TRS with
Θ2 = −1 will provide an example of how the wire construction can be used to build
up an intuition for these phases and to study the stability of their edge theory.

The elementary degrees of freedom in each wire are spin- 1
2

right- and left-moving
fermions with K-matrix

K := diag(+1,−1,−1,+1), (7.225a)

as in (7.201a). Time reversal is defined through PΘ and IΘ given in (7.201b). Instead
of (7.202a), the scattering vectors that describe the interactions between the wires are
now defined by

T (j) := (0, 0, 0, 0| . . . | −m−, 0,+m+, 0| −m+, 0,+m−, 0| . . . |0, 0, 0, 0)T (7.225b)

T (j)
:= − PΘT (j), (7.225c)

for any j = 1, . . . , N − 1, m a positive odd integer, and m± = (m± 1)/2.
For any j = 1, . . . , N − 1, the scattering (tunnelling) vectors (7.225b ) preserve

conservation of the total fermion number in that they obey (7.176f), and they encode
a tunnelling interaction of order q = m, with q defined in (7.176i). They also satisfy
the Haldane criterion (7.187) as a set (see Fig. 7.11 for an illustration of the scattering
process).
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Applying the transformation (7.177) with

W :=

⎛⎜⎜⎜⎝
−m− 0 m+ 0

0 −m− 0 m+

m+ 0 −m− 0
0 m+ 0 −m−

⎞⎟⎟⎟⎠ (7.226)

to the bosonic fields leaves the representation of time-reversal invariant,

W−1PΘW = PΘ, (7.227)

while casting the theory in a new form with the transformed matrix K̃ given by

K̃ = diag(−m,+m,+m,−m) (7.228)

and, for any j = 1, . . . , N − 1, with the transformed pair of scattering vectors
(T̃ (j), T̃ (j)) given by

T̃ (j) = (0, 0, 0, 0| . . . |+ 1, 0, 0, 0|0, 0,−1, 0| . . . |0, 0, 0, 0)T (7.229)

T̃ (j) = (0, 0, 0, 0| . . . |0,−1, 0, 0|0, 0, 0,+1| . . . |0, 0, 0, 0)T. (7.230)

When these scattering vectors have gapped out all modes in the bulk, the effective
edge theory is described by

K̃eff = diag(0, 0,+m,−m|0, 0, 0, 0| · · · |0, 0, 0, 0| −m,+m, 0, 0). (7.231)

This effective K-matrix describes a single Kramers-degenerate pair of 1/m anyons
propagating along the first wire and another single Kramers-degenerate pair of 1/m
anyons propagating along the last wire. Their robustness to local perturbations is
guaranteed by TRS.

In contrast to the tenfold way, the correspondence between the bulk topological
phase and the edge theories of LRE phases is not one-to-one. For example, while a bulk
topological LRE phase supports fractionalized topological excitations in the bulk, its
edge modes may be gapped out by symmetry-allowed perturbations. For the phases
discussed in this section, namely the Abelian and TRS fractional topological insulators,
it was shown in [90] and [71] that the edge, consisting of Kramers-degenerate pairs
of edge modes, supports at most one stable Kramers-degenerate pair of delocalized
quasiparticles that are stable against disorder. (Note that this does not preclude the
richer edge physics of non-Abelian TRS fractional topological insulators [108].)

It turns out that the wire constructions with edge modes given by (7.231) exhaust
all stable edge theories of Abelian topological phases that are protected by TRS with
Θ2 = −1 alone.

We suppose that the single protected Kramers-degenerate pair is characterized by
the linear combination of bosonic fields

ϕ̂(x) := T TK′Φ̂(x) (7.232)
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and its time-reversed partner

ˆ̄ϕ(x) := T TK′Φ̂(x), (7.233)

where the tunnelling vector T was constructed from the microscopic information from
the theory in [90] and K′ is the K-matrix of a TRS bulk Chern–Simons theory from
the theory in [90]. (In other words, the theory encoded by K′ has nothing to do a
priori with the array of quantum wires defined by (7.225).) The Kramers-degenerate
pair of modes (ϕ̂, ˆ̄ϕ) is stable against TRS perturbations supported on a single edge
if and only if

1
2
|T TQ| is an odd number. (7.234)

Here, Q is the charge vector with integer entries that determines the coupling of the
different modes to the electromagnetic field. Provided (ϕ̂, ˆ̄ϕ) is stable, its equal-time
commutation relations follow from (7.175b) as

[ϕ̂(x), ϕ̂(x′)] =− iπ(T TK′T sgn(x− x′) + T TLT ), (7.235a)

[ ˆ̄ϕ(x), ˆ̄ϕ(x′)] =− iπ(− T TK′T sgn(x− x′) + T TLT ), (7.235b)

where the fact that K′ anticommutes with PΘ according to (7.182c) has been used.
By the same token, one can show that the fields ϕ̂ and ˆ̄ϕ commute, since

T TK′T = T TPΘK′T = −T TK′T = 0. (7.236)

We conclude that the effective edge theory for any Abelian TRS fractional topological
insulator build from fermions has the effective form of one Kramers-degenerate pair

Keff =

(
T TK′T 0

0 −T TK′T

)
, (7.237)

and is thus entirely defined by the single integer

m := T TK′T . (7.238)

With the scattering vectors (7.225c) An explicit wire construction for each of these
cases has been given, thus exhausting all possible stable edge theories for Abelian
fractional topological insulators.

For each positive odd integer m, the fractionalized mode has a Z2 character. It can
have either one stable Kramers-degenerate pair of m quasiparticles or none.
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7.5.5.3 Symmetry class D: fractional superconductors

In Section 7.5.5.2.2, TRS was imposed on the wire construction of fractional quan-
tum Hall states, from which the fractional topological insulators in symmetry class
AII followed. In complete analogy, one may impose PHS with Π2 = +1 on the wire
construction of a fractional quantum Hall state, thereby promoting it to symmetry
class D. Physically, there follows a model for a superconductor with ‘fractionalized
Majorana fermions or Bogoliubov quasiparticles.

Lately, interest in this direction has been revived by the investigation of exotic
quantum dimensions of twist defects embedded in an Abelian fractional quantum
Hall liquid [4–6], along with heterostructures of superconductors combined with the
FQHE [20, 73, 124] or with fractional topological insulators [19]. Furthermore, the
Kitaev quantum wire has been generalized to Zn clock models hosting parafermionic
edge modes [26, 59], along with efforts to extend the Read–Rezayi quantum Hall
state [101] to spin liquids [37, 38] and superconductors [81], all of which exhibit
parafermionic quasiparticles.

As in the classification of non-interacting insulators, the Bogoliubov quasiparticles
are treated with Abelian bosonization as if they were Dirac fermions. The fractional
phase is driven by interactions among the Bogoliubov quasiparticles.

The elementary degrees of freedom in each wire are spinless right- and left-moving
fermions and holes as defined for symmetry class D in (7.217a)–(7.217c). We construct
the fractional topological insulator using the set of PHS scattering vectors T (j) for
j = 1, . . . , N with T (j) as defined in (7.218a) in each wire and the PHS as defined
in (7.217b). We complement them with the set of PHS scattering vectors T (j)

for
j = 1, . . . , N − 1 defined by

T (j)
= (0, 0, 0, 0| . . . | −m−,m+,−m+,m−| −m+,m−,−m−,m+| . . . |0, 0, 0, 0)T,

(7.239)

where m± = (m± 1)/2, with m an odd positive integer. Notice that T (j)
:= −PΠT

(j)
,

so that we must have αT (j) = 0 in order to comply with PHS. Thus, together, T (j)

and T (j)
gap out 4N − 2 of the 4N chiral modes in the wire. We identify the unique

(up to an integer multiplicative factor) scattering vector (m± = (m± 1)/2)

T (0) = (−m+,m−,−m−,m+|0, 0, 0, 0| . . . |0, 0, 0, 0| −m−,m+,−m+,m−)T, (7.240)

with m the same odd positive integer as in (7.239) that satisfies the Haldane criterion
with all T (j) and T (j)

and thus can potentially gap out the two remaining modes.
However, it is physically forbidden, since it represents a non-local scattering from one
edge to the other. It is concluded that each boundary supports a single remaining
chiral mode that is an eigenstate of PHS.
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To understand the nature of the single remaining chiral mode on each boundary,
we use the following local linear transformation of the bosonic fields:

W =

⎛⎜⎜⎜⎝
−m− +m+ 0 0
+m+ −m− 0 0

0 0 −m− +m+

0 0 +m+ −m−

⎞⎟⎟⎟⎠ , m± =
m± 1

2
, (7.241)

with determinant detW = m4. When applied to the non-local scattering vector T (0)

that connects the two remaining chiral edge modes, this gives

T̃ (0) =W−1T (0)

= (0,−1,+1, 0|0, 0, 0, 0| . . . |0, 0, 0, 0|+ 1, 0, 0,−1),
(7.242)

while the matrix K changes under this transformation to

K̃ = diag(−m,m,m,−m). (7.243)

Noting that the representation of PHS is unchanged,

W−1PΠW = PΠ, (7.244)

we may interpret the remaining chiral edge mode as a PHS superposition of a Laughlin
quasiparticle and a Laughlin quasihole. It thus describes a fractional chiral edge mode
on either side of the two-dimensional array of quantum wires. The definite chirality
is an important difference from the case of the fractional Z2 topological insulator
discussed in Section 7.5.5.2. It guarantees that any integer number n ∈ Z layers of this
theory is stable, since no tunnelling vector that acts locally on one edge can satisfy the
Haldane criterion (7.187). For each m, we may thus say that the parafermion mode
has a Z character, as does the SRE phase in symmetry class D.

7.5.5.4 Symmetry classes DIII and C: more fractional superconductors

The construction for classes DIII and C is very similar to that for the cases already
presented. The details can be found in [89]. For class DIII, the edge excitations (and
bulk quasiparticles) of the phase are TRS fractionalized Bogoliubov quasiparticles
that have also been discussed for one-dimensional realizations. (In the latter con-
text, these TRS fractionalized Bogoliubov quasiparticles are rather susceptible to
perturbations [61, 97].)

7.5.6 Summary

In this section, a wire construction was developed to construct models of SRE and
LRE topological phases of two-dimensional quantum matter, so as to yield immediate
information about the topological stability of their edge modes. In doing so, the peri-
odic table for integer topological phases was promoted to its fractional counterpart.
The following paradigms were applied.
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1. Each Luttinger liquid wire describes (spinfull or spinless) electrons. Abelian
bosonization is used.

2. Backscattering and short-range interactions within and between wires are added.
Modes are gapped out if these terms acquire a finite expectation value.

3. A mutual compatibility condition, the Haldane criterion, is imposed among the
terms that acquire an expectation value. It is an incarnation of the statement
that the operators have to commute if they are to be replaced simultaneously by
their expectation values.

4. A set of discrete and local symmetries are imposed on all terms in the Hamil-
tonian. When modes become massive, they may not break these symmetries.

5. The model is analysed in a strong-coupling limit, instead of the weak-coupling
limit in which one derives the renormalization group flows for interactions.

It has become fashionable to write papers in condensed matter physics that take
Majorana fermions as the building blocks of lattice models. Elegant mathematical
results have been obtained in this way, some of which have the added merit of con-
ceptual clarity. However, the elementary building blocks of condensed matter are ions
and electrons, whose interactions are governed by quantum electrodynamics. Majorana
fermions in condensed matter physics can only emerge in a non-perturbative way (i)
through the interactions between the electrons from the valence bands of a material, or
(ii) as the low-energy excitations of exotic quantum magnets. For Majorana fermions
to be observable in condensed matter physics, a deconfining transition must have taken
place—a notoriously non-perturbative phenomenon. One of the challenges that was
confronted in this section was the need to find interacting models for itinerant electrons
with local interactions that support Majorana fermions at low energies and long wave-
lengths. This goal was achieved, starting from non-interacting itinerant electrons, by
constructing local many-body interactions that conserve the electron charge and that
stabilize two-dimensional bulk superconductors supporting gapless Majorana fermions
along their two-dimensional boundaries. This is why strictly many-body interactions
are needed in symmetry classes D, DIII, and C to realize the SRE topological phases
in Fig. 7.11(a, c, e, g, i).
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8.1 Introduction

Classifying and understanding different phases of matter is an important task of con-
densed matter physics. The class of ‘conventional’ symmetry-broken phases is well
understood in terms of Landau’s theory [25]. A paradigmatic example is the Z2

symmetric Ising model with a symmetric (paramagnetic) and a symmetry-broken
(ferromagnet) phase. The two phases can be distinguished by measuring the mag-
netization as a local order parameter. In contrast, topological phases of matter [51] are
less understood and no complete classification is known so far. In these lecture notes,
we are interested in finding schemes that allow us to understand and characterize cer-
tain topological phases of matter. Throughout, we consider systems that are described
by local Hamiltonians (i.e. H =

∑
n hn, with hn acting on sites near n).

Gapped quantum phases of matter (i.e. phases in which the ground state is sep-
arated from the excitation continuum by a finite energy gap) can be defined very
generally in terms of local unitary (LU) transformations [8, 48]. These LU transform-
ation correspond to the application of a finite number of unitary operators that act
only locally on the wavefunction. We say that two gapped ground states are in the
same phase if and only if they can be transformed into each other by LU transform-
ations. Alternatively, we can use the definition that two ground states are in the same
phase if they are connected adiabatically to each other by a continuous parameter
in the Hamiltonian. Using this definition, all states that differ from ‘trivial’ product
states only by local fluctuations, i.e. short-ranged entanglement (SRE) states, are in
the same phase. States that contain non-local quantum correlation, so-called topologic-
ally ordered states like quantum Hall states or gapped spin liquids, exhibit long-range
(LRE) entanglement that cannot be removed by LU transformations. Using this defin-
ition, there exists one trivial (SRE) phase and various different topologically ordered
phases that differ in terms of their LRE from each other. In one-dimensional (1D)
bosonic systems, all gapped ground states have only SRE [8].

Once symmetries are imposed, a much richer variety of phases emerges. In terms
of the LU transformations, this means that when respecting the imposed symmetry,
not all SRE states are in the same phase. One class of states falling into this cat-
egory are the symmetry-breaking states discussed above (e.g. the Ising ferromagnet).
Another recently discovered class are symmetry-protected topological (SPT) phases
[7, 9, 10, 16, 38, 43]. The defining property of SPT phases is that they do not break
a particular symmetry; however, given a certain symmetry constraint, they cannot be
adiabatically connected to a trivial product state. Examples of SPT phases include
topological insulators [20], which can be protected by time-reversal symmetry. For free
fermions, SPT phases are classified in the periodic table for topological insulators and
superconductors [22, 40]. Another example is the Haldane phase [1, 17] in 1D, which
is protected by either time reversal, bond-centred inversion, or the dihedral group of
the spin rotations [38].

The main focus of these lecture notes lies on SPT phases in 1D bosonic systems.
Based on the entanglement properties of 1D systems, we will motivate the matrix prod-
uct state (MPS) representation of ground states. Using the MPS framework, we will
then demonstrate how SPT phases can be classified using projective representations
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of the symmetries. As a concrete example, we will consider a spin-1 chain described
by the Hamiltonian

H = J
∑
j

�Sj · �Sj+1 +D
∑
j

(Szj )
2. (8.1)

The first term is the standard spin-1 Heisenberg model with antiferromagnetic ex-
change interactions. The spin-1 Heisenberg model has a gapped ground state that
does not break any symmetries [17, 18] (i.e. it is in the Haldane phase). The second
term represents a uniaxial single-ion anisotropy. As the parameter D ≥ 0 is tuned, the
system undergoes a phase transition between two gapped phases at D ≈ 1 [6, 11, 45].
In both phases, the ground state has the full symmetry of the Hamiltonian! Thus, the
phase transition cannot be understood in terms of spontaneous symmetry breaking.
With the framework developed in these lectures notes, we will be able to distinguish
the two phases in terms of a topological invariant and identify the Haldane phase as
an SPT phase. Furthermore, we will discuss non-local order parameters that will allow
us two detect the two symmetric phases in numerical simulations.

These notes are structured as follows: In Section 8.2, we start by deriving some
basic concepts of entanglement, including its definition and the area law. We then
introduce MPS and show that these describe efficiently gapped ground states in 1D.
Based on symmetry transformations of MPS, we introduce in Section 8.3 the concept of
SPT phases. Using an intuitive approach by studying the symmetry transformations
of a segment of consecutive sites, we demonstrate the stability of SPT phases. In
Section 8.4, we propose non-local order parameters to detect SPT phases in numerical
simulations. We conclude by summarizing the main result and present a short outlook
in Section 8.5.

8.2 Entanglement and matrix product states

Entanglement is one of the fundamental phenomena in quantum mechanics and implies
that different degrees of freedom of a quantum system cannot be described independ-
ently. Over the past decades, it has been realized that the entanglement in quantum
many-body systems can give access to a lot of useful information about quantum
states. First, entanglement-related quantities provide powerful tools to extract univer-
sal properties of quantum states. For example, scaling properties of the entanglement
entropy help to characterize critical systems [4, 5, 36, 44], and entanglement is the
basis for the classification of topological orders [23, 26]. Second, the understanding
of entanglement has helped to develop new numerical methods to efficiently simulate
quantum many-body systems [41, 47]. In the following, we give a short introduction
to entanglement in 1D systems and then focus on the MPS representation.

8.2.1 Schmidt decomposition and entanglement

Let us consider the bipartition of the Hilbert space H = HL ⊗HR of a 1D system as
illustrated in Fig. 8.1(a), where HL (HR) describes all the states defined on the left
(right) of a given bond. In the so-called Schmidt decomposition, a state |Ψ〉 ∈ H is
decomposed as
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Fig. 8.1 (a) Bipartition of a 1D system into two half-chains. (b) Significant quantum fluctu-
ations in gapped ground states occur only on short lengthscales. (c) 1D area-law states make
up a very small fraction of the many-body Hilbert space but contain all gapped ground states.
(d) Comparison of the entanglement spectrum of the ground state of the transverse field Ising
model (g = 1.5) and a random state for a system consisting of N = 16 spins.

|Ψ〉 =
∑
α

Λα|α〉L ⊗ |α〉R, |α〉L(R) ∈ HL(R), (8.2)

where the states {|α〉L(R)} form an orthogonal basis of HL (HR) and Λα ≥ 0. The
Schmidt decomposition is unique up to degeneracies and for a normalized state |Ψ〉
we find that

∑
α Λ2

α = 1.
An important aspect is that the Schmidt decomposition gives direct insight into the

bipartite entanglement (i.e. the entanglement between degrees of freedom in HL and
HR ) of a state. In particular, only one term contributes to the Schmidt decomposition
if and only if L and R are not entangled. If more than one term is required in the
Schmidt decomposition to express the state, then the state is necessarily entangled.
The relation between the Schmidt decomposition and the entanglement can be made
more concrete. The reduced density matrix

ρR = TrL(|ψ〉〈ψ|) (8.3)

has the Schmidt states |α〉R as eigenstates and the Schmidt coefficients are the square
roots of the corresponding eigenvalues, i.e. ρR =

∑
α Λ2

α|α〉R〈α|R (equivalently for ρL).
The reduced density matrix of an entangled (pure) quantum state is the density matrix
of a mixed state defined on the subsystem. Thus, the entanglement entropy, which is
defined as the von Neumann entropy of the reduced density matrix, measures the
amount of entanglement. In terms of the Schmidt values, it is given by

SE = −
∑
α

Λ2
α log Λ2

α. (8.4)
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The entanglement entropy S is a very useful measure to quantify the amount of en-
tanglement in a system for a given bipartition. Finally, the entanglement spectrum
{εα} [27] is defined in terms of the spectrum {Λ2

α} of the reduced density matrix by
Λ2
α = exp(−εα) for each α.

8.2.2 Area law

A ‘typical’ state in the Hilbert space shows a volume law, i.e. the entanglement entropy
grows proportionally with the volume of the partitions. In particular, it has been
shown in [31] that a randomly drawn state |ψrandom〉 from the Hilbert space of a
system of N sites with on-site Hilbert space dimension d has an entanglement entropy
of S ≈ 1

2N log d− 1
2 for a bipartition into two parts of 1

2N sites.
Ground states |ψ0〉 of gapped and local Hamiltonians follow instead an area law,

i.e. the entanglement entropy grows proportionally with the area of the cut [12]. For a
cut of an N -site chain as shown in Fig. 8.1(a), this implies that S(N) is constant for
N � ξ (with ξ being the correlation length). This can be intuitively understood from
the fact that a gapped ground state contains only fluctuations within the correlation
length ξ, and thus only degrees of freedom near the cut are entangled, as illustrated
schematically in Fig. 8.1(b). A rigorous proof of the area law in 1D is given in [19].
In this respect, ground states are very special states and can be found within a very
small corner of the Hilbert space, as illustrated in Fig. 8.1(c).

In slightly entangled states, only a relatively small number of Schmidt states con-
tribute significantly. This is demonstrated in Fig. 8.1(d) by comparing the largest 20
Schmidt values of an area-law state and a volume-law state for a bipartition of an
N = 16 chain into two half-chains.

As an example of an area-law state, we consider here the ground state of the
transverse field Ising model

H = −
∑
n

σznσ
z
n+1 + gσxn, (8.5)

with σxn and σzn being the Pauli operators and g > 0. The Z2 symmetric model with
a phase transition at g = 1 has two very simple limits. For g = 0, the ground state is
twofold-degenerate and given by the ferromagnetic product state (symmetry-broken),
while at g →∞, the ground state is a product state in which all spins are polarized
(symmetric). For intermediate values of g, the ground states are area-law-type entan-
gled states (except at the critical point). As shown in Fig. 8.1(d) for a representative
example of g = 1.5, the ground state has essentially the entire weight contained in a
few Schmidt states. Generic states fulfilling the area law show similar behaviour, and
thus the above observation provides an extremely useful approach to compress quan-
tum states by truncating the Schmidt decomposition. In particular, we can always
truncate the Schmidt decomposition at some fixed finite χ such that∥∥∥∥∥|ψ〉 −

χ∑
α=1

Λα|α〉L ⊗ |α〉R|
∥∥∥∥∥ < ε, ∀ε > 0, ∀N (8.6)
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This particular property of area-law states is intimately related to the MPS represen-
tation of 1D quantum states, as we will demonstrate in Section 8.2.3.

The situation is very different for a highly entangled (volume-law) random state:
all the Schmidt values are roughly constant for all 2N/2 states and thus only little
weight is contained in the 20 dominant states (assuming an equal weight, we find
∼ 2−N/2 per Schmidt state).

8.2.3 Matrix product states

A generic quantum state |Ψ〉 on a chain with N sites can be written in the following
MPS form [13, 30, 39]:

|Ψ〉 =
∑

j1,...,jN

A[1]j1A[2]j2 · · ·A[N ]jN |j1, . . . , jN 〉. (8.7)

Here, A[n]jn is a χn−1 × χn matrix and |jn〉 with jn = 1, . . . , d is a basis of local states
at site n. We call the indices of the matrices ‘bond’ indices. The matrices at the
boundary, i.e. n = 1 and n = N , are vectors, i.e. χ0 = χN = 1, such that the matrix
product in (8.7) produces a complex number. The superscript [n] denotes the fact that
for a generic state, each site is represented by a different set of matrices.

In order to provide some intuition for the structure of MPS, we demonstrate how
to transform a generic quantum state

|ψ〉 =
∑

j1,j2,...,jN

ψj1,j2,...,jN |j1, j2, . . . jN 〉 (8.8)

into an MPS. This can be done exactly by performing successively Schmidt decom-
positions as shown diagrammatically in Fig. 8.2. This diagrammatic representation, in
which a rank-N tensor is represented by a symbol with N legs, is very useful for rep-
resenting tensor networks and related algorithms. Connecting the legs among tensors
symbolizes a tensor contraction, i.e. summing over the relevant indices.

A[1]
A[1] A[2]Λ[2]

A[1]Λ[1]

β[3...5]

β[2...5]

A[2] A[3] v[4] A[5]

Fig. 8.2 Iterative conversion of a state |ψ〉 given by a rank-N tensor ψi1,...,iN
using successive

Schmidt decompositions in a diagrammatic representations. The horizontal lines represent the
bond (Schmidt indices) α, β, γ, . . . and the vertical lines the physical indices jn ∈ {1, . . . , d}.
Connected lines between tensors denote summation over the corresponding indices (see the text
for details).
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We start by performing a Schmidt decomposition (8.2) of the state |ψ〉 into the
first site and the rest such that

|ψ〉 =
d∑

α1=1

Λ[2]
α1
|α1〉[1]|α1〉[2,...,N ]. (8.9)

The states |α1〉[1] and |α1〉[2,...,N ] form orthogonal bases for the left and right parts,
respectively. The first matrix, A[i]j1

α1 , in the MPS is the matrix relating the left Schmidt
states |α1〉[1] with the local states |j1〉 (describing the local states on the first site) and
is given by A[1]j1

α1 = 〈j1|α1〉[1]. The resulting mixed representation of the state reads

|ψ〉 =
d∑

j1=1

d∑
α1=1

A[1]j1
α1

Λ[2]
α1
|j1〉|α1〉[2,...N ]. (8.10)

We now proceed to the next bond and perform a Schmidt decomposition of the state
such that

|ψ〉 =
d2∑

α2=1

Λ[3]
α2
|α2〉[1,2]|α2〉[3,...,N ]. (8.11)

The second matrix, A[2]j2
α1α2 , then relates the mixed basis states |α1〉[1]|j2〉 with the left

Schmidt states |α2〉[1,2] and is given by A
[2]j2
α1α2 =

[
〈α1|[1]〈j2|

]
|α2〉[1,2]. The resulting

mixed representation of the state reads

|ψ〉 =
d∑

α1=1

d2∑
α2=1

d∑
j1,j2=1

A[1]j1
α1

A[2]j2
α1α2

Λ[3]
α2
|j1, j2〉|α2〉[3,...,N ]. (8.12)

This procedure can now be continued until the right end of the chain is reached. We
choose the last matrix A[N ]jn to relate the states ΛαN

|αn〉[N ] to the local basis |jn〉.
Then it is easy to see that we finally arrive at a representation of the state that has
exactly the form (8.7).

The caveat is that the matrix dimension increases exponentially as we proceed
towards the centre of the chain. However, we can make an approximation by neglecting
the Schmidt states that have very small Schmidt values. For the ground state of the
Ising model discussed above, we can find a very good approximation of the ground
state as an MPS by keeping only a maximal bond dimension of ∼20 with a truncation
error that is of the order of the machine precision (independent of the system size).
The same picture can be generalized to all states that obey an area law. On more
general grounds, it has been proved that ground states of 1D gapped systems can be
efficiently approximated by an MPS [15, 42].
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8.2.3.1 Canonical form

The representation (8.7) is not unique, since an MPS with the transformed matrices

Ã[n]in = XnA
[n]inX−1

n+1 (8.13)

represents the same state. In the following, we will show how to fix this degree of
freedom by introducing a convenient canonical form of the MPS in which the bond
index corresponds to the Schmidt decomposition.

Without loss of generality, we write the matrices A[n]jn as products of χj−1 × χj
complex matrices Γ[n]jn and positive, real, square diagonal matrices Λ[n],

|Ψ〉 =
∑

j1,...,jN

Γ[1]j1Λ[2]Γ[2]j2Λ[2] · · ·Λ[N ]Γ[N ]jN |j1, . . . , jN 〉, (8.14)

as illustrated pictorially in Fig. 8.3(a, b). Let us now motivate the particular choice
(8.14) for the MPS form. The freedom in choosing the MPS can be used to define
a ‘canonical form’ of the MPS, following [49, 50]. As we will see later, the canonical
form has several very useful features. Any bond n defines a bipartition of the system
into sites L = {1, . . . , n} and R = {n+ 1, . . . , N} to the left and right of the bond.

TL
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α α
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Fig. 8.3 (a) Diagrammatic representation of the tensors Γ and Λ. (b) MPS formed by the
tensors Γ and Λ. (c) Definition of the right Schmidt basis states with respect to a partition on a
bond with index α. (d) Condition for the MPS to be in the canonical form. The transfer matrix
TL of (8.17) has been shaded. The upward-pointing triangles are the complex conjugates of

the Γ tensors. (e) If the state is in canonical form, then the dominant left eigenvector of TL

is the ‘identity matrix’ with eigenvalue equal to 1. A similar condition applies for the right

transfer matrix TR.
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From the form of the MPS, we can define a set of χn wavefunctions |α〉[1,...,n] and
|α〉[n+1,...,N ] to the left and right of the bond (see Fig. 8.3(c)) such that the state takes
the form

|ψ〉 =
χ∑
α=1

Λ[n+1]
α |α〉[1,...,n] ⊗ |α〉[n+1,...,N ]. (8.15)

The wavefunctions |α〉L/R are formed by multiplying all matrices to the left and right,
respectively. The MPS representation {Γ[1],Λ[2], . . . ,Γ[N ]} is in canonical form if For
every bond, the set of Schmidt states along with Λ[n] form a Schmidt decomposition
of Ψ. In other words, we must have 〈α′|α〉[1,...,n] = δα′α and 〈α′|α〉[n+1,...N ] = δα′α,
along with

∑
(Λ[n]

α )2 = 1 on every bond. For finite systems, a generic MPS can be
transformed into canonical form by successively orthogonalizing the bonds starting
from either the left or right end of the chain [41]. A great advantage of the canonical
form is that local expectation values can be evaluated by only contracting the tensors
locally by using the orthogonality. Note that the MPS form we obtained above by
applying successive Schmidt decompositions provides naturally the canonical form
with A[n]jn = Λ[n]Γ[n]jn .

8.2.3.2 Infinite MPS

For infinite (N →∞) and translationally invariant systems, the set of matrices on any
given site becomes the same, i.e. Γ[n]j = Γj and Λ[n] = Λ for all integers n. Computing
the overlaps 〈α′|α〉R would appear to require an infinite tensor contraction. For an
infinite MPS, the orthogonality condition can be conveniently expressed in terms of
the transfer matrix TR (illustrated in Fig. 8.3(d)) defined as

TRαα′;ββ′ =
∑
j

Γjαβ (Γjα′β′)∗ΛβΛβ′ , (8.16)

where ∗ denotes complex conjugation [49]. The transfer matrix TR relates the overlaps
defined on bond n with the overlaps defined on bond n+ 1. Given that the right basis
states |β〉[n+1]

R on bond n+ 1 are orthonormal, the states |α〉[n]
R on bond n will also be

orthonormal if T has a dominant right eigenvector δββ′(= 1) with eigenvalue η = 1,
as illustrated in Fig. 8.3(e). For the left set of states, we define an analogous transfer
matrix TL,

TLαα′;ββ′ =
∑
j

ΛαΛα′ Γjαβ (Γjα′β′)∗ (8.17)

which must have a left eigenvector δαα′ with η = 1. These eigenvector criteria are
clearly necessary conditions for all bonds to be canonical; in fact, assuming in addition
that η = 1 is the dominant eigenvalue, they are sufficient.

A state is called pure if the dominant eigenvalue is unique and mixed if it is de-
generate. In the following discussions, we will always assume that the state is pure (in
fact, every mixed state can be uniquely decomposed into pure states). An algorithm
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to explicitly transform an arbitrary infinite MPS to the canonical form involves di-
agonalizing the two transfer matrices TR and TL and is given in [29]. If the infinite
MPS is not translationally invariant with respect to a one-site unit cell, all the above
can be simply generalized by considering a unit cell of L sites that repeats itself; for
example, in the case of a two-site unit cell, the tensors are given by

Γ[2n] = ΓA, Λ[2n] = ΛA,

Γ[2n+1] = ΓB , Λ[2n+1] = ΛB ,
(8.18)

for n ∈ Z. Reviews of MPS as well as the canonical form can be found in [29, 32, 49].
The infinite MPS representation in the canonical form has a number of important

advantages. First, using the properties of the transfer matrices (Fig. 8.3(e)), it is very
convenient to evaluate local expectation values as well as correlation functions. Second,
with the help of efficient algorithms such as the infinite time evolving block decimation
(iTEBD) [49] or the infinite density matrix renormalization group method (iDMRG)
[28], the ground state of a given Hamiltonian can be found in the thermodynamic
limit. A discussion of the two algorithms using the same notation as used in these
lecture notes can be found in [24].

8.2.3.3 Examples of infinite MPS

To become more familiar with the infinite MPS representation, it is instructive to
consider a few concrete examples.

1. Néel state. The state | . . . ↑↓↑↓ . . . 〉 is a product state with a bond dimension
χ = 1 and a local Hilbert space of d = 2. The infinite MPS representation is
given by

Γ[2n],↑ = Γ[2n+1],↓ = 1,

Γ[2n],↓ = Γ[2n+1],↑ = 0,

Λ[2n] = Λ[2n+1] = 1.

Note that since the state is a simple product state, the matrices are actually
simply complex numbers. It is easy to see that a contraction of the infinite MPS
yields the desired Néel state. Furthermore, the corresponding transfer matrices
trivially obey the conditions for the canonical form.

2. Spin-1 AKLT state. Affleck, Kennedy, Lieb, and Tasaki (AKLT) constructed an
S = 1 Hamiltonian for which the ground state has valence bonds between all
neighbouring sites (see Fig. 8.4) [2]. The AKLT Hamiltonian consists of a sum
of projectors and reads

H =
∑
j

�Sj �Sj+1 +
1
3
(�Sj �Sj+1)2, (8.19)
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1

1 1

2

0
2

Fig. 8.4 Diagrammatic representation of the AKLT states. The S = 1 sites (grey circles) are
decomposed into two S = 1

2
that form a singlet with the neighbouring site (ellipses).

where �S are the spin-1 operators. The ground state in the thermodynamic limit
is unique and has a simple (χ = 2) infinite MPS representation

Γ[n],−1 =

√
4
3
σ+, Γ[n],0 = −

√
2
3
σz, Γ[n],1 = −

√
4
3
σ−,

Λ[n] =

√
1
2

(
1 0
0 1

)
.

(8.20)

The state can be shown to be in the canonical form by diagonalizing the
corresponding left and right transfer matrices.

8.3 Symmetry-protected topological phases

8.3.1 Symmetry transformations of MPS

For the study of SPT phases, it will be essential to understand how symmetry oper-
ations act on MPS. Let us consider an on-site symmetry operation that is applied to
all sites, i.e.

|ψ̃〉 =

[⊗
n

un(g)

]
|ψ〉, (8.21)

where un(g) is acting on site n with g being an element of the symmetry group
G under which the state |ψ〉 is invariant. An example of such symmetry is the Z2

symmetry
⊗

n σ
x
n of the transverse field Ising model (8.5). In the MPS formulation,

the transformation corresponds to contracting the symmetry operation to all physical
legs as shown in Fig. 8.5(a). In order for a state to be invariant, the overlap of the
original state with the transformed state has to be of unit modulus, i.e. |〈ψ̃|ψ〉| = 1.
Thus, the mixed transfer matrices of the original and transformed MPS must have a
dominant eigenvector X with eigenvalues |η| = 1. The right mixed transfer matrix has
the form

TRαα′;ββ′(g) =
∑
n

(∑
n′

unn′(g)Γn
′

αβ

)
(Γjα′β′)∗ΛβΛβ′ (8.22)
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Fig. 8.5 (a) Transformation of an MPS under an on-site symmetry g applied to all sites. (b)
Representation of a symmetry operation in terms of the MPS. (c) Mixed transfer matrices of
the original and transformed states.

and fulfils ∑
β,β′

TRαα′;ββ′(g)Xββ′ = ηXαα′ . (8.23)

Analogously, we find a similar relation for the left mixed transfer matrix TL(g). See
also the diagrammatic representation in Fig. 8.5(b). If |η| < 1, the overlap between
the original and transformed wavefunctions decays exponentially with the length of
the chain and |ψ〉 is thus not invariant.

In [33], it was shown that for an MPS in canonical form, the matrices Γj transform
under symmetry operations g as∑

j′

ujj′(g)Γj
′
= eiθgU†(g)ΓjU (g), (8.24)

with a diagrammatic representation as shown in Fig. 8.5(c). Here U(g) is a unitary
matrix that commutes with the Λ matrices, and eiθ(g) is a phase.1 It is clear that this
is a sufficient condition for the mixed transfer matrices to have a dominant eigenvalue
of unit modulus. To show that it is a necessary condition, one has to apply the Schwarz
inequality and use the canonical form of the transfer matrix for the original state [33].
The matrices U(g) form a χ-dimensional projective representation of the symmetry
group of the wavefunction and eiθ(g) is a linear (1D) representation [38]. The term
‘projective’ means that the U(g) are a representation of the symmetry modulo a phase.
As discussed in the following subsections, the fact that the U(g) can be projective
representations of the symmetries is key to understanding SPT phases. Note that the
matrices U(g) are actually a representation of the symmetry operations in the basis
of Schmidt states (this can be seen by going back to the definition of the canonical
form).

1 As U(g) commutes with Λ, it also commutes with the reduced density matrices ρL and ρR.
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Similar relations can be derived for symmetries that are not on-site operations.
Under a time-reversal transformation, Γj is transformed to (Γj)∗ (complex conjugate)
on the left-hand side of (8.24) (including possible spin rotations). In the case of inver-
sion symmetry, Γj is transformed to (Γj)T (transpose) on the left-hand side of (8.24).
We refer to [38] for further details.

8.3.2 Classification of projective representations

Let us assume a group G with group elements gi ∈ G. Then the matrices U(gi) form
a projective representation of G if

U(gi)U(gj) = ω(gi, gj)U(gigj), (8.25)

where ω(gi, gj) ∈ U(1) represent the so-called factor set. Thus, a projective represen-
tation is a linear representation modulo a U(1) phase factor. In the case that all phase
factors are unity, then the representation is a linear representation of the group. Be-
cause of the associativity of the group (i.e. the elements of G fulfil gi(gjgk) = (gigj)gk),
the factor set must satisfy

ω(gj , gk)ω(gi, gjgk) = ω(gigj)ω(gigj , gk). (8.26)

Transforming the matrices as Ũ(gi) = β(gi)U(gi), β(gi) ∈ U(1) yields a new factor set

ω̃(gi, gj) =
β(gigj)

β(gi)β(gj)
ω(gi, gj). (8.27)

Two projective representations Ũ(g) and U(g) that are related by such a transform-
ation are considered to be equivalent and belong to the same class.

It was Isaac Schur who derived in 1904 a classification of different types of project-
ive representation using so called ‘Schur multipliers’ to label different classes. These
correspond to the second cohomology group H2(G,U(1)) of a group G. Instead of dis-
cussing the details of the proof, we refer for a general introduction to [21] and consider
some simple examples.

1. Group ZN . The generators of the group are exp(iπ/N) rotations and the group
elements are {1, R,R2, . . . , RN}. For a projective representation of the group, we
can assign an arbitrary phase such that UN (R) = exp(iφ). However, a simple re-
scaling U(R) by exp(iφ/N) can always transform the projective representation to
a linear one. Thus, this group has only one class and all projective representation
can be transformed into a linear one.

2. Group D2. This group is generated by π rotations Rx and Rz about two or-
thogonal axes. Clearly, R2

x = R2
z = 1 and RzRx = RxRz, and thus the group

elements are {1, Rx, Rz, RxRz}. The group D2 has two different classes of pro-
jective representations, which can be distinguished by the gauge-invariant phase
factor

U(Rx)U(Rz)U−1(Rx)U−1(Rz) = exp(iφ),
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with φ = 0, π. Clearly, as each element occurs with its inverse, the phase of the
commutator cannot be changed by rephasing the operators.

Both cases can be realized using a representation of the rotations in terms
of spin operators by U(Rx) = exp(iπSx) and U(Rz) = exp(iπSz). The S = 1
representation with

Sx =
1√
2

⎛⎝0 1 0
1 0 1
0 1 0

⎞⎠ , Sz =

⎛⎝−1 0 0
0 0 0
0 0 1

⎞⎠ (8.28)

is a linear (φ = 0) representation. The S = 1
2 spin matrices

Sx =
1
2

(
0 1
1 0

)
, Sz =

1
2

(
1 0
0 −1

)
(8.29)

form a projective (φ = π) representation. This can be seen easily since U(Rx) =
σx and U(Rz) = σz anticommute (σx and σz are the Pauli matrices).

8.3.3 Symmetry fractionalization

We now come to the core of these lecture notes and define SPT phases in 1D bosonic
systems that are protected by an on-site symmetry group G. The classification scheme
is based on the classification of projective representations in terms of the second co-
homology classes H2(G,U(1)) [9, 10, 38, 43]. While the general proof of the existence
of SPT phases is given in terms of a classification of fixed-point wavefunctions of LU
transformations [9, 10, 43], we follow here a more intuitive approach.

We consider systems in which the on-site representation is linear (e.g. integer spin
systems). We show that a characteristic symmetry fractionalization occurs when a
symmetry operation g ∈ G is applied to the dominant Schmidt states of a segment S
of length �� ξ that we cut out of the ground state as shown in Fig. 8.6(a, b). Using the
locality of the ground states, we show that the symmetry operations act non-trivially
only on the boundary of the segment. We then argue that the representation of the
symmetry actions onto the boundaries provides exactly the projective representations
U(g) as defined in the preceding subsections. As the two boundaries can be arbitrarily
far away from each other, the class of the projective representation cannot be changed
unless a phase transition occurs. Thus, we can use it to define a phase! We define an
SPT phase as a phase in which the boundary of the segment transforms projectively
under a symmetry operation g while the bulk is in a linear representation. Clearly, if
the necessary symmetries are broken, the phase is no longer well defined.

We now discuss the details of the argument and relate it to the MPS formula-
tion. Starting from a ground state |ψ0〉 of a gapped Hamiltonian, we partition the
system into regions ESE as shown in Fig. 8.6(a). The Schmidt decomposition for this
bipartition is given by

|ψ0〉 =
∑
γ

Λγ |γ〉E |γ〉S . (8.30)
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Fig. 8.6 (a) Partition of an infinite quasi-1D system into a segment S and an environment E.
The segment S is a finite region of the system chosen to be large compared with the correlation
length ξ. The Schmidt states on the segment of a ground state |ψ0〉 are decomposed into
tensor products of the left (α) and right (β) parts. (b) Symmetry operations acting on the
dominant Schmidt states of the segment S can be represented in terms of operators acting on
the boundaries. (c) Given that |ψ0〉 is an infinite MPS formed by the χ dimensional matrices
{Γj , Λ}, the contraction of the matrices yields the χ2 dominant Schmidt states on the segment.
(d) The Schmidt states on the segment transform under symmetry operations by local unitary
transformations acting on the boundaries. These are the (projective) representations of the
symmetries as defined in (8.24).

Here |γ〉E/S are the Schmidt states. A crucial point is that if the width � of the segment
is large compared with ξ, then the fluctuations across the left cut should be independent
of the fluctuations across the right cut. The resulting Schmidt decomposition then has
a tensor product structure for the important (dominant) Schmidt states. Now we label
the left and right fluctuations by α and β and replace the Schmidt index γ by the pair
γ = (α, β). Using Λγ = ΛLαΛRβ and |γ〉E = |α〉L ⊗ |β〉R, we have

|ψ〉 =
∑
α,β

ΛLαΛRβ |α〉L|αβ〉S|β〉R, (8.31)

as illustrated in Fig. 8.6(a). In this decomposition, we can think of the indices α
and β as labelling the local fluctuations at the left and right of the segment. In each
Schmidt state |αβ〉S, the expectation values of any local operator have some particular
spatial dependence near the ends of the chain, depending on α and β, but this decays
exponentially to the ground state away from the ends. Therefore, it is possible to
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transform between these states by using operators defined on just the ends. A special
case is the effective representations of symmetries in terms of operators U(g) at the
ends of the segments as illustrated in Fig. 8.6(b).

The above argument becomes more transparent when the states are represented
as MPS. With the definition of the canonical form, the states |αβ〉S of a segment are
given by

|αβ〉S =
∑
{ji}

(
Γj1ΛΓj2 · · ·ΛΓj�

)
αβ
|j1, j2, . . . , j〉 (8.32)

as shown in Fig. 8.6(c). Here we assume that the state |ψ0〉 is given as an infinite
and translationally invariant MPS. When � is large compared with the correlation
length ξ, these states are nearly orthonormal, i.e. 〈α′β′|Sαβ〉S ∼ δα′αδβ′β . In this
limit, |αβ〉S are the Schmidt eigenstates of the segment. If we transform the state
using a symmetry operation g, then the matrices transform according to (8.24). As
all unitaries U(g) cancel each other with the bulk, only those at the two boundaries
remain and we obtain the form shown in Fig. 8.6(d). Now, the two matrices U(g) and
U†(g) are the representations of the symmetry action in terms of the boundaries and
thus exactly those we introduced above. The phase factors eiθ(g) sum up to an overall
phase (which in fact characterizes different phases as long as translational invariance
is preserved). Assuming the continuous change of the wave function, the class of the
projective representation {U(g)} of g ∈ G cannot be changed locally, and thus it is
‘stable’ as long as the correlation length remains finite. This is why SPT phases are
stable as long as the symmetry is unbroken!

In a closely related way, SPT phases can be defined in the presence of symmetries
that do not have a simple on-site representation. Examples of symmetries are inversion
and time-reversal symmetries and combinations thereof. We refer to [9, 10, 35, 38, 43]
for details.

Note that the stability relies on the linear on-site representation of the symmetry.
If a model allows for local fluctuations of the representations (e.g, by mixing integer
and half-integer representations of the spin-rotation symmetry), then the SPT phase
can be adiabatically connected to a trivial phase [3].

8.3.4 Spin-1 chain and the Haldane phase

We will now illustrate the main ideas of the classification of SPT phases by discussing
a specific example, namely the spin-1 chain described by the Hamiltonian

H = J
∑
j

�Sj · �Sj+1 +D
∑
j

(Szj )
2. (8.33)

As already discussed in the introduction, the first term is the standard spin-1 Heisen-
berg model with antiferromagnetic exchange interactions that stabilizes the Haldane
phase [17, 18]. When the single-ion anisotropy D ≥ 0 is tuned, the system undergoes
a phase transition between two gapped symmetric phases at D ≈ 1 [6, 11, 45]. The
‘Haldane’ phase at small D is an SPT phase and cannot be adiabatically connected to
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any product state as long as we preserve time reversal, bond-centred inversion, or the
dihedral group of the spin-rotation symmetry [16, 38]. It has been shown numerically
that the Haldane phase is adiabatically connected to the AKLT state |ψAKLT〉. The
so-called ‘large-D’ phase is adiabatically connected to a simple product state

|ψlarge D〉 = · · · |0〉|0〉|0〉 · · · ,

which is the ground state of the Hamiltonian for D →∞. As the phase is adiabatically
connected to a simple product state, we refer to the large-D phase as the trivial phase.

We now use the two simple representatives |ψAKLT〉 and |ψlarge D〉 to characterize
the two phases. Besides many other symmetries, the Hamiltonian (8.33) has a D2

on-site symmetry. The D2 symmetry is a subgroup of the U(1) � Z2 spin-rotation
symmetry, namely the Hamiltonian is invariant under rotation of all spins continuously
about the z axis and π rotations about the x axis. Clearly, the on-site representation
of the D2 in terms of the spin-1 degrees of freedom is a linear one. Let us now analyse
how the MPS representation (8.20) of |ψAKLT〉 transforms under the D2 symmetry.
Using (8.24) with gk being the π rotation about the x and z axis, we find that

U(Rx) = σx, U(Rz) = σz

and θ = π (To arrive at this result, one can simply apply the on-site symmetry
operations to the MPS). The representation of D2 is a projective one with the gauge-
invariant phase factor U(Rx)U(Rz)U†(Rx)U†(Rz) = −1. The MPS representation of
|ψlarge D〉 is a simple product state of matrices in the |0〉 state. Thus, the MPS
transforms trivially under the D2 rotations:

U(Rx) = 1, U(Rz) = 1,

with U(Rx)U(Rz)U†(Rx)U†(Rz) = 1 and θ = 0. As argued above, these phase factors
characterize the two phases, since they cannot be changed unless the symmetry is
broken or the system undergoes a phase transition.

8.4 Detection

The definitions in the previous section tell us exactly what kind of topological phases
exist in 1D bosonic systems and how to classify them. They do not, however, give us
a direct method to detect different phases. Here we discuss some practical ideas about
how to detect SPT phases in numerical simulations.

8.4.1 Degeneracies in the entanglement spectrum

In [38], it is pointed out that topologically non-trivial phases must have degenera-
cies in the entanglement spectrum. This is, all eigenvalues of the reduced density
matrices ρL and ρR for the bipartition of the system into two half-chains are de-
generate. To see this, let us assume that the ground state is represented as an MPS
and is symmetric under a symmetry group G. Using (8.24), we find the symmetry
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representation U(g) in terms of the auxiliary indices that commutes with the re-
duced density matrices. If the U(g) for g ∈ G form a projective representation of
the symmetry group, we can find a set of non-commuting elements such that, for
example, U(gi)U(gj)U(gi)†U(gj)† = exp(iφ). The non-trivial commutation relations
require that the irreducible representations have dimensions larger than 1, which
yields degeneracies in the spectrum of ρL and (ρR). For example, if φ = π (which
is the case in the Haldane phase), then the spectrum is doubly degenerate, since ρL

and ρR commute with the two unitary matrices Ux and Uz, which anticommute among
themselves.

8.4.2 Extraction of projective representations from the mixed transfer
matrix

The existence of degeneracies in the entanglement spectrum is a necessary condition
for non-trivial cohomology classes. However, this does not distinguish among various
non-trivial topological states (when there is more than one).

Let us now show how to directly obtain the projective representations U(g) with
g ∈ G for a given infinite MPS state.

As we learned in Section 8.3, the matrices U(g) tell us how the Schmidt states
transform under the symmetry operation g. Thus, we can obtain all (projective) rep-
resentations from the overlap of the Schmidt states with its symmetry transformed
partners by

Uββ′(g) = 〈β|R

⎛⎝⊗
j

uj(g)|β′〉R

⎞⎠,
where uj(g) are the linear on-site representations and |β〉R are the Schmidt states
describing the right half-chain. This overlap, represented in terms of an MPS in the
canonical form, is shown in Fig. 8.7. In particular, it corresponds to multiplying infin-
itely many mixed transfer matrices TR(g) and hence only the dominant eigenvector
Xββ′ remains. Clearly, as the state is symmetric under g, the dominant eigenvalue η

Γ*Λ Γ*Λ Γ*Λ Γ*Λ Γ*Λ Γ*Λ Γ* Λ Γ* Λ

Γ Λ Γ Λ Γ Λ Γ Λ Γ Λ Γ Λ Γ Λ Γ Λ

u(g) u(g) u(g) u(g)

U(g)

= eiNθ(g)

TR(g) TR(g) TR(g) TR(g) TR TR TR TR

Fig. 8.7 Overlap of Schmidt states |α〉R with its symmetry-transformed partners. If the chain
is assumed to be very long, then the overlap can be expressed in terms of the eigenvector X
corresponding to the largest-magnitude eigenvector |η| = 1 of the mixed transfer matrix (filled
grey circles). The right boundary yields an overall phase factor exp iNθ(g), which we ignore
here (see the text for details).
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of the generalized transfer matrix TR(g) is of unit modulus. On the other hand, we
can apply the transformation (8.24) to each transformed matrix and see that only the
U(g) at the left end remains. Thus, we can read off that

Uββ′(g) = Xββ′ . (8.34)

Here we normalize X such that XX† = 1 and ignore a constant phase factor that
results from the right end. Thus, the U(g) matrices can be obtained by simply finding
the dominant eigenvector of the mixed transfer matrix TR(g). Note that if the infinite
MPS is not obtained in the canonical form, we need to multiply the right-hand side by
the inverse of the eigenstate of the transfer matrix. Once we have obtained the U(g) of
each symmetry operation g ∈ G, we can read off the factor set and hence determine in
which SPT phase the state is. In a similar way, SPT phases stabilized by time-reversal
or inversion symmetry can be determined (see [37] for more details).

A useful procedure to detect SPT phases numerically from a microscopic Ham-
iltonian is to first use the iTEBD or iDMRG algorithm to find the infinite MPS
representation of the ground state. The projective representations of the symmetries
and thus the characterizing factor set can be obtained by diagonalizing the mixed
transfer matrices. This procedure is demonstrated by a simple Python program [34].

8.4.3 String order parameters

The method demonstrated above is very useful to detect SPT phases using MPS-
based algorithms. It is, however, not practical for Monte Carlo simulations or in any
experimental setup. For this, we will show in this subsection how to derive non-local
order parameters that detect SPT phases.

Pérez-Garćıa et al. [33] showed that the string order parameter that was originally
defined for Z2 × Z2 symmetric spin chains [11],

Sαstr ≡ lim
|j−k|→∞

〈ψ0|Sαj exp

⎛⎝iπ ∑
j≤l<k

Sαl

⎞⎠Sαk |ψ0〉,

can be generalized to systems with other symmetry groups. The generalized form for
a state that is invariant under the symmetry operations u(g) reads

S(g,OA, OB) = lim
→∞

〈ψ0|OA(1)

⎛⎝−1∏
j=2

uj(g)

⎞⎠OB(�) |ψ0〉. (8.35)

The non-vanishing of this expression for generic operators only means that the state is
symmetric, but does not distinguish among topologically distinct states. For example,
the Z2 symmetric Ising paramagnet (8.5) has a non-vanishing string order with OA =
OB = 1 and u(g) = σx, even though it does not represent any non-trivial SPT phase!
Nevertheless, we will now show that if the operators OA(1) and OB(n) are chosen
appropriately, this order parameter can distinguish certain topological states. Besides
the necessary condition of the state being symmetric under g, there is a second more
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Fig. 8.8 Diagrammatic derivation of the string order S for a wavefunction that is symmetric
under an internal transformation g and represented by an MPS in canonical form. (a) String
order involving a segment of transformed sites terminated by operators OA and OB . (b) The
matrices Γj transform according to (8.24) and all matrices U and U† vanish except those at the

edges. (c) Using the properties of the transfer matrices (defined in the text), the expectation

value in (8.35) can be simplified for long segments.

refined condition for when the string order is non-zero, which can distinguish them.
For example, the string order defined by OA = OB = Sz vanishes in the large-D phase.
Why does this occur even though the state is symmetric?

We will now closely follow a discussion given in [37] and show that (8.35) can dis-
tinguish certain SPT phases because of a selection rule. Intuitively, the string order
corresponds to calculating the overlap between the wavefunction with g applied to �
consecutive sites and the wavefunction itself. Since g is a symmetry of the wavefunc-
tion, it does not change anything in the bulk of this segment and the overlap should
not vanish. A diagrammatic representation of the string order is given in Fig. 8.8(a).
If we represent the symmetry that is sandwiched in the middle using (8.24) and ignore
the overall phase factor eiθ, we obtain the expression that is represented diagram-
matically in Fig. 8.8(b). If � is large, then the part in between the U(g) and the U†(g)
is a product of orthogonal Schmidt states of the segment, yielding a product of delta
functions δαα′ on the left and δββ′ on the right (compare Fig. 8.8(c)). That is, the
string order is equal to the product

S(g,OA, OB) =
{
tr
[
ΛŌAΛU(g)

]} {
tr
[
ΛŌBΛU∗(g)

]}
, (8.36)
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where

ŌAββ′ =
∑
α

TLαα;ββ′(OA), ŌBα′α =
∑
β

TRαα′;ββ′(OB), (8.37)

with the generalized transfer matrices as defined in (8.22). The product (8.36) is
non-zero unless at least one of the two factors is equal to zero. Whether the factors
vanish depends on the symmetry of the operators OA(1) and OB(n) and can be seen
as a selection rule for string order. Such selection rules exist only in the presence of
additional symmetry. Thus, suppose that there are two symmetry operations gj and gk
that commute but U (gj)U (gk)U†(gj)U†(gj) = eiφ. We consider the string correlator
S(gj , OA, OB) and focus on the left end of the interval. The operator OA can be
chosen to have a particular quantum number under gk, i.e. u(gk)OAu†(gk) = eiσOA.
Then a short calculation shows that ŌA transforms in the same way under U(gj), i.e.
U(gj)ŌAU†(gj) = eiσŌA. It follows that

tr
[
ΛŌAΛU†(gj)

]
= tr

[
U(gk)ΛŌAΛU†(gj)U†(gk)

]
= ei(σ−φ) tr

[
ΛŌAΛU†(gj)

]
.

(8.38)

Thus, we obtain a string order selection rule: the string order parameter vanishes if
σ �= φ. Without the second symmetry Σb, the string order would not vanish. Hence,
a non-zero string order in a state (though intuitively surprising) is actually not so
unusual; it is the vanishing of a string order that is the signature of a topological
phase. Note that the string order might accidentally vanish (or become very small) at
some points even in a phase where σ = φ. In that case, one would have to find different
operators OA and OB to distinguish the phases.

Note that the string order is not general, in that there are SPT phases that cannot
be detected by this approach. First, there are SPT phases protected by non-on-site
symmetries, for which this approach obviously fails. Second, more complex on-site
symmetries exist that cannot be detected using simple string order parameters. Non-
local order parameters that can detect every possible SPT phase can be found in [37].

The string order for the spin-1 Heisenberg chain can, for example, be derived simply
in this way. Consider the Heisenberg chain with the symmetries Rx = exp(iπSx) and
Rz = exp(iπSz). Then the selection rule implies that the string order vanishes in the
trivial phase if one of the operators OA or OB is odd under π rotations about the
x axis. The string order vanishes in the non-trivial phase if one of these operators is
even (since Uz is odd under flips about the x axis in this phase). Thus, the string
order S(Rz,1,1) vanishes in the non-trivial (φ = π) phase and S(Rz, Sz, Sz) does
not, while the situation is reversed in the trivial (φ = 0) phase. It is a nice exercise
to derive the value of the string order for the AKLT state, which is known to be
S(Rz, Sz, Sz) = 0.44444.
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8.5 Summary

In these lecture notes, we first introduced some basic concepts of entanglement and
discussed the area law for ground states in 1D. We then derived the MPS represen-
tation and showed that these describe 1D ground states efficiently. Starting from the
MPS transformation operations, we introduced the concept of SPT phases. Using an
intuitive approach by studying the symmetry transformations of a segment of consecu-
tive site, we demonstrated the stability of SPT phases. Finally, we proposed methods
to detect SPT phases in numerical simulations.

While we discussed here the basics of 1D bosonic SPT, there exist a large number
of generalizations. For example, based on fractionalization of symmetry operators, the
classification can be extended to fermionic models. Using the concept of symmetry
fractionalization, it can for example be shown that the Z classification of 1D topo-
logical superconductors breaks down to Z8 in the presence of interactions [14, 46].
Recently, there have been significant advances in understanding SPT phases in higher
dimensions. In particular, it has been shown that SPT phases in higher dimensions
can be classified by higher-order cocycles Hn(G,U(1)) [7].
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[39] Rommer, S. and Östlund, S. (1997). Class of ansatz wavefunctions for one-
dimensional spin systems and their relation to the density matrix renormalization
group. Phys. Rev. B , 55, 2164–2181.

[40] Schnyder, A. P., Ryu, S., Furusaki, A., and Ludwig, A. W. W. (2008). Classifi-
cation of topological insulators and superconductors in three spatial dimensions.
Phys. Rev. B , 78, 195125.
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9.1 Introduction

These lecture notes attempt to give a pedagogical account of the basic physics of
Majorana bound states and the topological superconductors that host them. They
introduce the basic concepts as well as possible experimental realizations, emphasiz-
ing one-dimensional systems, upon which much of the current experimental activity
is focused. In writing these notes, we have preferred simple arguments and explicit
derivations that illustrate the main points rather than the theoretically most pleasing
or general approach. This is emphatically not a review, and the referencing is not
meant to be complete or to accurately reflect the development of the field. Much more
complete lists of references can be found in the original literature [1–4].

9.1.1 Motivation

Bosons are frequently their own antiparticles. Quite distinctly, however, no elemen-
tary fermion is known to have this property. A long time ago, Majorana developed
a theoretical description of fermions that are their own antiparticles [5]. Ever since,
there have been attempts to find such particles in nature, with neutrinos being the
most likely candidate [6]. These experiments typically search for neutrinoless double-β
decays (Fig. 9.1). In a β decay, a neutron decays into a proton, an electron, and a
neutrino. In a neutrinoless double-β decay, two neutrons would be decaying into two
protons and two electrons without emitting any neutrinos. A neutrinoless double-β
decay is only possible when the neutrino is its own antiparticle and hence a Majorana
fermion. Indeed, when a particle is its own antiparticle, creating and annihilating this
particle is in some sense the same process. Then, the neutrino virtually emitted by one
neutron can be absorbed in the β decay of the other neutron, with no real neutrino
being created in the process. To date, no experiment has convincingly detected such
a neutrinoless double-β decay.

In these notes, we are concerned with Majorana bound states. Unlike the particles
that Majorana envisioned, these do not have any dynamics of their own in that they
do not possess a dispersion as a function of a momentum quantum number. But they
do share the property that annihilating and creating these excitations is described by
the same operator:

γ = γ†, (9.1)

n

n

W –
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ve

Fig. 9.1 Double-β decay is only possible when neutrinos are their own antiparticles. Then, the
two neutrinos that are virtually emitted by the two neutrons can mutually annihilate.
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i.e. γ is a Hermitian operator. As these bound states do not have any dynamics of
their own, we can simply label them as γj , with j = 1, 2, 3, . . ., where j enumerates,
say, their locations. In a way, these condensed matter Majoranas are even more exotic
and interesting than their high-energy counterparts. This is because of two of their es-
sential properties. First, spatially isolated Majorana bound states have zero excitation
energy, while non-Majorana excitations are separated by a finite energy gap. Thus,
the existence of isolated Majorana bound states necessarily implies that the many-
body ground state of the system is multiply degenerate. These degeneracies are highly
non-local in that each twofold degeneracy of the ground state is associated with the
existence of two Majorana bound states. Second, their quantum statistics turns out to
be neither bosonic nor fermionic but rather of a new type called non-Abelian quantum
statistics. When exchanging (also termed braiding) two Majorana bound states, the
many-body state of the system neither remains unchanged (as for bosons) nor is it
multiplied by a minus sign (as for fermions) nor even multiplied by a general phase fac-
tor (as for Abelian anyons). Instead, it undergoes a unitary rotation in the degenerate
ground-state subspace. As is typical for rotations in higher dimensions, these unitary
transformations within the ground-state manifold generally do not commute—hence
the name non-Abelian statistics.

It is these two properties that make Majoranas attractive building blocks for
topological quantum information processing [7, 8]. In his seminal work [7], Kitaev en-
visioned encoding quantum information within the degenerate ground-state manifold
associated with the Majoranas and processing this information by means of braiding
operations. Recall that the ground-state degeneracy associated with the Majoranas is
robust as long as the Majoranas remain spatially isolated. This implies in particular
that this degeneracy remains unaffected by local perturbations of the system, such
as electric or magnetic fields, and that there are no relative dynamical phases that
spoil the phase relations between different components of the many-body wavefunc-
tion within the ground-state manifold—at least as long as the fields vary adiabatically
in time on the scale of the gap. This robustness to perturbing electric and magnetic
fields can be thought of intuitively as a consequence of the Majoranas being their
own antiparticles. Such particles can carry neither charge nor spin, since both would
reverse sign for the antiparticle, and are thus unaffected by external fields.

The insensitivity to fields leads to a high degree of (topological) protection of the
encoded quantum transformation against decoherence. But it also means that these
fields cannot be used to manipulate this information. Instead, one hopes to use braid-
ing operations of the Majorana bound states to manipulate the quantum information.
Because of their non-Abelian statistics, such braiding operations effect unitary op-
erations within the degenerate ground-state manifold and thus manipulation of the
encoded quantum information. Just as the information storage is topologically pro-
tected, so is this strategy of information processing. Indeed, the effect of the braiding
operation is insensitive to the specific geometry of the exchange path but depends
only on its topology, i.e. the fact that we exchange two of the Majoranas.

Let us briefly address two concerns that one might have about this scheme. The
first is simple: How does one braid the Majoranas given that they are insensitive to
magnetic and electric fields? While the energy of the Majorana bound state is indeed
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insensitive to electric and magnetic fields, the position of the bound state is not! This
is because the bound state is usually localized near a defect of the underlying phase,
such as a domain wall or a superconducting vortex, and these defects can be moved by
the application of electric or magnetic fields. The second concern turns out to be more
serious: For a quantum computer to be universal, braiding operations must be able
to implement any possible unitary transformation within the ground-state manifold.
This is actually not the case for Majorana bound states. Thus, building a universal
quantum computer based on Majoranas requires one to perform some operations in
ways that are not topologically protected. Nevertheless, it turns out that one may
still gain significantly from performing only a subset of operations in a topologically
protected manner.

Above, we introduced the creation and annihilation operators associated with
Majorana bound states through (9.1). In fact, any ordinary fermionic system can
be discussed in terms of such operators. To see this, just note that we can always
decompose conventional fermionic operators cj (satisfying the anticommutation rela-
tions {ci, cj} = {c†i , c

†
j} = 0 and {ci , c

†
j} = δij) into their Hermitian and anti-Hermitian

parts,

cj =
1
2
(γ2j−1 + iγ2j), (9.2)

just as complex numbers can be decomposed into their real and imaginary parts (the
factor of 1

2 is a convention). Here, all γj are Hermitian operators, satisfying γj = γ†j ,
and we have written the anti-Hermitian part of cj as iγ2j . Expressing the γj in terms
of the original fermion operators by inverting (9.2), one readily finds that the γj satisfy
the Majorana anticommutation relations

{γi, γj} = 2δij . (9.3)

If we can discuss any fermionic system in terms of Majorana operators, what is so spe-
cial about them? The answer is twofold. First, we will be concerned with situations in
which the Majorana operators are eigenoperators of the system. In a generic fermionic
system, the Majorana operators introduced through (9.2) are not eigenoperators. Sec-
ond, the Majoranas introduced in this fashion do not correspond to spatially isolated
bound states of the system. In contrast, the spatial isolation is absolutely essential
for all the special properties of the Majorana bound states that we discuss in these
lecture notes.

The Majorana anticommutation relation can be used to amplify the difference
between Majoranas on the one hand and fermions and bosons on the other. Equation
(9.3) implies that (γ†j )

2 = 1. Thus, creating two Majoranas of the same kind brings the
system back to the state it started from. This is of course eminently reasonable for a
particle that is its own antiparticle—the second Majorana simply annihilates the first.
On the other hand, this is very different from bosons or fermions. Fermions satisfy the
Pauli principle, which implies that conventional fermionic operators square to zero.
Adding two bosons to some (Fock) state by multiplying it by the square of a boson
creation operator takes the system into a state that is orthogonal to the original one.
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There have recently been numerous experiments that have provided possible evi-
dence for Majorana bound states [9–17]. Many of these experiments are based on
one-dimensional electron systems coupled to conventional s-wave superconductors.
These notes focus on this class of systems. While there is substantial reason to be
optimistic, the interpretation of many of these experiments is currently still under de-
bate. For this reason, we will refrain from a detailed discussion of these experiments.
Instead, we aim at providing the background knowledge required for understanding the
experimental systems and the Majorana signatures that they are based on, allowing
readers to make their own judgement.

These lecture notes are organized as follows. The remainder of this introduction will
be concerned with heuristic considerations where one might reasonably look for Ma-
jorana bound states. Section 9.2 is concerned with simple model systems that exhibit
Majorana bound states. We will focus on one-dimensional systems where Majoranas
are associated with domain walls between topological and non-topological supercon-
ducting phases. While these models seem rather removed from experiment at first,
it is now clear that they can be effectively realized in experimentally relevant sys-
tems. This is discussed at length in Sections 9.3, 9.4, and 9.5, which are concerned
with proximity-coupled topological insulator edges, semiconductor quantum wires, and
chains of magnetic adatoms, respectively. Section 9.6 discusses how to manipulate Ma-
jorana bound states and derives their non-Abelian statistics explicitly in a particularly
simple setting. Section 9.7 discusses some popular techniques for detecting Majorana
bound states experimentally. We conclude in Section 9.8.

9.1.2 Heuristic arguments

Let us start with a heuristic argument where we might be looking for Majorana exci-
tations that are their own antiparticle, i.e. whose creation and annihilation operators
satisfy γ = γ†. The building blocks at our disposal in a conventional metal or semi-
conductor material are electrons and holes, which can be viewed as particles and
antiparticles. An excitation that is its own antiparticle should therefore consist in
equal parts of electrons and holes. One such excitation in the solid state is the ex-
citon, a bound state of an electron in the conduction band and a hole in the valence
band. However, excitons are bound states of two fermions. These are created by prod-
ucts of two fermionic operators, and can thus be approximately described as bosonic
excitations.

In order to realize Majorana excitations, we therefore need to consider operators
satisfying γ = γ† that are linear in the original fermionic operators. Such an operator
consisting in equal parts of electrons and holes is1

γ = c+ c†. (9.4)

Written in this form, it becomes clear that we should be looking for Majorana excita-
tions in BCS superconductors. As is familiar from the BCS theory of superconductivity,

1 This is obviously not unique. We could also consider operators such as i(c − c†) or eiϕc + e−iϕc†.
This is not essential for the heuristic argument in this section.



Introduction 393

these have fermionic quasiparticle excitations described by linear combinations of
creation and annihilation operators,

γ = uc+ vc†. (9.5)

The prefactors in this linear combination depend on the energy of the (Bogoliubov)
quasiparticle excitation.

An excitation far above the superconducting gap will be only weakly affected by the
superconducting correlations and will consequently behave, to a good approximation,
like an electron. We expect that annihilating such an excitation is essentially equivalent
to annihilating an electron, and thus u ≈ 1 and v ≈ 0. Similarly, an excitation in the
Fermi sea far below the superconducting gap will essentially look like a hole. To a good
approximation, annihilating such an excitation just corresponds to filling the hole, i.e.
we have u ≈ 0 and v ≈ 1. A Majorana excitation has equal amplitudes of c and c†,
i.e. we are looking for an excitation with u = v.2 In view of the energy dependence of
the prefactors u and v, it is natural to expect u = v halfway between the electron-like
and hole-like excitations, i.e. for midgap excitations with excitation energy E = 0. We
should thus be looking for Majoranas as zero-energy excitations in superconductors.

An attentive reader might object that these arguments do not make sense.
The argument neglects the fact that electrons have spin and so do the Bogoliubov
quasiparticles. In standard BCS theory, the Bogoliubov quasiparticles have the form

γ↑ = uc↑ + vc†↓, (9.6)

which differs from (9.5) by the spin labels. Clearly, the spin indices spoil the Majorana
property, i.e. these spinful Bogoliubov operators are no longer equal to their adjoint,
γ↑ �= γ†↑, even when u = v.

However, there is an emergency exit that allows us to save the argument. We simply
assume that we are considering BCS pairing of spinless fermions. Then the fermionic
operators c and c† do not have spin indices and (9.5) is the appropriate operator for
the Bogoliubov excitations. Thus, we should be looking for Majoranas as zero-energy
excitations in superconductors made of spinless fermions.

Finally, the assumption of spinless fermions immediately has one more conse-
quence. In superconductors, the fermions pair into Cooper pairs. Because of the Pauli
principle, the Cooper-pair wavefunction must be antisymmetric. In conventional (s-
wave) superconductors, this is satisfied because the electrons are in an antisymmetric
spin-singlet configuration while their orbital wavefunction is a symmetric s-state. For
spinless fermions, there is no spin part of the Cooper-pair wavefunction and the anti-
symmetry must be in the orbital part. Then, the pairing symmetry can no longer be
s-wave and the simplest antisymmetric option is p-wave pairing.

Thus, we can finally state where we should be looking for Majoranas: as zero-energy
excitations in spinless p-wave superconductors!

2 Or, in view of the previous footnote, more accurately u = v∗.
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9.2 Spinless p-wave superconductors

9.2.1 Continuum model and phase diagram

Of course, the heuristic arguments of the previous section do not imply that spinless
p-wave superconductors host Majoranas. To confirm that this can indeed be the case,
we will now study a one-dimensional model of a spinless p-wave superconductors.
To be specific, we will look at a continuum mean-field model with many-particle
Hamiltonian3

H =
∫
dx

{
ψ†(x)

(
p2

2m
− μ

)
ψ(x) + Δ′[ψ†(x)∂xψ†(x) + h.c.]

}
. (9.7)

Here, ψ†(x) creates a spinless fermion at position x and ξp = p2/2m− μ is their
normal-state dispersion. The pairing of strength Δ′ (assumed real for definiteness) is
of p-wave nature, as reflected in the presence of the derivative ∂x in the pairing terms.
Note that Δ′ has units of velocity. The Bogoliubov-de Gennes (BdG) Hamiltonian
associated with the many-body Hamiltonian is (cf. Appendix 9.A)

H =

(
ξp −iΔ′p
iΔ′p −ξp

)
= ξpτz + Δ′pτy, (9.8)

where τ is the vector of Pauli matrices τi in particle–hole space.
We can straightforwardly derive the excitation spectrum of the model from the

BdG Hamiltonian. For an infinite system (or a system with periodic boundary
conditions), momentum is a good quantum number and we obtain

Ek = ±(ξ2k + Δ′2k2)1/2 (9.9)

by diagonalizing the 2× 2 BdG Hamiltonian. This spectrum is gapped almost every-
where, except when ξk = 0 for k = 0, i.e. when μ = 0.4 Of course, the model also
becomes gapless in the absence of pairing and any positive chemical potential, i.e. for
Δ′ = 0 and μ > 0.

The lines μ = 0 as well as Δ′ = 0 for μ > 0 delineate topological quantum phase
transitions (see Fig. 9.2). To make this explicit, we rewrite the 2× 2 BdG Hamiltonian
in (9.8) as a spin Hamiltonian,

Hk = bk · τ, (9.10)

where bk can be viewed as an effective Zeeman field acting in particle–hole space.
According to the BdG Hamiltonian (9.8), we have

(bk)x = 0, (bk)y = Δ′k, (bk)z = ξk. (9.11)

3 Often, one first discusses a lattice version of this model, the so-called Kitaev chain [18]. This is

briefly discussed later in these notes in Section 9.5.3. This section can also be read at this point.
4 It should be noted that this is distinctly different from s-wave pairing, for which the excita-

tion spectrum Ek = ±(ξ2
k + Δ2)1/2 is always gapped for non-zero pairing, regardless of the chemical

potential.
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Fig. 9.2 [Colour online] Phase diagram of a one-dimensional p-wave superconductor as a
function of p-wave pairing strength Δ′ and chemical potential μ. There are topological super-
conducting phases for μ > 0, while the system is topologically trivial for μ < 0. The topological
phases at positive μ differ in their winding numbers, depending on the sign of Δ′.
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Fig. 9.3 Illustration of the mapping k → b̂k in symmetry class BDI. (a) Trivial or non-
topological phase. (b) Topological phase.

We can now consider the mapping from reciprocal space k ∈ R to the unit vector
b̂k = bk/|bk|. As the vector bk lies in the yz plane and the corresponding unit vector
on a circle, there is a topological winding number associated with this mapping, which
counts the number of times the image winds around this circle. This mapping is
illustrated in Fig. 9.3.

Consider first the case μ < 0. Then, we have ξk > 0 for all k and the unit vector
b̂k remains on the upper half-circle for all k ∈ R, pointing in the positive z direction
for k = ±∞. Thus, for μ < 0, the unit vector has winding number zero.

Now consider μ > 0. In this case, ξk changes sign from positive values at large |k|
to negative values near k = 0. Similarly, (bk)y changes sign as k changes from negative
to positive. As a result, the unit vector b̂k winds once around as k varies from −∞ to
+∞. It is also evident that the direction of winding depends on the sign of Δ′. As a
result, we have a winding number ±1 depending on the sign of Δ′.

Thus, we find that the system has one phase—referred to as the non-topological or
trivial phase—with zero winding number and a topological phase (or, more accurately
topological phases—see below) with a non-zero winding number. The trivial phase
occurs when the chemical potential is below the bottom of the normal-state band.
We can change parameters in (a.k.a. deform) the Hamiltonian to the vacuum limit
μ→ −∞ without ever closing the gap. This is a characteristic feature of a trivial
gapped phase. In contrast, the topological phase occurs for μ > 0 and there is always
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a gap closing when deforming the Hamiltonian from the topological phase towards the
vacuum limit.

The excitation spectrum also becomes gapless for Δ′ = 0. This allows the winding
number to change sign along the line Δ′ = 0 and μ > 0. Thus, there are two distinct
topological phases with opposite signs of the winding number. In fact, more generally,
the winding number can take on any value in Z, as long as the Hamiltonian satisfies a
chiral symmetry. In the present case, this chiral symmetry is reflected in the fact that
the Hamiltonian (9.10) involves only two of the three Pauli matrices, so that

{τx,Hk} = 0, (9.12)

which places this Hamiltonian into symmetry class BDI.5 Clearly, it is this absence
of the third Pauli matrix that makes the unit vector b̂k lie in a plane, which in turn
allows the definition of a winding number.

We could also consider more general Hamiltonians that involve all three Pauli
matrices, which fall into symmetry class D. Even in this case, we can define a topo-
logical index, which is now a Z2 index taking on only two distinct values corresponding
to the trivial and topological phases. To understand this, it is perhaps easier to con-
sider a lattice system with Brillouin zone k ∈ [−π/a, π/a]. The essential observation
is that in a spinless system, there can be no pairing of the k = 0 and k = ±π/a states.
The reason is that pairing is between states with opposite momenta. For k = 0, the
opposite-momentum state would be the state itself. For k = π/a, this is actually also
the case, since it differs from its opposite-momentum partner k = −π/a by a reciprocal
lattice vector, so that the two need to be identified. The absence of pairing at k = 0
and k = ±π/a implies that the unit vector b̂k necessarily points along the z direction
at these points of the Brillouin zone, in either the positive or the negative z direction.

Now the mapping from the Brillouin zone to the unit vector b̂k is a mapping into
the surface of a sphere and there can be two topologically distinct band structures
(see Fig. 9.4): either b̂k has the same sign at k = 0 and k = ±π/a, which corresponds

TR TP

(a) (b)

Fig. 9.4 Illustration of the mapping k → b̂k in symmetry class D. (a) Trivial or non-topological
phase. (b) Topological phase.

5 We will not discuss the symmetry classification of topological phases in any detail. The interested

reader is referred to the literature [20].
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to the trivial phase, or it has opposite signs, which happens in the topological phase.
Physically, this index measures whether the chemical potential falls within the band
or not. Indeed, k = 0 and k = ±π/a correspond to the minimum and maximum of the
normal-state band and the sign of the z component of b̂k is determined by whether
the normal-state energy εk is below or above the chemical potential.

9.2.2 Domain walls and Majorana excitations

We can induce a domain wall between the topological and trivial phases by a spatially
varying chemical potential. At the domain wall, the chemical potential changes from
negative to positive values. Let us assume that μ changes linearly in x in the vicinity
of the domain wall:6

μ(x) = αx. (9.13)

Clearly, the gap in the excitation spectrum vanishes right at the domain wall and
increases linearly away from it. Thus, it is natural to suspect that there are bound
states trapped at the domain wall.

Quite generally, domain walls between topologically distinct phases are associated
with gapless excitations. Examples are the chiral edge states of quantum Hall states
or the helical edge states of topological insulators. We will now see explicitly that in
the present case, the domain wall is also associated with a gapless excitation and that
this gapless excitation is a zero-energy Majorana bound state.

While this is a general property of domain walls in this model, we will only consider
a limit in which the calculation becomes particularly simple. Indeed, for a sufficiently
smooth domain wall, the relevant momenta in the vicinity of the domain wall are small
and we can neglect p2/2m in the BdG Hamiltonian (9.8).7 Then, the BdG Hamiltonian
of the domain wall takes on the form

H = −αxτz + Δ′pτy. (9.14)

This has the form of a Dirac Hamiltonian with a spatially varying mass. In fact, the
mass changes sign at the position of the domain wall. Following the seminal work of
Jackiw and Rebbi [19] in the context of high-energy physics, this implies under rather
general conditions that there is a zero-energy bound state localized at the domain wall.

Indeed, the spectrum of this Dirac Hamiltonian is readily obtained by squaring
the Hamiltonian. As with any BdG Hamiltonian, the spectrum of H is symmetric
about zero energy, i.e. for any eigenstate with energy E, there is another eigenstate
with energy −E (see Appendix 9.A). Thus, we do not lose any information on the

6 It is also straightforward to study domain walls at which the chemical potential jumps abruptly
from negative to positive values. It is left as an exercise for the reader to derive the subgap spectrum

in this case.
7 To see this, compare the chemical potential and the pairing term. This implies that there is a

characteristic length
√

Δ′/α and thus a characteristic energy
√

Δ′α. Then, the quadratic term is of

order α/mΔ′, which is small compared with the characteristic energy as long as α � m2Δ′3.
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spectrum when squaring the Hamiltonian. Using the fact that the Pauli matrices
square to unity and anticommute,

{τi, τj} = 2δij , (9.15)

we obtain

H2 = (αx)2 + (Δ′p)2 −Δ′α[x, p]τzτy. (9.16)

With the commutator [x, p] = i and τzτy = −iτx, this simplifies to

H2 = (αx)2 + (Δ′p)2 −Δ′ατx. (9.17)

In the eigenbasis of τx (labelled by ±), this is a harmonic-oscillator Hamiltonian up
to a shift in energy, and the bound-state spectrum associated with the domain wall
becomes

(E±n )2 = 2Δ′α
(
n+ 1

2

)
∓Δ′α. (9.18)

In line with general expectations for domain walls between topologically distinct
phases, there is an eigenstate with exactly zero energy, E+

0 = 0.
To better understand the quasiparticle excitation that is described by this zero-

energy state, let us consider the associated Bogoliubov operator. The zero-energy
eigenspinor of the BdG Hamiltonian is

〈x|n = 0,+〉 = u0(x)
(

1
1

)
, (9.19)

where u0(x) is the Gaussian ground-state eigenfunction of the harmonic oscillator,
centred at the domain wall. Then, the Bogoliubov operator follows in the usual way (cf.
Appendix 9.A) by ‘dotting’ the bra 〈n = 0,+| into the Nambu spinor (ψ(x), ψ†(x))T .
This gives

γ =
∫
dxu0(x)[ψ(x) + ψ†(x)]. (9.20)

This quasiparticle operator does indeed obey the Majorana property γ = γ†.8

9.2.3 Topological protection and many-body ground states

We have derived the zero-energy Majorana mode only for a special limit in which
the calculation becomes particularly simple. It is thus natural to ask how general the
result is. As mentioned above, such a zero-energy Majorana state is generically found
at any domain wall between the topological and trivial phases. A simple argument that
shows that this must be the case is the following. Consider a semi-infinite ‘wire’ in
the topological phase. The end of the system is a domain wall between the topological
phase and the trivial phase as represented by the ‘vacuum’ outside the system. Thus,

8 Note that we can take the ground-state wavefunction u0(x) of the harmonic oscillator to be real.
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there is one zero-energy Majorana bound state localized at the end of the wire. Its BdG
spectrum consists of the zero-energy Majorana state and the symmetric quasiparticle
continua outside the gap at positive and negative energies. Imagine that we are now
deforming the Hamiltonian by changing its parameters. As long as the gap does not
close, the symmetry of the BdG spectrum between positive and negative energies
implies that the zero-energy state must stay put at zero energy!

Next consider a system of finite length. Then there are two Majorana bound states,
one at each end of the wire. As long as we can neglect the overlap between these
two localized Majorana bound states, both Majorana bound states have exactly zero
energy. Overlap between the Majorana end states introduces a coupling between them,
and the two Majorana zero modes can split into two states whose energies are non-zero
and symmetric about zero energy. As the Majoranas are exponentially localized, the
energy splitting decreases exponentially with the length of the wire.

Now consider a wire that is sufficiently long that we can neglect the overlap between
the Majoranas at its ends. Then, the excitation spectrum has two zero-energy Majo-
rana bound states with their corresponding quasiparticle operators, say, γ1 and γ2. We
can combine these two Majorana operators into one conventional fermion operator

c =
1
2
(γ1 + iγ2). (9.21)

As usual, this conventional fermion can be either empty or occupied. Since the Ma-
jorana bound states have zero excitation energy, both states have exactly the same
many-body energy, and we find that there are two degenerate ground states.

Interestingly, these two states differ by fermion number parity. The mean-field
Hamiltonian of superconductors breaks particle number conservation. Fermion number
parity, however, remains a good quantum number, since the pairing terms add or
remove particles only in pairs. In conventional superconductors, we expect the ground
state to have even fermion parity. Any state with an odd number of fermions would
necessarily have one unpaired electron, which is less favourable than a fully paired
state. In contrast, the two ground states of our wire in a topologically non-trivial
superconducting phase differ by the occupation of a single fermion state, so that we
have one ground state with even and one ground state with odd fermion number parity.
The fermion parity operator can be written as P = 2c†c− 1 with eigenvalues ±1, or as

P = iγ1γ2 (9.22)

when expressed in terms of the Majorana operators.
When there are 2N Majorana bound states, we can use the same strategy and group

them into N pairs. Each pair of Majorana fermion operators γ2j−1 and γ2j can be
combined into a conventional fermion operator cj . Each of these conventional fermion
states can now be empty or occupied, leading to an overall ground-state degeneracy
of 2N . These states can again be grouped according to fermion parity. The fermion
parity operator is just the product over the fermion parity operators 2c†jcj − 1 for each
pair, so that

P = iNγ1γ2 · · · γ2N . (9.23)

Thus, there are 2N−1 ground states of either parity.
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9.2.4 Experimentally accessible systems

While it is perhaps theoretically pleasing that spinless p-wave superconductors host
Majorana excitations, this result may seem rather unphysical. First and foremost,
electrons do have spin. Second, the vast majority of superconductors in nature are
s-wave, and there are only very few p-wave superconductors. Moreover, we will be
looking for Majoranas in one-dimensional systems for which, strictly speaking, the
mean-field BCS theory underlying these arguments is not appropriate owing to strong
order-parameter fluctuations.

Nevertheless, starting with the seminal work of Fu and Kane [21, 22], it has become
abundantly clear that this scenario can be realized experimentally in a variety of
systems. The basic physical ingredients are the same in all of these platforms:

• proximity coupling to a conventional s-wave superconductor;
• spin polarization;
• spin–orbit coupling.

Employing proximity-induced superconductivity makes it appropriate to discuss the
one-dimensional systems within mean-field theory, since the superconducting correl-
ations are inherited from a bulk superconductor. Spin-polarized electron systems are
a close relative of spinless fermion systems. Of course, there is a conflict in that it
is impossible to proximity-induce s-wave pairing in a spin-polarized system. The rea-
son is that, in order to satisfy the Pauli principle, the Cooper pairs are spin singlets.
Such spin-singlet Cooper pairs obviously cannot enter into a spin-polarized system by
spin-conserving processes.

This conflict is really an opportunity when involving spin–orbit coupling. To under-
stand this, it might be simplest to locate the spin–orbit coupling in the superconductor
rather than in the one-dimensional system. Then, orbital angular momentum is no
longer a good quantum number in the superconductor and there can be a small p-
wave admixture to the s-wave pairing. Unlike the s-wave correlations, the p-wave
correlations can transfer to the spin-polarized system. As a result, the one-dimensional
system effectively develops p-wave superconducting correlations by proximity.

In fact, the conditions for realizing topological superconductivity are less stringent
than this argument may make it appear. For instance, the spin–orbit coupling can
be in the proximitizing superconductor or in the one-dimensional system, and the
assumption of full spin polarization can be relaxed. In the following three section, we
will discuss some of the platforms that are most actively being pursued in experiments.

9.3 Topological insulator edges

9.3.1 Model and phases

We start illustrating the physics outlined at the end of the last section by two-
dimensional topological insulators, proximity-coupled to an s-wave superconductor
[22]. We assume that the Fermi energy is in the gap of the topological insulator, so
that the only relevant electronic degrees of freedom are the helical edge states. Thus,
there is just a single spin channel propagating in each direction at the Fermi energy,
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and there is perfect spin–orbit coupling as the propagation direction is directly tied to
the spin polarization. We can gap out these edge states in two different ways, namely
by proximity coupling to an s-wave superconductor and by applying a Zeeman field
in a direction perpendicular to the spin quantization direction of the edge states.

The corresponding BdG Hamiltonian of the proximity-coupled topological insula-
tor edge takes the form (see Appendix 9.A)

H = vF pσxτz −Bσz + Δτx. (9.24)

Here, σi are the Pauli matrices in spin space. We assume that the helical edge states
are polarized along the x direction, while the Zeeman field is applied in the z direction.
The τi still denote Pauli matrices in particle–hole (Nambu) space. This way of writing
the Hamiltonian assumes that we write the Nambu spinors as (ψ↑, ψ↓, ψ

†
↓, −ψ

†
↑)
T ;

see Appendix 9.A. For simplicity, we choose the chemical potential to be at μ = 0 and
thus right at the Dirac point associated with the edge states.

In the Hamiltonian (9.24), we have accounted for the proximity coupling to the
superconductor through the induced s-wave gap Δ. In a more microscopic theory, we
would describe both the topological insulator and the superconductor, including the
coupling between the two. It turns out that, with certain caveats, this can then be re-
duced to the form of (9.24). For the most part, we will introduce the proximity-induced
pairing correlations in the simplified manner of (9.24). The more microscopic approach
is sketched in Appendix 9.B. We also need to rely on the microscopic approach in
Section 9.5 when discussing chains of magnetic adatoms.

We can again obtain the spectrum of Hamiltonian (9.24) by squaring it. This yields

H2 = (vF p)2 +B2 + Δ2 − 2BΔσzτx (9.25)

and thus

Ek = ±
√

(vF k)2 + (Δ±B)2 , (9.26)

where all combinations of signs are possible. Note that the gap closes for B = ±Δ,
showing that the gaps due to Δ and B compete. This gap closing signals a topological
phase transition.

At first sight, it may appear that the Hamiltonian (9.24) involves only s-wave
pairing. However, in many ways, the Hamiltonian rather describes a p-wave super-
conductor owing to the anomalous kinetic energy. For instance, in the vicinity of
the critical lines B = ±Δ, the Hamiltonian reduces to the same Dirac Hamiltonian
as the spinless p-wave superconductor. To see this, we expand the Hamiltonian about
the critical point B = Δ. According to (9.25), the low-energy subspace is spanned by
the eigenstates of σzτx with eigenvalue +1, i.e. by

|+〉 =
1√
2

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ , |−〉 =
1√
2

⎛⎜⎜⎝
0
1
0
−1

⎞⎟⎟⎠ . (9.27)
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Evaluating the matrix elements of H in this basis, we readily obtain the effective
low-energy Hamiltonian

H �
(

Δ−B vF p

vF p −(Δ−B)

)
. (9.28)

Indeed, this has the same structure as the domain-wall Hamiltonian in (9.14) for the
spinless p-wave superconductor.9 The Dirac mass is given by Δ−B, which changes
sign at the critical line B = Δ.

For the spinless p-wave superconductor, we clearly identified one of the phases
as topological while the other was topologically trivial. In the present case, such an
identification is less obvious. In many ways, it turns out that the Δ-dominated phase is
topological. However, this is not the full story. To start with, the underlying model of
the topological insulator edge has a linear spectrum, and thus no well-defined vacuum
(or atomic) limit that is obviously trivial. Moreover, the two phases of the proximity-
coupled topological insulator edge are related by a superconductor–magnetism duality.
To see this, let us rotate the Hamiltonian (9.24) about the y axis in spin space, such
that σx → σz and σz → −σx. Then, the Hamiltonian becomes

H = vF pσzτz +Bσx + Δτx. (9.29)

Clearly, this Hamiltonian is invariant under the duality transformation τi ↔ σi and
B ↔ Δ, which just interchanges magnetic and superconducting quantities. This dual-
ity obviously maps the two phases into one another, since the interchange B ↔ Δ
changes the sign of the Dirac mass. Strictly speaking, it is thus difficult to identify
one of the phases as topological.

In fact, the duality of the model has physical consequences. As shown in [22], a
Josephson junction between two Δ-dominated regions with a B-dominated junction
region exhibits an anomalous 4π-periodic Josephson effect (this is discussed further
in Section 9.7). The magnetism–superconductivity duality implies that there is also a
4π-periodic spin Josephson effect in the inverse B–Δ–B junction arrangement when
the Zeeman field points in different directions (perpendicular to the spin–orbit field)
on the two sides of the junction while the superconducting phase is uniform across
the junction. Note that the direction of the magnetic field in the plane perpendicular
to the spin–orbit direction maps onto the superconducting phase under the duality
transformation. Incidentally, this magneto-Josephson effect may be easier to observe
than it might seem, in that, owing to the spin–orbit coupling, the spin Josephson
current is accompanied by a much more easily measurable charge current [23].

9.3.2 Zero-energy states and Majorana operators

Above, we explicitly constructed the Bogoliubov quasiparticle operator associated with
the zero-energy domain wall state in spinless p-wave superconductors and showed that

9 Strictly speaking, this Hamiltonian involves vF pτx, while the corresponding Hamiltonian for the

spinless p-wave superconductor involved Δ′pτy . These two Hamiltonians can obviously be mapped

onto each other by a trivial rotation about the z axis of particle–hole space.
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it is a Majorana operator satisfying γ = γ†. Now that we are considering more physical
spinful models, it may be useful to exhibit this connection more generally.

With the convention that the Nambu spinor is ordered as (ψ↑, ψ↓, ψ
†
↓, −ψ

†
↑)
T ,

the BdG Hamiltonian anticommutes with the product of time reversal T = iσ, k and
charge conjugation C = −iτy

{H,CT} = 0. (9.30)

and the spectrum of H is symmetric about E = 0, i.e. for every eigenstate |ψ〉 with
energy E, there is an eigenstate CT |ψ〉 with energy −E; see Appendix 9.A.

Now, let us assume that H has a zero-energy eigenstate |γ〉 that is spatially isolated
from any other zero-energy solution. This is exactly the situation associated with a
domain wall. Since T and C are local operations, we must conclude that

|γ〉 = CT |γ〉. (9.31)

To see what this implies, we write the corresponding BdG spinor as |γ〉 = (χe, χh)
T ,

where χe and χh are themselves 2-component Pauli spinors with spin-up and spin-
down components. Then, the relation (9.31) implies that the electron and hole spinors
are related through

χh = Tχe (9.32)

as well as χe = −Tχh (note that T 2 = −1). Thus, we can write the BdG spinor |γ〉
explicitly as

〈x|γ〉 = (χ↑, χ↓, χ
∗
↓, −χ∗↑)

T
, (9.33)

and the corresponding Bogoliubov quasiparticle operator becomes

γ =
∫
dx (χ↑, χ↓, χ

∗
↓, −χ∗↑) · (ψ↑, ψ↓, ψ

†
↓, −ψ

†
↑)
T

=
∫
dx (χ↑ψ↑ + χ↓ψ↓ + χ∗↓ψ

†
↓ + χ∗↑ψ

†
↑). (9.34)

This operator γ clearly satisfies the Majorana relation γ = γ†.

9.4 Quantum wires

The minimal physics that turns the proximity-coupled topological insulator edge into
a topological superconductor actually does not include the topological insulator prop-
erties, but merely the fact that there is only one left-moving and one right-moving
channel each. This is sufficient to emulate the spinless-fermion situation discussed in
the introduction.

This point is made explicit by the quantum-wire proposal [24, 25] to realize a
topological superconducting phase and Majorana bound states. Let us consider a
single-channel (i.e. strictly one-dimensional) quantum wire with Rashba spin–orbit
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coupling and applied Zeeman field B, proximity-coupled to an s-wave superconductor
with induced pairing Δ:

H =
(
p2

2m
+ upσx − μ

)
τz −Bσz + Δτx. (9.35)

Here, u denotes the strength of the Rashba spin–orbit coupling and we include a
chemical potential μ. Importantly, the spin–orbit field, taken along the x direction, is
perpendicular to the Zeeman field, taken along the z direction. Note that this is just
the topological insulator Hamiltonian (9.35) except for the kinetic-energy term. We
will see that this term still allows topological superconducting phases, but also leads
to important differences in the physics.

It is not very difficult to diagonalize and study the Hamiltonian (9.35) in full
generality. However, it is perhaps more enlightening to restrict attention to limiting
cases in which the physics becomes more transparent and which can be related to
the models of topological superconducting phases that we have already discussed.
Specifically, we consider two limits, depending on the strength of the Zeeman field
relative to the spin–orbit coupling as measured by εso = mu2; see Fig. 9.5. We will
always assume that Δ � max{B, εso}. Then, we can consider the following limits:

• Kitaev limit: B � εso. First neglecting the spin–orbit coupling, the normal-state
dispersion

εp =
p2

2m
±B (9.36)

consists of two vertically shifted parabolas for the spin-up and spin-down electrons.
The main effect of the spin–orbit coupling is that the spin polarizations of the
parabolas are slightly tilted away from the Zeeman direction, with the tilt angle
being proportional to p and thus having opposite signs for positive and negative
momenta. Now, let us imagine that the chemical potential is placed below the
band bottom of the spin-down band. Then, there is only a single left-moving and
a single right-moving channel (or none at all), and we will see below that this
limit maps to the spinless p-wave superconductor discussed above.

p p p

μ μ μ

(a) (b) (c)
εp εp

εp

Fig. 9.5 [Colour online] Normal-state dispersions of the quantum wire in (a) the Kitaev limit,
(b) the topological insulator limit without Zeeman field, and (c) the topological insulator limit
with Zeeman field.
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• Topological insulator limit: B � εso. First neglecting the Zeeman field, the normal-
state dispersion

εp =
p2

2m
± up =

1
2m

(p±mu)2 − 1
2
mu2 (9.37)

consists of two parabolas shifted relative to each other along the momentum axis
owing to the Rashba spin–orbit coupling. The two parabolas correspond to spin-
up and spin-down electrons with respect to the direction of the spin–orbit field
(i.e. the x direction for the Hamiltonian in (9.35)) and cross at p = 0. The Zeeman
field applied in a direction perpendicular to the spin–orbit field (the z direction
for the Hamiltonian in (9.35)) mixes the two states at p = 0 and this opens a gap
of size 2B in the spectrum, which now becomes10

εp =
p2

2m
±
√

(up)2 +B2 . (9.38)

When we adjust the Fermi energy to lie within this gap, we again have a situation
in which there are only a single right-moving mode and a single left-moving mode
at the Fermi energy. We will see that this limit is closely related to the topological
insulator model discussed in the previous section.

9.4.1 Kitaev limit

First we consider the limit of strong Zeeman field with the Fermi energy lying far
below the bottom of the spin-down parabola. In that case, we can project out the
high-energy states associated with the spin-down parabola and derive an effective low-
energy Hamiltonian. To do so, we first neglect the spin–orbit coupling and measure
the Fermi energy from the bottom of the spin-down band, i.e. shift

H =
(
p2

2m
− (B + μ)

)
τz + pairing terms−−−→

(
p2

2m
− μ

)
τz + pairing terms.

(9.39)
We now consider the pairing terms. In the absence of spin–orbit coupling, the low-
energy space of the BdG equation is spanned by the spin-up electron

|e〉 = (1, 0, 0, 0)T (9.40)

and the spin-up hole

|h〉 = (0, 0, 0, 1)T . (9.41)

We can now readily see that within this subspace, there are no pairing terms. Indeed,
we find that 〈e|Δτx|e〉 = 〈h|Δτx|e〉 = 〈e|Δτx|h〉 = 〈h|Δτx|h〉 = 0. This reflects that

10 Note that the ‘effective Zeeman field’ acting on the electron spin now has orthogonal components

up from spin–orbit and B from Zeeman, i.e. the overall strength of the effective Zeeman field is√
(up)2 + B2 .



406 Topological superconducting phases in one dimension

spin-singlet Cooper pairing cannot induce proximity superconductivity in a perfectly
spin-polarized system.

To find finite pairing terms, we need to include the spin–orbit coupling. Since the
latter is weak, it can be included perturbatively. Using first-order perturbation theory,
spin–orbit coupling modifies the low-energy spinors into

|e〉 = (1, −up/2B, 0, 0)T , (9.42)

|h〉 = (0, 0, −up/2B, 1)T . (9.43)

We can now repeat the calculation of the matrix elements of the pairing term within
the low-energy subspace and obtain

〈h|Δτx|e〉 = 〈e|Δτx|h〉 = −up
B

Δ, (9.44)

as well as 〈e|Δτx|e〉 = 〈h|Δτx|h〉 = 0. Thus, the resulting projected Hamiltonian
becomes

H �
(
p2

2m
− μ

)
τz −

up

B
Δτx. (9.45)

This is just the BdG Hamiltonian of a spinless p-wave superconductor given in (9.8).
By comparing with this Hamiltonian, we see that in the Kitaev limit, the effective
p-wave pairing strength of the proximity-coupled quantum wire is Δ′eff = uΔ/B. The
p-wave pairing is non-zero only as a result of the spin–orbit coupling and weakens
as the Zeeman field increases and the spins become increasingly polarized. But, im-
portantly, this implies that the spin–orbit-coupled quantum wire realizes a topological
superconducting phase in the limit of strong Zeeman field.

9.4.2 Topological insulator limit

Now consider the opposite limit of strong spin–orbit coupling. For definiteness, let
us place the chemical potential in the middle of the Zeeman-induced gap, i.e. we
choose μ = 0. The proximity coupling to an s-wave superconductor induces a gap Δ
in the ‘wings’ of the spectrum, i.e. at momenta p = ±mu. In contrast, there are now
two mechanisms gapping out the system at p = 0, namely the Zeeman field and the
proximity coupling. To understand the interplay of these two gapping mechanisms, we
focus on small momenta, where we can neglect the kinetic energy in the Hamiltonian
since it is quadratic in p. Then, the quantum wire Hamiltonian (9.35) reduces to

H � upσxτz −Bσz + Δτx. (9.46)

which is just the topological insulator model (9.24) discussed in the previous section.
Thus, the spectrum of the proximity-coupled quantum wire at small p becomes

Ep = ±
√

(up)2 + (B ±Δ)2 , (9.47)
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with all possible combinations of signs. As in the topological insulator case, the gap
closes for B = ±Δ, indicating a topological phase transition.

The present model has a well-defined vacuum limit, so that we can clearly identify
topological and trivial phases. As we already know that the large-B limit can be
mapped to a spinless p-wave superconductor, it is natural to identify the topological
phase with the high-B phase with B > Δ. Indeed, it is easy to check that the gap
does not close when the Zeeman field is increased from the topological insulator limit
εso > B with B > Δ to the Kitaev limit B > εso, say at fixed chemical potential μ = 0,
for the Hamiltonian (9.35).

The existence of two topologically distinct phases implies the existence of Majorana
end states associated with domain walls. Both in the topological insulator limit and in
the Kitaev limit, their wavefunctions and Bogoliubov operators can be obtained from
the same calculations that we discussed above for spinless p-wave superconductors and
proximity-coupled topological insulator edges.

The closing of the gap at B = Δ implies that the small-momentum region p� mu
dominates the low-energy physics. In fact, the gap |B −Δ| at p = 0 is much smaller
than the gap of order Δ in the wings of the spectrum at p = ±mu. At first sight, one
may thus be tempted to assume that for these parameters, the physics is identical to
the topological insulator case. Actually, this is not quite correct. In many ways, the
phases of the present model are exactly reversed with respect to those of the topo-
logical insulator model! There, the 4π-periodic Josephson effect occurs for a Δ–B–Δ
arrangement. In contrast, for the quantum wire, there is a 4π-periodic Josephson effect
in the B–Δ–B arrangement.11 This reversal of phases can be understood most easily
in the limit of large spin–orbit energy εso with μ = 0. In this limit, the Fermi points in
the wings of the spectrum are far out and essentially decoupled from the p � 0 physics.
If we now consider the two Fermi points in the wings by themselves, there is only a
single right-moving and a single left-moving channel, but with a proximity-induced
superconducting gap. These are just the ingredients of a spinless p-wave supercon-
ductor in the topological phase! Thus, for large εso in the topological insulator limit,
we can think of the system as a combination of a proximity-coupled topological insu-
lator edge and a spinless p-wave superconductor. As the latter is always topological,
the overall topological Z2 index of the quantum-wire model is just the reverse of that
of the proximity-coupled topological insulator.

9.5 Chains of magnetic adatoms on superconductors

Another proposal to realize Majorana bound states relies on a chain of magnetic
impurities placed on atomically clean surfaces of conventional superconductors [26].
This system is a candidate for Majorana physics, since it combines the three essential
ingredients: Zeeman coupling, superconductivity, and spin–orbit coupling. The Zeeman
coupling is contributed by the magnetic adatoms and the substrate provides both
superconductivity and spin–orbit coupling, provided the superconductor is made of a
relatively heavy element.

11 As above, we denote the phase by B if B > Δ, and vice versa.
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9.5.1 Shiba states

To understand this platform for topological superconductivity in more detail, we first
consider the physics of individual magnetic adatoms. This is a classic problem in the
theory of superconductors and was first studied in the late 1960s [27–30]. It will be
useful for our discussion of adatom chains to explore the physics of individual adatoms
at two levels. We will see that in both descriptions, the adatom induces localized
subgap states in the superconductor, referred to as Yu–Shiba–Rusinov states or Shiba
states for brevity. Such subgap states in superconductors can be readily probed using
scanning tunnelling microscopy (STM) [31, 32].

9.5.1.1 Classical magnetic moment

The local magnetic moment of the adatoms is associated with their spin-split d-levels
which will typically be far in energy from the Fermi level of the substrate supercon-
ductor. Then, the low-energy physics of the adatoms can be described in terms of their
magnetic moments, while their electronic degrees of freedom are effectively frozen out.
The large adatom spin S is exchange-coupled to the electrons of the superconductor
and can be approximated as classical.

The BdG Hamiltonian for a local magnetic moment in a host superconductor is
given by

H =
(
p2

2m
− μ

)
τz + (V τz − JS · σ)δ(r) + Δτx, (9.48)

where J denotes the strength of the exchange coupling between the impurity spin
located at the origin and the electrons in the superconductor. In addition to the ex-
change coupling, the impurity also induces potential scattering, which we parametrize
through its strength V . This Hamiltonian has a pair of subgap bound states localized
at the impurity site. The calculation is presented in Appendix 9.C (Section 9.C.1) and
yields the symmetric bound-state energies

E = ±Δ
1− α2 + β2√

(1− α2 + β2)2 + 4α2
, (9.49)

where α = πν0SJ and β = πν0V are dimensionless measures of the strengths of the
exchange coupling and potential scattering, respectively, with ν0 denoting the normal-
state density of states of the superconductor.

These Shiba bound states possess two essential properties. First, they are spin-
polarized, with the spin pointing parallel to the direction of S. Second, their
wavefunction is localized around the impurity, decaying as 1/r for distances r smaller
than the (energy-dependent) coherence length

ξE =
�vF√

Δ2 −E2
, (9.50)

and exponentially beyond this length.
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9.5.1.2 Anderson impurities

At a somewhat more refined level, we can include the electronic degrees of freedom
of the adatom [33]. This description is required when the adatom d-levels are close
in energy to the Fermi level of the substrate superconductor. We specifically consider
a simplified model in which the magnetic adatom is a (spin-1

2
) Anderson impurity,

hybridized with the substrate superconductor. While this does not do full justice to
the actual d-band nature of the magnetic adatoms, it captures much of the essen-
tial physics. We can follow Anderson’s classic paper [34] and treat the local-moment
formation within mean-field approximation.

The corresponding model Hamiltonian

H = Hd +Hs +HT (9.51)

contains a standard BCS Hamiltonian Hs for the host superconductor, the adatom’s
impurity level,

Hd =
∑
σ

(εd − μ)d†σdσ + Un↑n↓, (9.52)

and its hybridization with the superconductor,

HT = −t
∑
σ

[ψ†σ(0)dσ + d†σψσ(0)]. (9.53)

Here, dσ annihilates a spin-σ electron in the Anderson impurity level, nσ = d†σdσ, and
ψσ(r) annihilates electrons at position r in the superconductor.

To analyse this Anderson model, we simplify the Hubbard term through a mean-
field treatment,

Un↑n↓ →
1
2
U
∑
σ

[〈n〉nσ − 〈m〉σnσ], (9.54)

where we have defined the occupation n =
∑

σ nσ and the site polarization m = n↑ −
n↓. The first term merely renormalizes εd. The second term introduces a local exchange
coupling in the adatom orbital.12 If we assume that the adatom is singly occupied and
develops a local moment, we have 〈n〉 = 1 and 〈m〉 = 1. Then, the two spin-split levels
of the adatom have mean-field energies

Ed↑ = εd − μ, Ed↓ = εd − μ+ U, (9.55)

where we measure these energies relative to the chemical potential μ.

12 In principle, we could have also included pairing terms localized on the adatom, whose strength
would be determined self-consistently in the presence of the coupling to the substrate superconductor.

Here, we assume that the Hubbard repulsion U strongly suppresses on-site pairing effects on the

adatom so that these can be neglected.
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Within mean-field theory, the Hamiltonian reduces to a BdG problem that is read-
ily solved for subgap excitations. Details of this calculation are presented in Appendix
9.C (Section 9.C.2). As for a classical magnetic moment, one finds that there is a pair
of subgap excitations at energies

E = ±Δ
Γ2 +Ed↑Ed↓√

(Γ2 + Ed↑Ed↓)2 + Γ2(Ed↓ − Ed↑)2
. (9.56)

This expression is valid for 〈n〉 = 1 and 〈m〉 = 1, i.e. when, to a good approximation,
the spin-up impurity level is occupied and the spin-down level is empty. In this limit, we
can also eliminate the impurity levels by a Schrieffer–Wolf approximation and recover
the description in terms of a local spin. Indeed, (9.49) and (9.56) for the Shiba-state
energies connect when we identify

α = −
1
2ΓU(

1
2U

)2 − (
εd − μ+ 1

2U
)2 = −Γ(Ed↑ −Ed↓)

2Ed↑Ed↓
, (9.57)

β =
Γ
(
εd − μ+ 1

2
U
)(

1
2
U
)2 − (

εd − μ+ 1
2
U
)2 = −Γ(Ed↓ + Ed↑)

2Ed↑Ed↓
(9.58)

as the dimensionless exchange and potential scattering amplitudes. More generally,
the description in terms of an Anderson impurity can be made fully self-consistent,
describing the local-moment formation. It can also be used to calculate the relative
fractions of the spectral weight of the Shiba states that are located on the impurity
and in the host superconductor.

9.5.2 Adatom chains

Armed with this understanding of individual adatoms, we now consider chains of
adatoms. For an isolated impurity, the d-levels are typically far from the Fermi level
of the substrate superconductor. In a chain of adatoms, there is direct hopping between
neighbouring adatom orbitals, and the d-levels form one-dimensional bands of adatom
states. If the adatom chain is dilute, then the hopping amplitude is small and the
bandwidth remains negligible compared with the distance of the atomic d-levels from
the Fermi energy. In this limit, illustrated in Fig. 9.6(a, b), we can discuss the physics
of Shiba chains at subgap energies starting from the Shiba states associated with the
individual impurities. As mentioned above, the Shiba wavefunctions decay away from
the impurity only as a weak power law, so we need to account for their hybridization
and the formation of Shiba bands at subgap energies of the host superconductor. The
formation of Majorana bound states depends on the physics of these Shiba bands.

If, on the other hand, the adatoms are densely packed (as is presumably the case
in the experiments [15, 17]), then the bandwidth of the adatom bands can exceed the
energetic distance of the atomic d-levels from the Fermi level of the host supercon-
ductor. One or several adatom bands cross the superconductor’s Fermi level and can
no longer be treated as electronically inert. In this limit, illustrated in Fig. 9.6(c, d),
it is more appropriate to extend the Anderson impurity approach for a single adatom.
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μ

(a) (b) (c) (d)

Fig. 9.6 [Colour online] Behaviour of adatom bands for various hopping strengths w between
the adatoms. As the adatoms with their d-bands are modelled as Anderson impurities, there
are two spin-split bands. (a) Weak hopping between Anderson impurity states that are sym-
metric about the Fermi energy. In this case, the electronic degrees of freedom of the adatoms
are essentially frozen out and the system can be modelled in terms of bands of Shiba states.
Owing to the symmetry, there is no potential scattering associated with the individual Anderson
impurities. (b) Weak hopping between generic Anderson impurity states that are asymmetric
about the Fermi energy. This case can be modelled as in (a), except that there is non-zero
potential scattering associated with the individual Anderson impurities. (c) Strong hopping be-
tween Anderson impurity states such that the spin-down band crosses the Fermi energy while
the spin-up band is entirely below the Fermi level. This requires that the spin-split Anderson
impurity bands be asymmetric about the Fermi energy, as is generically the case. This situation
realizes proximity-coupled spinless bands and is prone to develop topological superconductivity
in the presence of spin–orbit coupling in the superconductor. (d) Very strong hopping between
Anderson impurity states such that both spin-down and spin-up bands cross the Fermi level.
As there are an even number of channels, this situation will no longer be topological.

In fact, it is quite natural to expect topological superconductivity in this regime.
Let us assume that the adatoms can be described as spin-1

2 Anderson impurities and
that the adatoms spin-polarize (say, into a ferromagnetic state or a spin helix). When
the spin-up and spin-down levels of an individual adatom are sufficiently asymmetric
about the host Fermi level, there will be a wide range of parameters for which only the
spin-down band crosses the Fermi level while the spin-up band is completely occupied.
Notice that this is a very close realization of a spin-polarized system, and hence prone
to developing effectively spinless p-wave superconductivity by proximity when there
is sufficient spin–orbit coupling in the host superconductor.13

We now discuss both of these scenarios in more detail.

9.5.2.1 Dilute adatom chains

In the dilute limit, the low-energy physics is governed by the Shiba states of the
individual adatoms. In a chain of spin-polarized Shiba states, the neighbouring Shiba
states will couple and broaden out into subgap Shiba bands. If the Shiba states of

13 Spin–orbit coupling in the adatom chain would also place the system into a topological phase.
However, this system has a very large Zeeman (exchange) splitting, comparable to atomic energy

scales. This is presumably much larger than the spin–orbit coupling in the chain, so the induced
p-wave pairing strength would be quite small; cf. (9.45). There is no such suppression when the

spin–orbit coupling is provided by the host superconductor, as follows from the calculations below.
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energy ±E0 are sufficiently deep and the bandwidth sufficiently small, we can focus
attention on only the Shiba states and project out the quasiparticle continua above
the gap. In this limit, it is tempting to describe the Shiba chain by a Hamiltonian of
the form

H = E0

∑
j

c†jcj − t
∑
j

(c†j+1cj + c†jcj+1) + Δ
∑
j

(cj+1ci + c†jc
†
j+1). (9.59)

Here, we denote the fermionic annihilation (and creation) operators of the spin-
polarized Shiba state at site j by cj (and c†j).

14 The Shiba states hybridize between
neighbouring sites with amplitude t. Moreover, the Shiba chain is embedded in the
host superconductor and thus it is natural to include a pairing term of strength Δ
in this Hamiltonian. Importantly, the pairing term necessarily involves pairing correl-
ations between different sites due to the perfect spin polarization. The Shiba states
have energy ±E0 (measured from the Fermi energy).

The Hamiltonian (9.59) assumes that both hopping and pairing are dominated by
nearest-neighbour terms. This is not fully adequate for a Shiba chain owing to the
slow 1/r decay of the Shiba wavefunctions away from the impurity. This has some
interesting consequences [35, 36]. Here, we restrict our discussion to the simplified
model in (9.59).

The Hamiltonian (9.59)—sometimes referred to as the Kitaev chain—is just a
lattice version of the spinless p-wave superconductor in (9.7). We just need to identify
the Shiba-state energy E0 as playing the role of the chemical potential, E0 → −μ. It is
not difficult to diagonalize the Kitaev chain and confirm that it has a topological state
at finite Δ whenever the chemical potential is situated in the normal-state band. The
phase diagram of the model is shown in Fig. 9.7. For completeness, the Kitaev chain,

μ

2t

0

–2t

Δ

TR

TP1 TP2

Fig. 9.7 [Colour online] Phase diagram of the Kitaev chain as function of p-wave pairing
strength Δ and chemical potential μ. There is a topological superconducting phase when the
chemical potential is within the band of the normal-state Hamiltonian, while the system is
topologically trivial when the chemical potential is outside the band.

14 The BdG Hamiltonian had two Shiba states per adatom, with energies symmetric about zero.
The fact that there are two states is a consequence of the doubling of the number of degrees of

freedom in the BdG formalism. This is why in the second-quantization representation of (9.59), each

site supports only a single pair of annihilation and creation operators.
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Fig. 9.8 [Colour online] Illustration of the subgap Shiba bands in the excitation spectrum of a
dilute adatom chain. (a) For weak hybridization of deep Shiba states, the positive- and negative-
energy Shiba bands do not cross the Fermi energy at the centre of the gap, and the system is
non-topological. (b) For stronger hybridization, the Shiba bands overlap at the centre of the
gap. In this case, the pairing correlations open a gap that is of p-wave nature owing to the spin
polarization of the subgap states. This realizes a topological superconducting phase that hosts
Majorana bound states at its ends.

including this phase diagram, is discussed in more detail in Section 9.5.3. Here, we
continue with the discussion of the Shiba chain not to break the flow of the argument,
drawing on basic aspects of the phase diagram of the Kitaev chain.

This provides the following somewhat simplified picture of Shiba chains; see
Fig. 9.8. As the adatoms are placed closer together, the hybridization increases and
with it the bandwidth of the subgap Shiba bands. Initially, the Shiba bands (including
the BdG partner with an energy of opposite sign) do not cross the chemical poten-
tial at the centre of the gap. This is analogous to the Fermi energy lying outside
the normal-state band for the Kitaev chain. Hence, the system is in a topologically
trivial phase. Eventually, the two Shiba bands cross the centre of the gap. Now, the
pairing correlations Δ within the Shiba bands will again open a gap at the Fermi
energy. This is a p-wave gap, unlike the larger gap of the host superconductor! The
Shiba chain is in a topological phase and hosts zero-energy Majorana bound states at
its ends.

We have simply assumed that the effective Kitaev-chain Hamiltonian for the Shiba
chain contains pairing terms, but have not discussed their microscopic origin. This
question is closely related to the collective behaviour of the impurity spins. So far,
we have just noted that the Shiba states are spin-polarized along the direction of the
corresponding impurity spin. But we have ignored the question of how the impurity
spins of different adatoms are oriented with respect to one another, a question that
is of obvious importance for the physics of the adatom chain. Indeed, we expect that
the impurity spins interact through the familiar RKKY interaction mediated by the
host superconductor and may thus order magnetically. Two such orderings have been
predominantly discussed, which actually involve somewhat different physics of the
pairing terms [26, 37–40].
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One plausible possibility is that the chain orders ferromagnetically, with all im-
purity spins aligning along a certain direction. In that case, the Shiba states are all
spin-polarized along the same direction. This corresponds to a perfectly spin-polarized
system, and consequently the spin-singlet Cooper pairs of a pure s-wave host super-
conductor would not be able to proximity-couple to the chain of Shiba states. To
induce pairing correlation within the chain of Shiba states in this case, we need to rely
on (Rashba) spin–orbit coupling in the superconducting host.

An interesting alternative is the formation of a spin helix, with adatom spins
rotating along the chain. In this case, neighbouring impurity spins are not aligned and
the corresponding Shiba states are polarized along different directions. A spin-singlet
Cooper pair of the host superconductor can effectively tunnel into the chain as long
as its spin-up and spin-down electrons enter on different sites of the chain. Thus, the
effective pairing correlations that result from these processes are just of the spinless
p-wave type that are included in the Kitaev chain (9.59).

In the remainder of this section, we will assume that the adatom spins order
ferromagnetically, as suggested by experiment. However, it is useful to make two
comments:

1. The assumption of ferromagnetic order combined with (Rashba) spin–orbit coup-
ling in the host superconductor is less restrictive that it may appear. The reason
is that this situation can be mapped on a Hamiltonian with helical spin ordering
by a simple unitary transformation [41].

2. The stability of ordering in one dimension is obviously subtle. It depends on
specifics of the microscopic Hamiltonian such as the presence or absence of
continuous spin symmetries or the range of the substrate-induced interaction
between adatom spins. Thermal fluctuations may well preclude long-range spin
order. In that case, we assume that there is at least short-range order on a scale
that is large compared with the length of the adatom chains.

9.5.2.2 Dense adatom chains

We now consider the situation where hopping between the Anderson impurity levels
of neighbouring adatoms is sufficiently strong that the spin-down band crosses the
Fermi energy. At the same time, the spin-up band is fully occupied. We further as-
sume that the adatom chain is ferromagnetically ordered, as observed experimentally
[15]. We show here that this system is prone to be in a topological superconducting
phase. A more complete theoretical treatment along these lines can be found in the
literature [42].

To understand the low-energy physics in this limit, it is sufficient to consider the
spin-down band that crosses the Fermi level. In the vicinity of the Fermi energy, we
can linearize its dispersion so that the main characteristics are its Fermi wavevector
k0 and Fermi velocity vF . A subgap excitation in this band cannot decay into the
superconducting host, owing to the superconducting gap, but some of its spectral
weight will be transferred. In the absence of spin–orbit coupling, the superconducting
substrate will not be able to induce a gap within this spin-polarized band, but there
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can be p-wave-like correlations in the presence of spin–orbit coupling. These super-
conducting correlations can be read off from the Green function for the adatom bands
once we have accounted for the coupling to the superconductor through the appro-
priate self-energy. The self-energy can be computed exactly when treating the on-site
Hubbard term in mean-field theory and assuming ferromagnetic order of the chain
from the outset.

The BdG Hamiltonian of the adatom chain on top of a spin–orbit-coupled s-wave
superconductor can be written as

H =

(
Hs HT

HT
T Hd

)
. (9.60)

Here, the adatoms are described as a chain of Anderson impurities, i.e. a Hamiltonian
Hd with matrix elements

Hij
d = [(εd − μ)δij −Wij ]τz −Bσzδij (9.61)

in site space. We have already used a mean-field decoupling of the on-site Hubbard
terms that results in the exchange field B governing the spin splitting. The principal
new ingredient compared with the individual adatom is the direct hopping term

Wij = −w(δi,j+1 + δi,j−1) (9.62)

between adatom orbitals, which leads to the formation of the adatom spin-up and
spin-down bands with band width 2w. As usual, τi and σi with i = x, y, z are Pauli
matrices in Nambu and spin space. We choose the chain to be aligned along the x
direction.

The host superconductor obeys the BdG Hamiltonian

Hs =
[
(p + khσxx̂)2

2m
− μ

]
τz + Δτx. (9.63)

Here, Δ is the superconducting order parameter and kh denotes the strength of spin–
orbit coupling. We make no attempt at a microscopic description of the spin–orbit
coupling appropriate for real materials, but rather retain only the relevant term needed
for inducing p-wave pairing in the adatom chain. This term couples spin to the mo-
mentum along the adatom chain. The adatoms hybridize with the superconductor
through HT , which includes tunnelling amplitudes t between the adatom impurity
level and the superconductor at the positions Rj = jax̂ of the impurities (a is the
lattice spacing along the chain direction).

We denote the Green functions of the adatom chain before and after coupling to
the superconductor by gd(E) and Gd(E), respectively. These two Green functions are
related by the Dyson equation

Gd,ij(E) = gd,ij(E) +
∑
mn

gd,im(E)Σd,mn(E)Gd,nj(E). (9.64)
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where m,n, i, j are site indices along the chain and Σd(E) is the self-energy accounting
for the coupling to the superconductor,

Σmn(E) = t2τzgs,mn(E)τz. (9.65)

This self-energy describes hopping from the chain into the superconductor and back,
with free propagation in the superconductor in between, as described by the Green
function gs,mn(E).

The Green function of the superconductor is readily computed. First, we consider
off-diagonal elements in site space, m �= n. Then,

gs,mn(E) = 〈Rm| (E −Hs)−1 |Rn〉

= 〈Rm|
{
E −

[
(p + khaσxx̂)2

2m
− μ

]
τz −Δτx

}−1

|Rn〉

= 〈Rm| e−ikhxσx

[
E −

(
p2

2m
− μ

)
τz −Δτx

]−1

eikhxσx |Rn〉

= e−ikh(m−n)aσx
1
V

∑
k

eik·(Rm−Rn)

E − ξkτz −Δτx

= e−ikh(m−n)aσx [(E + Δτx)P0(|m− n|a) + τzP1(|m− n|a)]. (9.66)

Here, we have introduced the integrals

P0(r) =
ν0

2

∫
dξk

∫ 1

−1

dx
eikrx

E2 − ξ2k −Δ2

= − πν0√
Δ2 − E2

sin kF r
kF r

e−r/ξE , (9.67)

P1(r) =
ν0

2

∫
dξk

∫ 1

−1

dx
ξke

ikrx

E2 − ξ2k −Δ2

= −πν0
cos kF r
kF r

e−r/ξE , (9.68)

with ξE = �vF /
√

Δ2 − E2 . An explicit evaluation of these integrals can be found in
Appendix A of [35]. Then, we obtain

gs,mn(E) =

− πν0e−ikhxmnσx

(
E + Δτx√
Δ2 −E2

sin kF rmn
kF rmn

e−rmn/ξE + τz
cos kF rmn
kF rmn

e−rmn/ξE

)
,

(9.69)
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with xmn = xm − xn = (m− n)a and rmn = |xmn|. An analogous calculation for the
diagonal elements in site space, m = n, yields (see also (9.203))

gs,mm(E) = −πν0
E + Δτx√
Δ2 −E2

. (9.70)

Thus, the self-energy takes the form

Σd,mn(E) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Γ

E −Δτx√
Δ2 − E2

, m = n,

−Γ
kF rmn

e−ikhxmnσxe−rmn/ξE

[
E −Δτx√
Δ2 − E2

sin kF rmn + τz cos kF rmn

]
, m �= n.

(9.71)

This result for the self-energy has several important physical consequences, as we will
discuss in the following.

In general, the self-energy is a 4× 4 matrix in Nambu and spin space:

Σd(E) =

⎛⎜⎜⎜⎜⎝
Σee↑↑ Σee↑↓ Σeh↑↓ Σeh↑↑
Σee↓↑ Σee↓↓ Σeh↓↓ Σeh↓↑
Σhe↓↑ Σhe↓↓ Σhh↓↓ Σhh↓↑
Σhe↑↑ Σhe↑↓ Σhh↑↓ Σhh↑↑

⎞⎟⎟⎟⎟⎠ , (9.72)

where each block is still a matrix in site space. In the absence of spin–orbit coupling, the
self-energy decomposes into two independent 2× 2 blocks, as several matrix elements
vanish:

Σd(E) =

⎛⎜⎜⎜⎜⎝
Σee↑↑ 0 Σeh↑↓ 0

0 Σee↓↓ 0 Σeh↓↑
Σhe↓↑ 0 Σhh↓↓ 0

0 Σhe↑↓ 0 Σhh↑↑

⎞⎟⎟⎟⎟⎠ . (9.73)

The diagonal entries in particle–hole space describe the renormalization of the
quasiparticle weight and the dispersion, while the off-diagonal entries describe
the proximity-induced s-wave correlations. This is considered in more detail in
Appendix 9.B.

For the ferromagnetically ordered adatom chain, we assumed that only the spin-
down band crosses the Fermi energy. For a description of the low-energy physics, we
can therefore project the Green functions and the self-energy onto this subspace; for
example,

Σd(E) →
(

Σee↓↓ Σeh↓↓
Σhe↓↓ Σhh↓↓

)
. (9.74)
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The diagonal entries describe the renormalization of the quasiparticle weight and
the dispersion of the spin-down band, while the off-diagonal entries describe the
proximity-induced pairing correlations. As these pairing correlations are induced in
a spin-polarized band, they require non-zero spin–orbit coupling. They are necessarily
of p-wave nature and thus odd in momentum as well as off-diagonal in site space.

In the original 4× 4 scheme, the p-wave pairing terms correspond to the τxσx
entries. Moreover, we focus on subgap energies, E � Δ. Then, the projected self-
energy takes the explicit form

Σd,mn(E) � −ΓE
Δ
δmn − i

Γe−rmn/ξ0

kF rmn
sin khxmn sin kF rmn τx(1− δmn). (9.75)

This is already written in the 2× 2 matrix notation after projection, where τxσx
becomes τx. The first term renormalizes the band dispersion, while the second describes
the induced p-wave pairing. Note that it is indeed odd in site space, as expected for
p-wave correlations, and vanishes in the absence of spin–orbit coupling, i.e. when
kh = 0. Here, we will not pursue a detailed evaluation of these pairing correlations,
but simply assume that they are finite:

Σd,mn(E) � −ΓE
Δ
δmn + Δmnτx. (9.76)

The interested reader can find a more complete discussion in [42].
Then, the Dyson equation for the projected Green function in momentum space

becomes

G−1
d (k,E) � E(1 + Γ/Δ)− vF (k − k0)τz + Δ(k)τx, (9.77)

where we have explicitly linearized the dispersion of the spin-down band and Δ(k)
denotes the Fourier transform of Δmn to momentum space. Besides the induced
p-wave correlations, this expression includes a strong renormalization of the quasipar-
ticle weight when Γ� Δ. Indeed, Γ measures the strength of hybridization between
adatoms and superconductor. In adatom experiments, this coupling is essentially de-
termined by atomic physics and is expected to be large compared with the gap. In
this situation, excitations in the adatom band will have much spectral weight in the
superconductor, leading to a strong renormalization of the quasiparticle weight:

Z =
1

1 + Γ/Δ
. (9.78)

This renormalization affects the dispersion and the induced gap of the adatom band
at subgap energies:

Gd(k,E) � Z

E − ZvF (k − k0)τz + ZΔ(k)τx
. (9.79)

We observe that the effective Fermi velocity is strongly renormalized:

vF → ṽF = ZvF . (9.80)
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Fig. 9.9 [Colour online] (a) Excitation spectrum of a dense adatom chain coupled to a host
superconductor. Only the spin-down adatom band (shown by the black dashed lines) crosses
the Fermi level. The subgap dispersion accounting for the coupling to the superconductor is
shown by the full curves [blue online]. The approximate theory presented in the text is shown
by the dotted curves [red online] and accurately reproduces the numerically exact results near
the Fermi wavevector of the adatom band. Note the strong renormalization of the Fermi velocity
compared with the bare dispersion, as well as the proximity-induced p-wave gap. (b) Numerically
exact results for a Majorana wavefunction, showing that it is localized on a scale that is small
compared with the coherence length of the host superconductor.

Loosely speaking, this renormalization can be understood by noting that the excita-
tions ‘spend little time in the wire and propagate along the wire only during these
intervals. Indeed, to a good approximation, the non-pairing contributions to the self-
energy are local in site space. Similarly, the physical induced gap involves the same
renormalization factor:

Δind = Z|Δ(k0)|. (9.81)

Notice, however, that Δ(k) is itself proportional to the large coupling Γ, making Δind

independent of Γ at strong coupling.
This renormalization is confirmed [42] by more detailed calculations of the sub-

gap spectrum for all momenta k. The results of such a calculation are shown in
Fig. 9.9(a). The figure shows the original dispersion of the adatoms as black dashed
lines, while the true dispersion accounting for the coupling to the superconductor is
shown by the full curves [blue online]. These dispersion curves exhibit the minimal gap
at the wavevector k0 where the adatom band crosses the Fermi energy, but the slopes
are dramatically reduced in accordance with the downward renormalization of the
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Fermi velocity. Indeed, we can quantitatively compare these exact excitation spectra
with the results of the approximate theory presented here. Equation (9.79) predicts a
low-energy dispersion

Ek = ±
√

[ZvF (k − k0)]2 + Δ2
ind, (9.82)

which is shown by the dotted curves [red online] in Fig. 9.9(a).
The most important consequence of this renormalization concerns the localization

length of the Majorana bound states. We can extract a characteristic length from
(9.82), which is given by

ξM = Z
�vF
Δind

. (9.83)

This length describes the coherence length of the induced superconducting correl-
ations. It is important to note that owing to the renormalization of the Fermi velocity,
this can be significantly smaller than the coherence length of the host superconductor,
ξ = �vF /Δ. This is important because ξM also governs the localization of the Majorana
end states. The Majorana states can thus be much more strongly localized than the
coherence length of the host superconductor when the coupling to the superconductor
is strong! This might have been observed in a recent experiment [15]. This scenario
for the Majorana localization length is also confirmed by more detailed numerical
calculations, as illustrated in Fig. 9.9(b).

9.5.3 Kitaev chain

9.5.3.1 Finite chain and Majorana end states

Let us first consider

H = −t
∑
j

(c†j+1cj + c†jcj+1) + Δ
∑
j

(cj+1ci + c†jc
†
j+1)− μ

∑
j

c†jcj , (9.84)

(i.e. the Hamiltonian in (9.59) with the replacement E0 → −μ) for a finite chain of N
sites [18]. It turns out that there is a particularly simple and instructive solution of the
finite chain for the special point t = Δ and μ = 0. We start by writing the fermionic
operator

cj = 1
2
(γBj + iγAj) (9.85)

in terms of two Majorana operators γAj and γBj , with γAj = γ†Aj and γBj = γ†Bj .
Using the inverse relations γAj = −i(cj − c†j) and γBj = cj + c†j , as well as the usual
fermionic anticommutation relations for cj , it is easy to check that the operators
γAj and γBj do indeed satisfy the Majorana relation (9.3). We can now express the
Hamiltonian in terms of these new operators. At the special point, this yields

H = −it
N−1∑
j=1

γBjγA,j+1. (9.86)



Chains of magnetic adatoms on superconductors 421

This Hamiltonian can be diagonalized by introducing N − 1 new (conventional)
fermionic operators through

dj =
1
2
(γBj − iγA,j+1) (9.87)

for j = 1, . . . , N − 1. Note that these new operators combine Majorana operators that
derive from neighbouring sites. If we now express the Hamiltonian in terms of these
new operators, we find

H = 2t
N−1∑
j=1

(d†jdj − 1
2 ). (9.88)

Thus, the dj are fermionic quasiparticle (Bogoliubov) operators of the superconductor
with energy t.

It is important to realize that we started withN fermionic operators cj . In contrast,
we seem to have only N − 1 quasiparticle operators dj . Where did we lose one of the
fermionic operators? If we look back at the Hamiltonian (9.86) written in terms of the
Majorana operators, we realize that two of the Majorana operators actually appear
neither in the Hamiltonian nor in the quasiparticle operators dj , namely γA1 and γBN !

To understand what this means, we note that these operators commute with the
Hamiltonian H. Thus, they are eigenoperators of the Hamiltonian with zero energy.
There is one such zero-energy Majorana excitation localized at each end of the chain.
We can combine these two Majorana operators into an additional (highly non-local)
conventional fermion

d0 =
1
2
(γBN − iγA1). (9.89)

This fermionic operator does not appear in the Hamiltonian and thus has zero energy.
Let us assume that we find a many-body ground state |gs〉 of the chain with the
additional condition d0|gs〉 = 0. Then there is necessarily a second ground state

d†0|gs〉. (9.90)

Indeed, since the quasiparticle excitation generated by d†0 has zero energy, this state
has exactly the same energy as |gs〉. Thus, we find that the ground state of a finite
Kitaev chain is doubly degenerate and that this degeneracy is associated with the
existence of Majorana end states at the two ends of the chain.

9.5.3.2 Bulk properties and phase diagram

To compute the bulk properties of the Kitaev chain for arbitrary parameters, we
consider the Hamiltonian (9.84) for N sites with periodic boundary conditions, i.e. we
identify

c1 = cN+1. (9.91)
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By translational invariance, this can be diagonalized by introducing ak through

cj =
1√
N

∑
j

eikjak. (9.92)

Indeed, this yields

H =
∑
k

ξka
†
kak + Δ

∑
k

(eikaka−k + e−ika†−ka
†
k), (9.93)

where

ξk = −2t cos k − μ (9.94)

is the normal-state dispersion.
To find the quasiparticle spectrum, we pass to Nambu space by introducing the

two-component Nambu operator

φk =

(
ak

a†−k

)
. (9.95)

Note that we define φk for k > 0 only to avoid double counting.15 Indeed, if one
remembers this condition, it is straightforward to show that the φk satisfy the usual
fermionic anticommutation relations

{φkα, φ
†
k′α′} = δkk′δαα′ ,

{φkα, φk′α′} = 0,

{φ†kα, φ
†
k′α′} = 0.

(9.96)

We can now write the Hamiltonian as

H =
∑
k>0

φ†kHkφk + const, (9.97)

with the BdG Hamiltonian

Hk =

(
ξk 2iΔsin k

−2iΔsin k −ξk

)
. (9.98)

Note that the off-diagonal terms in the BdG Hamiltonian are odd functions of k,
which is a direct signature of the p-wave nature of the pairing. We can now obtain the
excitation spectrum

Ek = ±
√
ξ2k + 4Δ2 sin2 k (9.99)

in the usual way by diagonalizing the BdG Hamiltonian.

15 We can leave out the k = 0 term since there is no pairing term in this case.
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The connection with the continuum model for a spinless p-wave superconductor
(see Section 9.2.1) is readily made explicit. Consider a Fermi energy close to the
lower band edge so that the relevant wavevectors are small. Then we can expand
both the dispersion ξk and the pairing Δ sin k for small k. In this limit, we simply
recover both the BdG Hamiltonian (9.8) and the spectrum (9.9) for the spinless p-wave
superconductor.

The excitation spectrum (9.99) of the Kitaev chain is mostly fully gapped. The
normal-state dispersion ξk vanishes only for k = ±kF , where the Fermi wavevector
kF is determined by the condition −2t cos kF = μ. Similarly, the pairing term is non-
zero except when k = 0 and k = ±π. Thus, the system becomes gapless only when
the Fermi wavevector becomes equal to 0 or ±π. This happens when the chemical
potential is just at the band edges of the normal-state dispersion, i.e. when μ = −2t
(kF = 0) or μ = +2t (kF = ±π).

The lines μ = ±2t where the excitation spectrum becomes gapless correspond to
phase boundaries between two topologically distinct phases. The corresponding phase
diagram as a function of Δ and μ (both measured in units of t) is shown in Fig. 9.7.
The Kitaev chain is in a topological phase when the chemical potential lies within the
band of the normal-state band. Conversely, the system becomes topologically trivial
when the chemical potential is outside the band. In the latter case, the system is
adiabatically connected to the vacuum (μ→ −∞) or a fully occupied band (μ→∞).
The special point t = Δ and μ = 0 discussed above is well within the topological phase.

9.6 Non-Abelian statistics

Perhaps the most fascinating property of Majorana zero modes is their non-Abelian
quantum statistics. Non-Abelian statistics of Majorana zero modes was first discussed
in two-dimensional systems, where Majoranas appear as zero-energy bound states
associated with vortices in spinless p+ ip superconductors [36, 43–45]. At first sight, it
might not be obvious whether Majoranas in one-dimensional systems as discussed here
would also obey the same quantum statistics. In fact, the Majoranas in one dimension
are associated with domain walls rather than vortices, while physical arguments for
non-Abelian statistics in two dimensions rely heavily on the phase structure of the
order parameter associated with a vortex. More generally, quantum statistics is not
well defined in strictly one-dimensional systems, since exchanging particles cannot be
disentangled from interactions because the particles necessarily pass one another in
the exchange process (or, formally, one can pass between, for example, boson and
fermion representations by means of a Jordan–Wigner transformation). The second
point can be readily circumvented by considering wire networks rather than strictly
one-dimensional systems [46].

9.6.1 Manipulation of Majorana bound states

A necessary prerequisite for probing non-Abelian statistics of Majorana zero modes
in experiment is the ability to manipulate the Majorana zero modes. The most direct
way of performing braiding operations is by explicitly moving the Majorana states in
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real space. Using the quantum-wire scenario as an example, let us briefly discuss how
this might be achieved in practice. To move the Majorana zero mode along the wire,
we need to move the domain wall with which it is associated. As we saw in Section
9.4, we can induce the domain wall by spatially varying parameters in such a way that
the topological gap changes sign.

Consider first the Kitaev limit of the quantum-wire Hamiltonian (9.35), i.e. the
limit of large Zeeman splitting. In this limit, the topological phase transition occurs
when the chemical potential moves through the bottom of the band, and in the vicinity
of the phase transition, the gap is given by the chemical potential μ. Thus, we can
tune through the phase transition by changing the chemical potential, and induce a
domain wall by changing the chemical potential along the wire. This can in principle be
achieved by changing the local electrostatic potential through a series of gate electrodes
along the wire.

Next consider the topological insulator limit of the quantum wire Hamiltonian
(9.35). In Section 9.4, we considered the case of zero chemical potential, μ = 0. In that
case, the topological gap is given by the difference of Zeeman field and gap, B −Δ.
While, in principle, B and Δ can be varied along the wire, these are not conveniently
controlled experimentally. It turns out that, also in this limit, we can tune through the
transition by varying the chemical potential. Indeed, one can solve for the spectrum
of the Hamiltonian (9.35) in this limit at finite chemical potential by squaring the
Hamiltonian, along the same lines as described in Section 9.4. In this way, one finds
that the gap is given by

B −
√

Δ2 + μ2 . (9.100)

This shows that again one can change the topological gap by tuning μ [46].
An alternative method relies on changing the superconducting order parameter of

the proximity-coupled superconductor [47]. While it may be inconvenient to change the
magnitude of Δ, the phase of the order parameter is readily manipulated. Indeed, there
is a phase gradient associated with a supercurrent flowing along the superconductor.
Incorporating this phase gradient into the Hamiltonian (9.35), one readily finds that
the phase boundary between topological and non-topological phases depends on the
phase gradient. In fact, it turns out that in quantum wires in the topological insulator
limit, a finite phase gradient pushes the system towards the topological phase. In this
limit, the topological gap is given byB −Δ. Roughly, the effect of the supercurrent can
be viewed as reducing the superconducting correlations, pushing the system towards
the topological phase. As a result, one can induce Majorana-carrying domain walls
in the quantum wires by having supercurrents of different strengths flowing along
different segments of the wire. These domain walls can be moved by changing these
supercurrents as function of time.

Based on such methods of manipulating domain walls, one can explicitly establish
the non-Abelian statistics of the Majorana bound states within the quantum-wire
platform [46]. Below, we will see that, in principle, Majoranas can also be effectively
braided merely by varying the pairwise couplings between a number of Majoranas
on a Y-junction [48]. These couplings can be manipulated by, for example, moving
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pairs of Majoranas closer together, increasing their spatial overlap, or changing the
magnitude of the topological gap in between, affecting the localization length and
hence the spatial overlap. Another interesting method relies on charging physics [49].

9.6.2 Non-Abelian Berry phase

The basis for analysing the braiding of Majorana bound states is the non-Abelian
Berry phase. An essential assumption in the standard derivation of the Berry phase
[50] is that the instantaneous spectrum is non-degenerate at all times. The existence
of zero-energy Majorana modes implies that the ground state is degenerate and this
degeneracy persists during the entire braiding process. The adiabatic evolution in the
presence of degeneracies was first analysed by Wilczek and Zee [51] in a classic paper.
They found that in this case, the adiabatic dynamics is not simply described by a
geometric phase associated with a conventional vector potential (Berry connection)
but rather by one associated with a geometric unitary transformation on the subspace
of degenerate states, which can be expressed in terms of a non-Abelian vector potential
or Berry connection. This is sometimes referred to as a non-Abelian Berry phase. For
completeness, we briefly recapitulate the derivation of the non-Abelian Berry phase
since it provides the basis for describing a simple model for the braiding of Majorana
zero modes in Section 9.6.3.

Consider a Hamiltonian H(λ(t)) that depends on time through a set of parameters
λ = (λ1, λ2, . . .), with the instantaneous spectrum

H(λ(t))|ψnα(t)〉 = En(t)|ψnα(t)〉. (9.101)

This spectrum contains one or several subsets n of degenerate states. The states within
each of these degenerate subspaces of dimension dn are labelled by α = 1, . . . , dn. Let
us now define the adiabatic solution of the corresponding time-dependent Schrödinger
equation

i∂t|ηnα(t)〉 = H(λ(t))|ηnα(t)〉, (9.102)

with initial condition

|ηnα(t = 0)〉 = |ψnα(t = 0)〉. (9.103)

In the adiabatic limit, the time evolution does not take the system out of the degenerate
subspace to which the initial state belongs. But, in contrast to the non-degenerate case,
the time-evolved state need not remain parallel to |ψnα(t)〉 at later times. Instead, the
time-evolved state can be a linear combination of all the states within the degenerate
subspace:

|ηnα(t)〉 =
dn∑
β=1

Unαβ(t)|ψnβ (t)〉. (9.104)

Note that the Unαβ(t) are just prefactors in a linear combination and not Hilbert-space
operators.
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To deduce the Unαβ(t), we insert this expansion into the time-dependent Schrödinger
equation, which yields

i
∑
β

[∂tUnαβ(t)]|ψnβ (t)〉+ i
∑
β

Unαβ(t)|∂tψnβ (t)〉 = En(t)
∑
β

Unαβ(t)|ψnβ (t)〉. (9.105)

Multiplying this equation from the left by 〈ψnγ (t)| and dropping the subspace index n
for simplicity of notation, we find

i∂tUαγ + i
∑
β

Uαβ〈ψγ |∂tψβ〉 = EUαγ . (9.106)

We can now define the non-Abelian Berry connection

Aαβ(t) = i〈ψβ |∂tψα〉, (9.107)

so that we obtain, in matrix notation,

i∂tU = U(E − A). (9.108)

Note that this equation has the same structure as the Schrödinger equation of the time-
evolution operator for a time-dependent Hamiltonian, except that on the right-hand
side, the analogue of the Hamiltonian stands to the right of the time-evolution oper-
ator. Thus, as is familiar for the time-evolution operator, this equation can be solved
formally in terms of the anti-time-ordering operator T̃ that orders factors according
to ascending time from left to right. Thus, we find the explicit solution

Un(t) = exp
[
−i

∫ t

0

dt′En(t′)
]
T̃ exp

[
i

∫ t

0

dt′An(t′)
]
, (9.109)

where we have restored the subspace index n.
To bring out the geometric nature of the time evolution, we can introduce a non-

Abelian vector potential that replaces time derivatives by derivatives with respect to
the parameters λj :

An
αβ(t) = i〈ψnβ |∇λψ

n
α〉. (9.110)

Then, Un can be written in terms of an anti-path-ordered integral in parameter space:

Un(t) = exp
[
−i

∫ t

0

dt′En(t′)
]
P̃ exp

[
i

∫
dλ ·An(λ)

]
. (9.111)

The path-ordered exponential of the non-Abelian vector potential generalizes the fa-
miliar Berry phase. It depends only on the path in parameter space, not on the way
in which the path is being traversed, and is a purely geometric object. Now, we can
also express the time-evolution operator

U(t) �
∑
n

∑
α

|ηnα(t)〉〈ηnα(0)| =
∑
n

∑
αβ

Un(t)|ηnβ (t)〉〈ψnα(0)| (9.112)

within the adiabatic approximation.
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Finally, we briefly discuss how the vector potential transforms under a change of
basis of the degenerate subspace,

|ψ′α(t)〉 =
∑
β

Ωαβ(t)|ψβ(t)〉. (9.113)

From the definition of the vector potential, one readily finds

A→ A′ = i(∇λΩ)Ω† + ΩAΩ†, (9.114)

i.e. Ω transforms just like a regular non-Abelian vector potential. In some cases, this
gauge freedom can be used to diagonalize the non-Abelian vector potential. In this
basis, the path ordering is no longer necessary and the exponent becomes a diagonal
matrix whose non-zero entries just take the form of a standard Berry phase.

9.6.3 Braiding Majorana zero modes

As illustrated in Fig. 9.10, a minimal model for non-Abelian braiding starts from a
Y-junction of three one-dimensional topological superconductors, labelled wires 1, 2,
and 3 [46, 48, 49]. If all three arms are in the topological phase, there are four Majorana
bound states in this system. Three of these are located at the outer ends of the three
wires, with Bogoliubov operators labelled γj for wire j, and a fourth Majorana mode
γ0 is located at the junction of the three wires. As long as the three arms have a finite

γ3

Δ2

Δ3

γ0γ1 Δ1 γ1 γ2γ2 γ2 γ2

γ1

γ1 γ2 γ2

γ1

γ2

γ1

γ2 γ1

(a)

(c)

(b)

(b) (b) (b)

Fig. 9.10 [Colour online] (a) Y-junction with a central Majorana γ0 and three Majoranas γj

(j = 1, 2, 3) at the outer ends. The outer Majoranas are coupled to the inner Majorana with
strength Δj . (b) Basic step of the braiding procedure, which moves a zero-energy Majorana
from the end of wire 1 to the end of wire 3 by tuning the Δj . Blue (yellow) wires indicate zero
(non-zero) couplings Δj . Dark red circles correspond to zero-energy Majoranas, while green
circles indicate Majoranas with finite energy due to coupling. In the intermediate step, the
zero-energy Majorana is delocalized over the three pink Majoranas along the yellow wires. (c)
Three steps as in (b) braid the zero-energy Majoranas γ1 and γ2.
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length, these outer Majorana bound states hybridize with the central Majorana and
the system is described by the Hamiltonian

H = i

3∑
j=1

Δjγ0γj . (9.115)

This Hamiltonian couples the central Majorana γ0 to a linear combination of
the outer three Majoranas, γΣ = (1/E)

∑3
j=1 Δjγj , with proper normalization by

E = (Δ2
1 + Δ2

2 + Δ2
3)1/2. Thus, the eigenenergies of H are ±E. There are also two

linearly independent combinations of the outer Majoranas that do not appear in the
Hamiltonian and thus remain true zero-energy Majoranas for any (time-independent)
choice of the couplings Δj . Owing to the presence of these zero-energy modes, the
two eigenvalues of H are each doubly degenerate. These zero-energy Majoranas are
particularly simple when just one of the couplings Δj is non-zero. In this case, the two
zero-energy Majoranas are simply the Majoranas located at the ends of those wires
with zero coupling.

The couplings Δj can be changed as a function of time. For instance, this can be
achieved by varying the length of the topological section in each arm: the shorter the
topological section, the stronger the overlap and hence the coupling between the outer
and the central Majorana. As discussed above, this can be done, say in quantum-wire
based realizations, by driving part of the arm into the non-topological phase by the
application of a gate voltage or a supercurrent in the adjacent s-wave superconductor.
Alternatively, we can leave the length unchanged but vary parameters (such as the
Zeeman field, induced superconducting pairing correlations, or chemical potential)
such that the topological gap of the arm varies. The smaller the topological gap, the
larger the spatial extent and hence the overlap of the Majorana end states.

We can now imagine the following braiding procedure [46, 49]. Initially, only Δ3

in non-zero. Then, γ1 and γ2 are zero-energy Majoranas. In a first step, we move
a Majorana from the end of wire 1 to the end of wire 3, without involving the zero-
energy Majorana γ2. To this end, we first increase Δ1 to a finite value. The zero-energy
Majorana originally located at the end of wire 1 is now delocalized and we have a linear
combination of γ0, γ1, and γ3. We then localize the Majorana zero mode at the end
of wire 3 by reducing Δ3 to zero, leaving only Δ1 non-zero. The braiding process is
completed by two analogous moves: we first move the zero-energy Majorana from the
end of wire 2 to the end of wire 1, and finally the zero-energy Majorana from wire 3
to wire 2. The combined effect of this procedure is to exchange the initial zero-energy
Majoranas at the ends of wires 1 and 2.

We will now calculate the adiabatic evolution of the initial state under this braiding
protocol. To do so, we introduce conventional fermionic operators through

c1 =
1
2
(γ1 − iγ2), c2 =

1
2
(γ0 − iγ3). (9.116)

Using the inverse relations

γ1 = c1 + c†1, γ2 = i(c1 − c
†
1), γ3 = i(c2 − c

†
2), γ0 = c2 + c†2, (9.117)
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we can write H in terms of c1 and c2. We can now write the Hamiltonian in the basis
{|00〉, |11〉, |10〉, |01〉}, where the basis states are defined as

|11〉 = c†1c
†
2|00〉, |10〉 = c†1|00〉, |01〉 = c†2|00〉, (9.118)

with c1|00〉 = c2|00〉 = 0. This yields

H =

⎛⎜⎜⎜⎜⎝
Δ3 iΔ1 −Δ2 0 0

−iΔ1 −Δ2 −Δ3 0 0

0 0 Δ3 −iΔ1 −Δ2

0 0 iΔ1 −Δ2 −Δ3

⎞⎟⎟⎟⎟⎠ . (9.119)

The block-diagonal structure is a consequence of fermion number parity conservation.
In fact, it is easy to show that the Hamiltonian H commutes with the fermion number
parity operator

P = −γ0γ1γ2γ3. (9.120)

The top-left block Heven = Δ3τz −Δ1τy −Δ2τx corresponds to even fermion parity,
while the bottom-right block Hodd = Δ3τz + Δ1τy −Δ2τx has odd fermion parity.
Here we have defined Pauli matrices τi within the even and odd subspaces. If we also
define Pauli matrices πj in the even–odd subspace, then we can write

H = Δ3τz −Δ1τyπz −Δ2τx (9.121)

for the overall Hamiltonian H. Writing Heven and Hodd in terms of Pauli matrices
makes it obvious that these Hamiltonians take the form of a spin Hamiltonian in
magnetic fields Beven = (−Δ2,−Δ1,Δ3) and Bodd = (−Δ2,Δ1,Δ3), respectively. The
degeneracy due to the presence of the Majorana modes implies that the two subspaces
have the same eigenvalues. At the same time, the spectrum for each subspace by itself
is non-degenerate.

Thus, in the present basis, the non-Abelian vector potential is diagonal and, in
line with (9.111), its diagonal entries can be computed just as with conventional Berry
phases. For a spin in a magnetic field, we know that the Berry phase is just half the
solid angle subtended by the unit vector along the magnetic-field direction during
the closed trajectory, with opposite signs for the spin-up and spin-down states [50].
Thus, we can now read off the non-Abelian Berry phases for the braiding procedure
described above. Let us start with the odd subspace. Then the analogue of the Zeeman
field is the vector (−Δ2,Δ1,Δ3). The Berry phase is independent of the basis in spin
space, and thus we temporarily rotate the basis in τ space by −1

2π around the z axis,
so that τx → −τy, τy → τx, and τz → τz. In this rotated basis, the effective magnetic
field becomes Δ = (Δ1,Δ2,Δ3). At the beginning of the braiding process, this field
points along the positive z direction. We first increase Δ1 and subsequently reduce Δ3

to zero. Thus, we rotate the unit vector Δ in the xz plane to the equator. Next, we
increase Δ2 and reduce Δ1 to zero. This rotates Δ by 1

2π around the equator. Finally,
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we increase Δ3 and reduce Δ2 to zero, which rotates Δ back towards the pole. In
total, this procedure encloses one quarter of the upper hemisphere, i.e. a solid angle of
1
2
π, yielding a Berry phase of 1

4
π, with opposite signs for the spin-up and spin-down

states.
To obtain the corresponding phase in the even subspace, we note that the effective

Zeeman field in this subspace merely differs in the sign of the y component. In effect,
this implies that the corresponding Δ encloses the same solid angle but encircles it in
the opposite direction. Hence, the Berry phases for the even and odd subspaces are
equal in magnitude, but opposite in sign, and we find from (9.111) that

U12 = ei
1
4πτzπz (9.122)

for the exchange of Majoranas 1 and 2. Here, we have dropped the dynamic phase,
which is the same for all relevant states. Finally, we can re-express this in terms
of the original Majorana operators using the identity iγ1γ2 = τzπz which yields the
basis-independent representation

U12 = e−
1
4πγ1γ2 (9.123)

of the effect of braiding Majoranas γ1 and γ2.
We can check explicitly that the Majorana braiding matrices (9.123) satisfy the

defining relations

σiσj = σjσi, |i− j|≥2, (9.124)

σiσi+1σi = σi+1σiσi+1, i = 1, . . . , N − 1, (9.125)

of the braid group. Here, we imagine an N -particle system, with the particles ordered
and enumerated in some arbitrary fashion as 1, 2, . . . , N . Then, σi denotes one ofN − 1
generators of the braid group, describing a counterclockwise exchange of particles
i and i+ 1. Thus, we can identify σi with Ui,i+1. It is also not difficult to show
that the Majorana braiding matrices (9.123) are indeed non-Abelian by showing that
σiσi+1 �= σi+1σi.

9.7 Experimental signatures

There have been many proposals for detecting Majorana bound states experimentally.
In this section, we briefly introduce signatures that have been used in experiments.

9.7.1 Conductance signatures

9.7.1.1 Normal-metal lead

A simple and direct method of detecting bound states in superconductors relies on
measurements of the tunnelling conductance. The differential conductance is non-zero
whenever a state in the sample is energetically aligned with the Fermi level in the
normal-metal lead. Tuning the bias voltage between lead and sample effectively shifts
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the Fermi level in the lead and enables measurements as a function of energy. While
tunnelling into a superconductor is typically suppressed at subgap energies, subgap
bound states appear as sharp resonances in the differential conductance.

To understand the nature of transport through such bound states, consider an
isolated subgap state that gives rise to a sharp singularity in the density of states. A
single electron may tunnel from the lead and occupy the quasiparticle bound state.
In the absence of coupling to other degrees of freedom, the quasiparticle cannot relax
into the superconductor, thus blocking single-particle transport. In contrast, current
can flow by Andreev reflection, when an electron entering from the lead is reflected as
a hole, creating a Cooper pair in the sample.

Now, let us consider a proximity-coupled wire in a topological phase, terminated
at one end by a tunnel barrier and connected to a normal-state lead. We calculate the
Andreev current from the normal-state lead to the proximity-providing superconductor
by scattering theory. The amplitude for an electron in the lead to tunnel through the
tunnel barrier and Andreev-reflect from the superconductor as a hole and for the hole
to tunnel back into the lead is thrhete, where rhe (and reh) are amplitudes for Andreev
reflections and te (th) is the barrier transmission amplitude for electrons (holes). Note
that we leave the energy dependence of these amplitudes implicit. In addition, the
total current also comprises processes in which the Andreev reflection is followed by
a reflection at the barrier and further Andreev reflections. The total amplitude for
Andreev reflection is the sum of all of these processes (see Fig. 9.11(a)):

Ahe = th[1 + rhererehrh + (rhererehrh)2 + . . . ]rhete =
thrhete

1− rhererehrh
. (9.126)

To obtain the tunnelling current, we multiply the Andreev reflection probability |Ahe|2
by the Fermi distribution of incoming electrons and outgoing holes, nF (ω − eV )[1−
nF (ω + eV )], and integrate over all energies. Note that the electron and hole reservoirs
in the lead are shifted relative to the Fermi energy of the sample by ∓eV . We further
add the contribution due to Andreev reflections of incoming holes and divide by two
to prevent double counting. This yields the Andreev current
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Fig. 9.11 (a) The total amplitude for Andreev reflection is the sum of the amplitudes for a
number of processes, as described in the text. (b) Differential conductance as a function of bias
voltage for a normal-metal lead. (c) Differential conductance as a function of bias voltage for a
superconducting lead.
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I =
1
2

2e
∫

dω

2π�
|Ahe|2[nF (ω − eV )− nF (ω + eV )] (9.127)

for a spinless superconductor, where the charge 2e accounts for the fact that a Cooper
pair is transmitted during each Andreev reflection.

At subgap energies, the transmission through the superconductor vanishes and the
reflection matrix

r =
(
ree reh
rhe rhh

)
(9.128)

must be unitary. Particle–hole symmetry relates the matrix elements through

τxr(−E)τx = r∗(E). (9.129)

Specifically, we find ree = r∗hh and reh = r∗he at the Fermi energy. This implies that
det r(E = 0) is real. When combined with unitarity, this demands that the determinant
of the reflection matrix take on only two possible values:

det r = ±1. (9.130)

This corresponds to the following two cases, making det r a topological index: (i) reflec-
tion from the trivial phase with perfect normal reflection |ree| = 1 and zero Andreev
reflection reh = 0, corresponding to det r = 1, and (ii) reflection from the topological
phase with perfect Andreev reflection |reh| = 1 and zero normal reflection ree = 0.
Note that it is impossible to tune smoothly between the two cases.

Before returning to the conductance signatures, we briefly note that this result
allows for an alternative derivation of the existence of Majorana bound states. In
the topological phase, we find rhereh = 1 at the Fermi level. Consider a topological
superconductor terminated by a short normal section and a hard wall. An electron
at the Fermi energy impinging on the superconductor is Andreev reflected as a hole,
the hole undergoes normal reflection at the hard wall (with phase π) and Andreev
reflection from the superconductor, and finally the electron is normally reflected from
the hard wall, closing the trajectory. At the Fermi energy, the reflection phases add
to a multiple of 2π, implying the formation of a bound state by Bohr–Sommerfeld
quantization. This zero-energy bound state is just the Majorana.

To obtain Ahe also at non-zero energies, we first recall the Andreev reflection
amplitudes rhe = reh = exp[−i arccos(ω/Δ)] for an s-wave superconductor with real
order parameter Δ > 0. In a p-wave superconductor (see (9.8)), an incoming electron
and outgoing hole (both with momentum pF ) experience an effective gap Δ = Δ′pF
and thus

rhe = exp[−i arccos(ω/Δ)], (9.131)

as for the s-wave superconductor. The gap has the opposite sign for the reverse process,
since both the incoming hole and the reflected electron have momentum −pF . The
Andreev reflection amplitude is thus

reh = exp[−i arccos(ω/Δ) + iπ] = exp[i arccos(−ω/Δ)] (9.132)

In the vicinity of the Fermi level, we can expand
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rhereh � 1 + 2iω/Δ, (9.133)

and at weak tunnelling through the barrier, we can approximate re/h � 1− 1
2
t2e/h

(assuming real re/h and te/h). Using these approximations, we arrive at the Breit–
Wigner form

|Ahe|2 =
t2ht

2
e

4ω2/Δ2 + 1
4 (t2e + t2h)2

(9.134)

for the Andreev reflection amplitude, and the Andreev current becomes

I = e

∫
dω

2π�

ΓeΓh
ω2 + 1

4
(Γe + Γh)2

[nF (ω − eV )− nF (ω + eV )], (9.135)

where we have introduced the electron and hole tunnelling rates Γe/h = 1
2Δt2e/h

through the barrier. These can be evaluated at the Fermi level, where they are equal
by particle–hole symmetry: Γe = Γh = Γ. The resonance of the integrand (9.135) at
energy ω = 0 reflects the Majorana bound state at the junction.

Using (9.135) to compute the differential conductance, we find

dI

dV
=

2e2

h

Γ2

eV 2 + Γ2
. (9.136)

The differential conductance is a Lorentzian as a function of bias voltage, with quant-
ized height 2e2/h and peak width determined by the tunnelling rate through the
barrier; see Fig. 9.11(b) [53, 54]. This quantized zero-bias conductance peak can serve
as a robust fingerprint of an isolated Majorana bound state. For other subgap states
such as regular Andreev bound states, the conductance is not restricted to quantized
values. Moreover, such resonances will typically shift in energy as functions of gate
voltage or magnetic field.

Nevertheless, it remains a challenging task to resolve this quantized conductance
peak in experiment. First, temperature broadening of the distribution function in
the normal lead limits the energy resolution. Once temperature exceeds the intrinsic
broadening Γ, the width of the conductance peak is determined by temperature T ,
and the conductance peak is correspondingly reduced by a factor of order Γ/T . The
situation may be particularly unfavourable in multichannel wires, where the coupling
of the topological channel to the lead is typically very weak [52].

Second, the zero-bias Majorana peak is also broadened by inelastic quasipar-
ticle transitions in the superconductor. At finite temperatures, there will be inelastic
(e.g., phonon-assisted) transitions of quasiparticles between the zero-energy state and
other subgap states or the quasiparticle continuum. These quasiparticle-poisoning
processes reduce the lifetime of the zero-energy excitation and can be accounted for
phenomenologically in (9.136) by including an additional rate Γqp in the broadening:

dI

dV
=

2e2

h

Γ2

eV 2 + (Γ + Γqp)2
. (9.137)

Thus, quasiparticle poisoning also destroys the conductance quantization at zero bias.
In addition, such relaxation processes of quasiparticles allow for an additional single-
particle current that is non-quantized and adds to the Andreev current [55, 56].
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9.7.1.2 Superconducting lead

An alternative experiment tunnels into the Majorana bound state from a (non-
topological) superconducting tip. One advantage of this setup is that the gap
exponentially suppresses finite-temperature broadening. It is important to understand
that for a superconducting electrode, Majorana bound states are no longer signalled
by zero-bias peaks. The threshold for electron tunnelling corresponds to the Majorana
bound state overlapping with the BCS singularity in the density of states of the elec-
trode. Thus, the Majorana bound state is signalled by differential conductance peaks
at bias voltages eV = ±Δ, where Δ denotes the gap of the electrode.

Heuristically, we can derive the tunnelling current from (9.135) by noting that the
tunnelling rates Γe and Γh are proportional to the density of states in the lead elec-
trode. In a superconductor, we thus expect Γe/h = Γρ(ω ∓ eV ), with the dimensionless
BCS density of states ρ(ω) = θ(|ω| −Δ)|ω|/

√
ω2 −Δ2 normalized to the normal-state

density of states. It can indeed be shown that this is the result of a more formal
calculation [57].

Up to exponentially small corrections in Δ/T � 1 and for eV � Δ, we can
set nF (ω − eV )− nF (ω + eV ) � 1 (reflecting the above-mentioned insensitivity to
temperature). Then, the current becomes

I = e

∫ eV−Δ

−(eV−Δ)

dω

2π�

Γ2ρ(ω − eV )ρ(ω + eV )
ω2 + 1

4
Γ2[ρ(ω − eV ) + ρ(ω + eV )]2

. (9.138)

In this low-temperature limit, the current vanishes for eV < Δ. We measure voltage
from the threshold, η = eV −Δ, so that for η � 0, the bound state is energetically
aligned with the BCS singularities of the lead. For |ω| < η, we can approximate

ρ(ω ± eV ) �
√

Δ/2(η ± ω) � 1. (9.139)

This yields a current

I =
4e
h

∫ η

−η

dω√
η2 − ω2

ω3
t

ω2 + ω3
t

(
1√
η − ω +

1√
η + ω

)2 , (9.140)

where we have introduced the effective tunnel coupling ωt = 1
2(ΔΓ2)1/3. We finally

arrive at

I =
4e
h
η

∫ 1

−1

dx√
1− x2

1

x2

(
η

ωt

)3

+
(

1√
1− x

+
1√

1 + x

)2 (9.141)

for η > 0, with the limiting cases

dI

dV
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, eV −Δ < 0,

2e2

h
(4− π), eV −Δ = 0,

−2e2

h

ω3
t

(eV −Δ)3
× const, eV −Δ � ωt.

(9.142)
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The conductance is shown in Fig. 9.11(c). At eV = Δ, the conductance jumps from
zero to the maximum value (4− π)(2e2/h) and then decreases on the scale ωt,
eventually developing a shallow negative differential conductance dip.

This result has several remarkable implications [57]:

1. The peak conductance is universal, independent of tunnelling strength, Majo-
rana wavefunction, and the sign of the voltage. This parallels the conductance
quantization for a normal-metal tip. For both normal-state and superconducting
electrodes, conventional subgap states exhibit non-universal behaviour, so they
can in principle be distinguished from Majorana resonances.

2. The peak width depends on a lower power of the tunnelling strength for a super-
conducting electrode, ∼ Γ2/3, than for a normal-state electrode, ∼ Γ. This weak
dependence on the junction transmission allows one to distinguish bound-state
resonances from competing multiple Andreev peaks, whose width scales as Γ2.

3. Thermal broadening is practically irrelevant for a superconducting lead at
T � Δ.

4. For a superconducting lead, the peak conductance is less vulnerable to quasipar-
ticle poisoning. At the threshold eV = Δ, the tunnelling rates Γe/h diverge owing
to the BCS singularity, making additional broadening due to inelastic transitions
ineffective.

This leads to a striking Majorana signature when a superconducting STM tip is used
to map out the conductance in the vicinity of the bound state. For a Majorana state,
the threshold conductance is independent of the location of the tip, and the Majorana
appears as a plateau of height (4− π)(2e2/h). The extension of the plateau is limited
only by experimental resolution.

9.7.2 4π-periodic Josephson effect

So far, we have considered junctions of a topological superconductor with a normal
metal or a conventional superconductor. Junctions of two topological superconductors,
harbouring two Majorana bound states γL and γR, provide additional signatures. The
coupling across the junction fuses the two Majoranas into a conventional fermion
with non-zero energy. Nevertheless, the junction retains important signatures of the
topological phase in the two superconductors.

This is rooted in the bound-state spectrum of the junction, which can be obtained
from the tunnelling Hamiltonian

HT = tc†LcR + t∗c†RcL, (9.143)

which couples the topological superconductors. Here, t is the tunnelling matrix elem-
ent and the operator cL/R annihilates an electron at the junction in the left/right
superconductor. When the two banks of the junction have the same superconducting
phase, the projection of the tunnelling Hamiltonian onto the low-energy Majorana
excitations reads

HT = (t+ t∗)uLuRP, (9.144)
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where P = iγLγR is the parity operator of the fermion formed from the two Majoranas.
Here, we have used the fact that the electron operators project as cL � uLγL and
cR � iuRγR, where uL/R are real Majorana wavefunctions in the left and right banks.
Indeed, these expressions are consistent with the results for the Kitaev chain in Section
9.5.3 for t = Δ and μ = 0 , where the low-energy projections of the two end fermions
are c1 � iγA1 and cN � γBN .

In an appropriate gauge, a phase difference ϕ across the junction can be incorp-
orated entirely into the tunnelling amplitude, t = t0e

iϕ/2, with t0 real. Thus, we find
the phase-dependent subgap spectrum

E = ±2 cos
(

1
2
ϕ

)
t0uLuR, (9.145)

where the sign corresponds to the parity eigenvalue ±1. This is illustrated in Fig. 9.12.
Remarkably, E is 4π-periodic for fixed parity, and tuning the phase by 2π changes the
energy of the system! Of course, the entire spectrum, including both fermion parity
sectors, is 2π-periodic, as required by gauge invariance.

For fixed fermion parity, this result predicts a 4π-periodic Josephson current,
quite unlike the 2π-periodic Josephson current of conventional Josephson junctions.
This remarkable consequence of Majorana physics follows when it is recalled that the
Josephson current can be obtained from the subgap spectrum through

I = 2e
dE

dϕ
, (9.146)

as can be readily established from the tunnelling Hamiltonian (9.143) with t = t0e
iϕ/2.

For fixed fermion parity, only one of the subgap states contributes and the Josephson
current has period 4π. We also observe that the Josephson current has the same
magnitude, but opposite signs, for the two fermion parities.

An important point of this argument is that there is a degeneracy of the two states
at ϕ = π. The Josephson behaviour would revert to the conventional 2π periodicity,

2π 4π

E

Δ

ϕ

Fig. 9.12 Schematic spectrum of a Josephson junction harbouring two Majorana bound states.
The shaded areas represent the quasiparticle continuum above the gap.
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should this crossing turn into an anticrossing. However, this cannot happen, since the
crossing is protected by fermion parity! The crossing of the subgap states at ϕ = π
implies a ground-state degeneracy and can be viewed as a quantum phase transition,
at which the fermion parity of the many-body ground state changes.

It is also interesting to connect these considerations with our discussion of sym-
metry classes in Section 9.2.1. For ϕ = π, the pairing gaps have opposite signs in the
two banks. As discussed in Section 9.2.1, each bank is described by a Hamiltonian
in class BDI, albeit with opposite topological indices ±1. Hence, the topological in-
dex jumps by 2 across the junction, which necessitates the presence of two Majorana
bound states, in agreement with our findings. The protection of these two Majoranas
relies on chiral symmetry, which is broken by the complex order parameter away from
ϕ = π, and hence the energy levels split.

Experimental observation of the 4π-periodic Josephson effect requires that fermion
parity be preserved. If the phase difference is varied too slowly, parity may change by
quasiparticle poisoning, masking the 4π periodicity. One way of varying the phase
difference swiftly is via the ac Josephson effect in the presence of a finite bias voltage
across the junction. The 4π periodicity generates an ac current at half the usual Joseph-
son frequency, a clear signature of topological superconductivity. However, one needs
to keep in mind that the time-dependent phase difference may induce diabatic tran-
sitions between the low-energy bound states and the quasiparticle continuum above
the gap. Such transitions are most likely in the vicinity of the phase difference where
the bound-state energy becomes maximal, and cause switching between the fermion
parities. This also masks the fractional Josephson frequency. Even in the presence of
these transitions, however, a signature remains present in the finite-frequency current
noise, which has a peak at half the Josephson frequency [58]. This effect is particularly
prominent at low bias voltages, when transitions occur only after many cycles.

An alternative route, which requires only static measurements, is based on Shapiro
steps. In conventional junctions, the combination of a dc voltage Vdc and an ac voltage
Vac sinωt generates a Josephson current

I = IJ sin
(
ϕ+ 2eVdct−

eVac

ω
cosωt

)
. (9.147)

Expanding this expression in Bessel functions, one can show that the current exhibits
steps as a function of bias voltage. These steps originate from resonances between the
ac voltage and the phase winding due to the dc voltage, which occur when 2eVdc = nω,
with n an integer. Clearly, this condition is modified when the current–phase relation is
4π-periodic and the steps occur instead at eVdc = nω. Thus, Majoranas only contribute
to every second Shapiro step, predicting a prominent even–odd asymmetry of the
Shapiro steps as a strong signatures of Majorana states.

9.8 Conclusions

In these lecture notes, we have provided an introduction to the physics of one-
dimensional topological superconductivity and Majorana bound states. This field is
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currently attracting significant theoretical and experimental attention, fuelled by the
prospect of not only establishing the existence of these exotic quasiparticles, but also
observing a new type of quantum statistics. Condensed matter has already enriched
physics through the (Abelian) anyonic statistics of the quasiparticles in the fractional
quantum Hall effect. Observing non-Abelian statistics would take this to yet another
level. It is quite remarkable that such fundamentally new physics is lurking in mater-
ial systems as mundane as hybrids of semiconductors and superconductors, with the
relevant phases accessible to a standard mean-field analysis. This contrasts sharply
with the Abelian anyons that occur in the strongly correlated fractional quantum Hall
states.

Beyond the non-Abelian statistics, the field has been energized by its potential
for topological quantum information processing. One can envision the remarkable
properties of Majorana bound states being exploited to store and process quantum
information in an intrinsically fault-tolerant manner. However, it turns out that it is
impossible to construct a universal topological quantum computer based on braid-
ing Majorana bound states. Two possible workarounds are being discussed in the
literature. The less ambitious but perhaps more realistic approach is to complement
the topologically protected braiding operations by additional gate operations that
are unprotected. In addition to the topologically protected gate operations based on
Majorana braiding, it would suffice to include two unprotected operations, namely
the one-qubit operation exp( 1

8
πγ0γ1) and the two-qubit operation exp(i1

4
πγ0γ1γ2γ3)

[59]. Even when such non-topological gate operations are included, it is still possible
to gain significantly from the topological protection of information storage and the
partial protection of information processing. The more ambitious programme tries to
find platforms that realize yet more exotic quasiparticles such as Fibonacci anyons
with a richer braid group and the capacity to realize a universal topological quantum
computer.

There are many aspects of Majorana physics that have not been discussed in these
lecture notes, such as effects of disorder and interactions, alternative experimental
platforms, and numerous proposals for experimental Majorana signatures. Most im-
portantly, we have not discussed the existing experiments in any detail. However, we
hope that these notes have provided sufficient detail for readers to develop their own
informed opinion on these and forthcoming experiments.

9.A Pairing Hamiltonians: BdG and second quantization

Up to a constant, a general second-quantized pairing Hamiltonian H can be brought
into BdG form by doubling the degrees of freedom:

H =
1
2

∫
ddxΨ†(x)HΨ(x) + const, (9.148)

where H is the first-quantized BdG Hamiltonian. Throughout these lecture notes, we
choose the Nambu spinor ordered as

Ψ(x) = (ψ↑(x), ψ↓(x), ψ
†
↓(x), −ψ

†
↑(x))

T
. (9.149)
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As an example, we consider the second-quantized Hamiltonian for the topological
insulator edge:

H =
∫
dx {− ivF [ψ†↑(x)∂xψ↓(x) + ψ†↓(x)∂xψ↑(x)]

−B[ψ†↑(x)ψ↑(x)− ψ
†
↓(x)ψ↓(x)] + Δ[ψ†↑(x)ψ

†
↓(x) + h.c.]}. (9.150)

Introducing the Nambu spinor and using the anticommutation relations of the elec-
tronic operators, we can bring this Hamiltonian into the BdG form (9.148) with the
BdG Hamiltonian H given by (9.24).

With the definition (9.149) of the spinor, time reversal is effected by

T = iσyK, (9.151)

where K denotes complex conjugation, and charge conjugation by

C = −iτy. (9.152)

Owing to the doubling of the degrees of freedom, the BdG Hamiltonian acquires the
constraint

CTΨ = Ψ, (9.153)

known as particle–hole symmetry. For the BdG Hamiltonian, particle–hole symmetry
implies

{H,CT} = 0, CTΨ = Ψ. (9.154)

We denote the eigenfunctions of H as

Φn(x) = (u↑,n(x), u↓,n(x), v↑,n(x), v↓,n(x))
T
, (9.155)

with eigenvalues En, satisfying

HΦn(x) = EnΦn(x). (9.156)

This equation is known as the BdG equation. Particle–hole symmetry implies

HCTΦn = −CTHΦn = −CTEnΦn = −EnCTΦn, (9.157)

i.e. for every BdG eigenspinor Φn with energy En, there is an eigenspinor Φ−n = CTΦn
with energy −En. The eigenspinors are orthonormal:∫

dxΦ†n(x)Φm(x) = δnm, (9.158)
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where δnm is the Kronecker symbol when Φn(x) and Φm(x) are normalizable and a
Dirac δ-function when they are scattering states. In addition, the completeness can be
written as

∑
n

Φn(x)Φ†n(y) = δ(x− y). (9.159)

Using the BdG eigenspinors, the second-quantized Hamiltonian (9.148) can be
written as (up to a constant)

H =
1
2

∫
dxΨ†(x)HΨ(x)

=
∫
dx

∫
dyΨ†(y)Hδ(x− y)Ψ(x)

=
∑
n

∫
dx

∫
dyΨ†(y)HΦn(y)Φ†n(x)Ψ(x)

=
∑
n

Enγ
†
nγn, (9.160)

where the γn are the Bogoliubov quasiparticle operators. They can be expressed in
terms of the original electron operators as

γn =
∫
dxΦ†n(x)Ψ(x), (9.161)

γ†n =
∫
dxΨ†(x)Φn(x). (9.162)

Using (9.154), (9.157), and the unitarity CT , we have

γ†−n =
∫
dxΨ†(x)Φ−n(x)

=
∫
dx [CTΨ(x)]†[CTΦn(x)]

=
∫
dxΦ†n(x)Ψ(x)

= γn. (9.163)

One can readily check that the Bogoliubov operators satisfy the fermionic anticom-
mutation relations.
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We can also write the electronic operators in terms of Bogoliubov operators using
(9.159):

Ψ(x) =
∑
n

Φn(x)γn

=
∑
n>0

[Φn(x)γn + Φ−n(x)γ−n]

=
∑
n>0

[Φn(x)γn + CTΦn(x)γ
†
n]. (9.164)

These equations have to be complemented by the Majorana mode when there is an iso-
lated zero-energy eigenspinor with associated Bogoliubov operator γ0 = γ†0; see Section
9.3.2.

9.B Proximity-induced pairing

All realizations of topological superconducting phases discussed in these lecture notes
are based on proximity-induced superconductivity. However, we have never explicitly
discussed the s-wave superconductor that induces the superconducting correlations in
the one-dimensional system. Instead, we have directly included a pairing term in the
BdG Hamiltonian of the one-dimensional system. In this appendix, we want to briefly
discuss the proximity effect more explicitly for a one-dimensional wire proximity-
coupled to a BCS superconductor, not accounting for Zeeman fields or spin–orbit
coupling.

The s-wave superconductor is described by the pairing Hamiltonian

Hs =
1
2

∫
d3r ψ†(r)Hsψ(r), (9.165)

Hs = ξpτz + Δτx, (9.166)

ξp =
p2

2m
− μ, (9.167)

written in terms of the Nambu spinor

ψ(r) = (ψ↑(r), ψ↓(r), ψ
†
↓(r), −ψ

†
↑(r))

T
. (9.168)

Here, Δ is the s-wave gap of the proximity-providing superconductor and the τi denote
Pauli matrices in Nambu space. The one-dimensional wire can be modelled by the BdG
Hamiltonian

Hd =
1
2

∫
dx d†(x)Hdd(x), (9.169)

where

d(x) = (d↑(x), d↓(x), d
†
↓(x), −d

†
↑(x))

T
. (9.170)
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At low energies in the vicinity of the Fermi energy, we can linearize the dispersion of
the wire so that its BdG Hamiltonian becomes

Hd = vF pxτz, (9.171)

with the momentum px measured from the respective Fermi point. The hybridization
between the adatom chain and the superconductor is modelled by

HT = − t
2

∫
d3r

[
ψ†(r)τzd(x) + d†(x)τzψ(r)

]
δ(y)δ(z), (9.172)

which describes local tunnelling between wire and superconductor.
In order to describe the effect of the superconductor on the wire, we consider

the Green function of the electrons in the wire and account for the coupling to the
superconductor through a self-energy. Since we are dealing with a quadratic problem,
this self-energy can be computed exactly:

Σ(x1 − x2, E) = t2τzgs(x1 − x2, E)τz, xi = (xi, 0, 0), (9.173)

where gs(r) is the real-space Green function of the uncoupled BCS superconductor. We
have also used the translational invariance of the adatom chain along the x direction
so that the self-energy depends only on the distance between the two positions. The
Green function of the superconductor can now be evaluated as

gs(x1 − x2, E) =
∫

d3p

(2π)3
ei(x1−x2)px

E −Δτx − ξpτz

� ν2D
0

∫
dpx
2π

ei(x1−x2)px

∫
dξ

E + Δτx
E2 −Δ2 − ξ2

= −πν2D
0

E + Δτx√
Δ2 − E2

δ(x1 − x2). (9.174)

Here, ν2D
0 is a two-dimensional density of states at the Fermi level. Note that to a

good approximation, the self-energy is strictly local. Thus, it becomes independent of
momentum when Fourier transforming to momentum space along the x direction:

Σ(k,E) = −Γ2D
E −Δτx√
Δ2 −E2

, Γ2D = πν2D
0 t2 (9.175)

We thus find the dressed Green function

Gs(k,E) = [g−1
s (k,E)− Σ(k,E)]−1 (9.176)

describing the propagation of electrons in the quantum wire.
To understand this self-energy better, it is instructive to consider various limits.

For E � Δ, i.e. for energies far above the gap, we find the retarded self-energy

ΣR(k,E) � −iΓ2D. (9.177)
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The self-energy is purely imaginary and describes the fact that high-energy excitations
in the wire can decay into the superconductor with rate 2Γ2D. Indeed, 2Γ2D = 2πν2D

0 t2

just coincides with a simple golden-rule result for this process at fixed k, since the
density of states of the superconductor is unaffected by pairing at high energies.

At subgap energies, E � Δ, the self-energy is purely real, reflecting the fact that
the superconductor is gapped and excitations in the wire can only virtually enter the
superconductor, but not decay into it. We can now expand the self-energy for small E:

Σ(k,E) � −Γ2D

Δ
E − Γ2Dτx. (9.178)

At first sight, the induced gap is given by Γ2D. However, this cannot be the case at
strong hybridization Γ2D � Δ. In fact, in this limit, the term linear in E becomes
important and induces a significant renormalization of the quasiparticle weight:

Gs(k,E) = [E(1 + Γ2D/Δ)− vFkτz − Γ2Dτx]−1

=
Z

E − ZvFkτz + ZΓ2Dτx
, (9.179)

where

Z =
1

1 + Γ2D/Δ
. (9.180)

This renormalization of the quasiparticle weight reflects the fact that even at subgap
energies, excitations of the quantum wire have appreciable spectral weight in the
superconductor. We can now identify the induced gap

Δind = ZΓ2D �
{

Γ2D, Γ2D � Δ,

Δ, Γ2D � Δ.
(9.181)

We observe that as a result of the renormalization of the quasiparticle weight, the
induced gap indeed saturates at the host gap, as expected.

However, this renormalization also has other important consequences. The disper-
sion is obtained from the poles of the Green function:

detG−1
s (k,E) = 0 (9.182)

for each k. This yields

E(k) = ±
√

(ZvFk)2 + (ZΓ2D)2 . (9.183)

Thus, at strong hybridization, Γ2D � Δ, there is also a significant renormalization of
the Fermi velocity vF :

vF → ṽF = vF
Δ

Γ2D
. (9.184)
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This implies that also the effective coherence length of the proximity-induced super-
conducting correlations in the wire can be quite different from the coherence length of
the superconductor. If we assume that both wire and superconductor have bare Fermi
velocities of the same order (as is presumably the case in the adatom scenario), the
correlation length of the proximity-induced superconductivity is

ξ =
�ṽF
Δind

=
�vF
Γ2D

. (9.185)

At strong hybridization, this is much smaller than the coherence length of the bulk
superconductor, �vF /Δ.

9.C Shiba states

In this appendix, we outline the derivation of the Shiba states for a single magnetic
impurity. We first consider the approach in which the adatom is described as a clas-
sical magnetic moment. Subsequently, we describe the adatom as a spin- 1

2
Anderson

impurity, treating the on-site interaction within a mean-field approximation.

9.C.1 Adatom as a classical magnetic impurity

Our starting point is the Hamiltonian (9.48). When choosing the impurity spin S to
point along the z direction, this 4× 4 Hamiltonian separates into independent 2× 2
blocks H± for spin-up (+) and spin-down (−) electrons:

H± = ξpτz + [V τz ∓ JS]δ(r) + Δτx. (9.186)

To solve for the bound-state spectrum, we isolate the impurity terms on the right-
hand side,

(E − ξpτz −Δτx)ψ(r) = (V τz ∓ JS)δ(r)ψ(0), (9.187)

and pass to the momentum representation, ψ(r) =
∫

[dp/(2π)3]ψp. This yields

(E − ξpτz −Δτx)ψp = (V τz ∓ JS)ψ(0), (9.188)

and hence

ψp =
1

E − ξpτz −Δτx
(V τz ∓ JS)ψ(0). (9.189)

We can now obtain an equation for the spinor ψ(0) evaluated at the position of the
impurity only:

ψ(0) =
∫

dp
(2π)3

E + ξpτz + Δτx
E2 − ξ2p −Δ2

(V τz ∓ JS)ψ(0). (9.190)
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For subgap energies E < Δ, the integral can be readily performed. This yields[
1 +

E + Δτx√
Δ2 −E2

(βτz ∓ α)
]
ψ(0) = 0. (9.191)

Here, we have introduced the dimensionless measures α = πν0JS and β = πν0V of the
exchange coupling and the potential scattering, respectively. ν0 denotes the normal-
phase density of states.

Setting the determinant of the prefactor of ψ(0) in (9.191) equal to zero, we find
that H± has a subgap solution with energies

E = ±Δ
1− α2 + β2√

(1− α2 + β2)2 + 4α2
. (9.192)

The positive (negative) sign corresponds to the spin-up (spin-down) sector. The en-
ergies of the two Shiba states cross at zero when α2 = 1 + β2. For stronger exchange
coupling, the ground state changes from even to odd electron number. Notice also
that E0 → Δ for vanishing exchange coupling, α→ 0, in accordance with Anderson’s
theorem.

Inserting these eigenenergies into (9.191), we can obtain the corresponding
eigenspinors,

ψ(0) =

(
u(0)

v(0)

)

= C

( √
1 + (α± β)2

±
√

1 + (α∓ β)2

)
, (9.193)

where C is a normalization constant. The normalization constant can be found from
the condition ∫

dp
(2π)3

(
|up|2 + |vp|2

)
= 1, (9.194)

where

ψp =

(
up

vp

)
(9.195)

is given in (9.189). A somewhat lengthy, but elementary, evaluation of this condition
yields

ψp =
√

2παν0Δ
{[1 + (α− β)2][1 + (α+ β)2]}3/4

( √
1 + (α± β)2

±
√

1 + (α∓ β)2

)
. (9.196)

A couple of interesting comments can be made here:
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1. Even when E = 0, i.e. for α2 − β2 = 1, the electron and hole wavefunctions of
the Shiba state are in general different from one another. This is quite dis-
tinct from the case of Majorana zero-energy states, for which electron and hole
wavefunctions are necessarily complex conjugates of one another.

2. Electron and hole wavefunctions do become equal up to a sign in the absence of
potential scattering.

Finally, we can also give the 4-spinor results for the Shiba state wavefunctions at
the position of the impurity:

ψ+(0) =
√

2παν0Δ
{[1 + (α− β)2][1 + (α+ β)2]}3/4

⎛⎜⎜⎜⎝
√

1 + (α+ β)2

0√
1 + (α− β)2

0

⎞⎟⎟⎟⎠ , (9.197)

ψ−(0) =
√

2παν0Δ
{[1 + (α− β)2][1 + (α+ β)2]}3/4

⎛⎜⎜⎜⎝
0√

1 + (α− β)2

0

−
√

1 + (α+ β)2

⎞⎟⎟⎟⎠ . (9.198)

9.C.2 Adatom as a spin-1
2 Anderson impurity

Following the main text, we focus on the case where the impurity level is fully spin-
polarized along the z axis, so 〈n〉 = 1 and 〈m〉 = 1. Using the Nambu spinor notation

d = (d↑, d↓, d
†
↓, −d

†
↑)
T
, (9.199)

we can write down the BdG Hamiltonian for the impurity level as

Hd =
1
2
d†Hdd, (9.200)

Hd =
(
εd − μ+

1
2
U

)
τz +

1
2
Uσz. (9.201)

The adatom induces localized subgap states once the the hybridization with the super-
conductor is included. The spectrum of subgap states can be found from the poles of
the local Green function G(E) of the superconductor at the impurity position (chosen
at the origin). Owing to the local nature of the tunnelling, the latter obeys a purely
multiplicative Dyson equation

G(E) = g(E) + g(E)Σ(E)G(E), (9.202)

where g(E) is the local Green function of the homogeneous superconductor in the
absence of coupling to the adatom:

g(E) =
∫

dp
(2π)3

E + ξpτz + Δτx
E2 − ξ2p −Δ2

= −πν0
E + Δτx√
Δ2 − E2

. (9.203)
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The effect of the adatom is included through the self-energy

Σ(E) = t2(E −Hd)−1. (9.204)

The poles of G(E) and hence the subgap spectrum can be found from the condition

detG−1(E) = det
[
g−1(E)− Σ(E)

]
= 0. (9.205)

This separates into separate equations for the two spin components:

det

{
E −Δτx√
Δ2 − ω2

− Γ[(
ω ± 1

2
U
)
−
(
εd − μ+ 1

2
U
)
τz
]} = 0, (9.206)

with Γ = πν0t
2. In the limit U,Γ� Δ, one finds subgap states with energies

E = ±Δ
Γ2 +

(
εd − μ+ 1

2U
)2 − (

1
2U

)2√
[Γ2 +

(
εd − μ+ 1

2U
)2 − (

1
2U

)2 ]2 + Γ2U2

. (9.207)

When written in term of Ed↑ = εd − μ and Ed↓ = εd − μ+ U , this yields (9.56).

Acknowledgements

We would like to acknowledge our collaborators on this subject, from whom we learned
much of what we know. These are Jason Alicea, Erez Berg, Arne Brataas, Piet Brou-
wer, Matthias Duckheim, Matthew Fisher, Katharina Franke, Leonid Glazman, Arbel
Haim, Bert Halperin, Benjamin Heinrich, Liang Jiang, Torsten Karzig, Graham Kells,
Yuval Oreg, David Pekker, Armin Rahmani, Gil Refael, Alessandro Romito, Michael
Ruby, Ady Stern, and Yuval Vinkler. We would also like to acknowledge financial
support through the Helmholtz Virtual Institute ‘New States of Matter and Their
Excitations’, as well as the DFG Priority Programme ‘Topological Insulators’.

References

[1] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[2] C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113 (2013).
[3] S. Das Sarma, M. Freedman, and C. Nayak, NPJ Quantum Inf. 1, 15001 (2015).
[4] C. W. J. Beenakker, Rev. Mod. Phys. 87, 1037 (2015).
[5] E. Majorana, Nuovo Cim. 5, 171 (1937).
[6] F. Wilczek, Nat. Phys. 5, 614 (2009).
[7] A. Kitaev, Ann. Phys. (NY) 303, 2 (2003).
[8] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod.

Phys. 80, 1083 (2008).
[9] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P.

Kouwenhoven, Science 336, 1003 (2012).



448 Topological superconducting phases in one dimension

[10] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Nat. Phys.
8, 887 (2012).

[11] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T. Deng, P. Caroff, H. Q.
Xu, and C. M. Marcus, Phys. Rev. B 87, 241401(R) (2013).

[12] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Nano
Lett. 12, 6414 (2012).

[13] L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nat. Phys. 8, 795 (2012).
[14] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and X. Li, Phys.

Rev. Lett. 110, 126406 (2013).
[15] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald,

B. A. Bernevig, and A. Yazdani, Science 346, 602 (2014).
[16] W. Chang, S. M. Albrecht, T. S. Jespersen, F. Kuemmeth, P. Krogstrup,

J. Nygard, and C. M. Marcus, Nat. Nanotechnol. 10, 232 (2015).
[17] M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B. W. Heinrich, and K. J. Franke,

Phys. Rev. Lett. 115, 197204 (2015).
[18] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[19] R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).
[20] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New J. Phys. 12,

065010 (2010).
[21] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[22] L. Fu and C. L. Kane, Phys. Rev. B 79, 161408R (2009).
[23] L. Jiang, D. Pekker, J. Alicea, G. Refael, Y. Oreg, A. Brataas, and F. von Oppen,

Phys. Rev. B 87, 075438 (2013).
[24] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).
[25] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).
[26] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani, Phys. Rev. B 88,

020407(R) (2013).
[27] L. Yu, Acta Phys. Sin. 21, 75 (1965).
[28] H. Shiba, Prog. Theor. Phys. 40, 435 (1968).
[29] A. I. Rusinov, Zh. Eksp. Teor. Fiz. Pisma 9, 146 (1968) [JETP Lett. 9, 85 (1969)].
[30] A.ZV. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod. Phys. 78, 373 (2006).
[31] A. Yazdani, B. A. Jones, C. P. Lutz, M. F. Crommie, and D. M. Eigler, Science

275, 1767 (1997).
[32] A. Yazdani, C. M. Howald, C. P. Lutz, A. Kapitulnik, and D. M. Eigler, Phys.

Rev. Lett. 83, 176 (1999).
[33] H. Shiba, Prog. Theor. Phys. 50, 50 (1973).
[34] P. W. Anderson, Phys. Rev. 124, 41 (1961).
[35] F. Pientka, L. Glazman, and F. von Oppen, Phys. Rev. B 88, 155420 (2013).
[36] F. Pientka, L. I. Glazman, and F. von Oppen, Phys. Rev. B 89, 180505(R) (2014).
[37] J. Klinovaja, P. Stano, A. Yazdani, and D. Loss, Phys. Rev. Lett. 111, 186805

(2013).
[38] B. Braunecker and P. Simon, Phys. Rev. Lett. 111, 147202 (2013).
[39] M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 206802 (2013).
[40] J. Li, H. Chen, I. K. Drozdov, A. Yazdani, B. A. Bernevig, and A. H. MacDonald,

Phys. Rev. B 90, 235433 (2014).



References 449

[41] B. Braunecker, G. I. Japaridze, J. Klinovaja, and D. Loss, Phys. Rev. B 82,
045127 (2010).

[42] Y. Peng, F. Pientka, L. I. Glazman, and F. von Oppen, Phys. Rev. Lett. 114,
106801 (2015).

[43] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[44] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[45] A. Stern, F. von Oppen, and E. Mariani, Phys. Rev. B 70, 205338 (2004).
[46] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Nat. Phys. 7,

412 (2011).
[47] A. Romito, J. Alicea, G. Refael, and F. von Oppen, Phys. Rev. B 85, 020502(R)

(2012).
[48] J. D. Sau, D. J. Clarke, and S. Tewari, Phys. Rev. B 84, 094505 (2011).
[49] B. van Heck, A. R. Akhmerov, F. Hassler, M. Burrello, and C. W. J. Beenakker,

New J. Phys. 14, 035019 (2012).
[50] M. V. Berry, Proc. R. Soc. Lond. Ser. A 392, 45 (1984).
[51] F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
[52] F. Pientka, G. Kells, A. Romito, P. W. Brouwer, and F. von Oppen, Phys. Rev.

Lett. 109, 227006 (2012).
[53] K. T. Law, P. A. Lee, T. K. Ng, Phys. Rev. Lett. 103, 237001 (2009).
[54] K. Flensberg, Phys. Rev. B 82, 180516 (2010).
[55] I. Martin and D. Mozyrsky, Phys. Rev. B 90, 100508 (2014).
[56] M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B. W. Heinrich, and K. J. Franke,

Phys. Rev. Lett. 115, 087001 (2015).
[57] Y. Peng, F. Pientka, Y. Vinkler-Aviv, L. I. Glazman, and F. von Oppen, Phys.

Rev. Lett. 115, 266804 (2015).
[58] D. Badiane, M. Houzet, and J. S. Meyer, Phys. Rev. Lett. 107, 177002 (2011).
[59] S. B. Bravyi and A. Yu. Kitaev, Ann. Phys. (NY) 298, 210 (2002).





10

Transport of Dirac surface states

D. Carpentier

Laboratoire de Physique
Ecole Normale Supérieure de Lyon

Lyon, France

Topological Aspects of Condensed Matter Physics. First Edition. C. Chamon et al.
c© Oxford University Press 2017. Published in 2017 by Oxford University Press.



Chapter Contents

10 Transport of Dirac surface states 451
D. Carpentier

10.1 Introduction 453
10.1.1 Purpose of the lectures 453
10.1.2 Dirac surface states of topological insulators 453
10.1.3 Graphene 455
10.1.4 Overview of transport properties 457

10.2 Minimal conductivity close to the Dirac point 458
10.2.1 Zitterbewegung 458
10.2.2 Clean large tunnel junction 459
10.2.3 Minimal conductivity from linear response

theory 460
10.3 Classical conductivity at high Fermi energy 461

10.3.1 Boltzmann equation 462
10.3.2 Linear response approach 466

10.4 Quantum transport of Dirac fermions 472
10.4.1 Quantum correction to the conductivity:

weak antilocalization 474
10.4.2 Universal conductance fluctuations 477
10.4.3 Notion of universality class 479
10.4.4 Effect of a magnetic field 483

Acknowledgements 484
References 484



Introduction 453

10.1 Introduction

10.1.1 Purpose of the lectures

The occurrence of robust states at their surfaces is the most salient feature of three-
dimensional topological insulators [29, 47]. Indeed, it is their existence in angle-resolved
photoemission spectroscopy (ARPES) experiments that is used as a signature of the
topological property of the bulk bands. These surface states turn out to be described
by a relativistic two-dimensional Dirac equation at low energy. In these lectures, we
focus on the transport properties of these Dirac surface states. While transport may
not be the ideal probe of the existence of Dirac-like electronic excitations, it remains a
tool of choice in condensed matter. In the following, we survey some of the transport
properties of Dirac excitations and the techniques appropriate to their study. For
the sake of pedagogy, we will focus on simplest transport properties, neglecting in
particular transport in hybrid structures with superconductors, which would deserve
a lecture course of their own.

Naturally, there is a strong overlap between the study of transport properties of
graphene and surface states of topological insulators. Indeed, the low-energy electronic
excitations of graphene are also described as two-dimensional Dirac particles. The dis-
covery of graphene has led to a large amount of work on the associated transport
properties: there are already a number of textbooks and extensive reviews on the sub-
ject, including [10, 19, 20, 24, 35] and [14, 65] on related issues. In the context of
topological insulator surface states, the review [12] focuses on the quantum coherent
transport properties. In these lectures, we start with a survey of classical transport
properties of Dirac fermions at high carrier concentration and the inherent anisotropic
scattering using the Boltzmann equation. The minimum conductivity of evanescent
Dirac states in a short junction is described within the Landauer formalism. Then the
quantum coherent regime is approached within the context of diagrammatic perturb-
ation theory and the Kubo formula, in the spirit of [4]. This technique also allows us
to recover the results on classical transport at zero and high chemical potentials.

10.1.2 Dirac surface states of topological insulators

10.1.2.1 Generic Hamiltonian

We will neglect the consequence of the possible presence of conducting bulk states in
the insulating gap. Although these states are present in contemporary experiments, we
prefer to focus on the simpler ideal situation for pedagogical reasons. A more realistic
treatment should include the coupling between the surface and these bulk states. While
the surface of topological insulators is generically characterized by an odd number of
Dirac species [29, 47], we consider in the following the simplest situation described by
a single Dirac cone. For energies lying in the bulk gap, electronic states are described
as eigenstates of the low-energy Bloch Hamiltonian

H(�k ) = �vF�σ · �k, (10.1)

where �k is the two-dimensional momentum along the surface and �σ represents two
Pauli matrices for an effective spin 1

2 . The momentum–spin locking for eigenstates of
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the Hamiltonian (10.1) is reminiscent of the bulk spin–orbit coupling at the origin
of the bulk band inversion. The Hamiltonian (10.1) is invariant under a so-called
symplectic time-reversal symmetry T that satisfies T 2 = −I [21, 66, 71]:

TH(�k )T−1 = H(−�k ), with T = iσyC, (10.2)

where C denotes the complex conjugation operator acting on the right. We choose to
write the eigenstates of (10.1) as

|u(�k = keiθ)〉 =
1√
2

(
1
±eiθ

)
, with ε(�k ) = ±vF �k. (10.3)

Note that the Hamiltonian (10.1) is also relevant to discussion of transport at the sur-
faces of weak topological insulators or crystalline topological insulators characterized
by an even number of Dirac cones but with a symplectic time-reversal symmetry [48],
quantum wells close to a topological transition (in which case a small mass term mσz
should be added [60]), and other realizations (see [63] for a recent discussion of Dirac
matter).

10.1.2.2 Hexagonal warping

For energies far from the Dirac point, the linearized Hamiltonian (10.1) has to be
complemented by higher-order terms, leading to warping of the Fermi surface. In the
case of the surface states of Bi2Te3, this warping corresponds to hexagonal deformation
of the Fermi surface, and is due to an additional term in the Hamiltonian for surface
states:

Hw =
1
2
λσz(k3

+ + k3
−), (10.4)

with k± = kx ± iky. The resulting hexagonal symmetry of the Fermi surface originates
from the combination of a trigonal discrete C3 lattice symmetry with time-reversal
symmetry [28, 39]. The corresponding dispersion relation ε2(�k = keiθ) = �2v2

Fk
2 +

λ2k6 cos2 3θ leads to the snowflake shape of constant-energy surfaces [3]. Defining
εF = �vFkF and k = kF k̃(θ), the shape of the Fermi surface at energy εF is
conveniently parametrized by the dimensionless parameter b = λE2

F /(2�3v3
F ) as

1 = k̃2(θ) + 4b2k̃6(θ) cos2 3θ. (10.5)

While this parameter takes reasonable small values 0.04 < b < 0.09 for energies
0.05 eV < εF < 0.15 eV in Bi2Se3, it ranges from b = 0.13 for εF = 0.13 eV to b = 0.66
for εF = 0.295 eV in Bi2Te3 and leads to sizeable consequences on transport at high
chemical potential [3].
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10.1.2.3 Disorder

A description of transport amounts to a consideration of the scattering of electronic
excitations, in particular on impurities. In the following, we adopt a statistical descrip-
tion of these impurities: we describe them by a continuous field corresponding to an
additional term V (r̂)1 in the Hamiltonian. This field is random, and its realizations
are chosen according to a characteristic distribution P [V ]. For simplicity, we adopt the
simplest convention, corresponding to a Gaussian distribution, with vanishing average
〈V (r̂)〉V = 0 and variance

〈V (r̂)V (r̂′)〉V = γV(r̂ − r̂′), (10.6)

where 〈 . . . 〉V corresponds to an average over disorder configurations and the correl-
ation γV(r̂) is exponentially decaying over a short distance ξ. We will often approximate
it by a δ function in the continuum limit.

This Gaussian-distributed potential can be recovered as the continuum limit of the
Edwards model of localized impurities [4]. Indexing independent impurities by j, the
corresponding random potential is written as

V̂ (r̂) =
∑
j

v̂(�r − �Rj), (10.7)

where v̂(�r ) = v(�r )I couples only to the density of Dirac fermions. The averaged matrix
elements of this potential between Dirac eigenstates are

〈|〈�k|V |�k′〉|2〉V = ni|v(�k,�k′)|2 |〈u(�k′)|u(�k )〉|2 ≡ γV(�k,�k′)|〈u(�k′)|u(�k )〉|2, (10.8)

where ni is the impurity concentration. In the limit ni →∞, v(�k,�k′) → 0, while, keep-
ing γV(�k,�k′) = ni|v(�k,�k′)|2 constant, we recover a Gaussian continuous random field.
A more realistic treatment of the disorder encountered at the surface of topological
insulators, along the lines of [38], goes beyond the scope of these lectures.

10.1.3 Graphene

10.1.3.1 Low-energy Bloch Hamiltonian

Graphene consists of a hexagonal lattice of carbon atoms whose electronic properties
can be described by considering a single pz atomic orbital per lattice site. The elec-
tronic Bloch wavefunctions are naturally decomposed on the two sublattices of the
hexagonal lattice according to

ψ(�k, �x ) = ei
�k·�x[uA(�k, �x ) + uB(�k, �x )]. (10.9)

The corresponding Bloch Hamiltonian acting on the functions uA/B(�k, �x ) is written as

H(�k ) =

(
g(�k ) f(�k )

f(�k ) g(�k )

)
. (10.10)
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At low energy, only nearest-neighbour hopping integrals can be kept, imposing van-
ishing amplitudes diagonal in the sublattice, g(�k ) = 0, and hopping between different
sublattices f(�k ), which vanishes at the two Dirac points �K and �K′ = − �K. The ex-
istence of two cones, associated with states of opposites chiralities at a given energy,
is a consequence of the Nielsen–Ninomiya theorem [44], which states the impossibility
of realizing a lattice model with realistic couplings but a net chirality among its ex-
citations [33]. Hence for small energies, eigenstates are labelled by a quasimomentum
close to either �K or �K ′: it is thus convenient to introduce a ‘valley index’ and write an
effective Hamiltonian in this extended basis. By using f(± �K + �q ) = �vF (±qx − iqy),
we write the corresponding Hamiltonian as

H(�q ) =

(
H( �K + �q ) 0

0 H( �K ′ + �q )

)
=

(
�vF�σ · �q 0

0 �vF�σ · �q

)
(10.11)

where H(�q ) acts on vectors of states (|u �K,A(�k )〉, |u �K,B(�k )〉,−|u �K′,B(�k )〉, |u �K′,A(�k )〉)
with the definition |uA/B(± �K + �q )〉 = |u �K/ �K′,A/B(�q )〉.

10.1.3.2 Time-reversal symmetry

The Hamiltonian (10.10) describes spinless fermions on a hexagonal lattice: the spec-
trum for the electrons is spin-degenerate and is described neglecting the spin degree
of freedom. Hence, this Hamiltonian is invariant under time-reversal symmetry for
spinless electrons: if ψ(�k, �x ) is an eigenstate of energy ε�k, then ψ(�k, �x ) is also an
eigenstate of the same energy, where we use the notation ψ(�k, �x ) = Cψ(�k, �x ) for the
complex conjugate of ψ(�k, �x ). This symmetry manifests itself as H(−�k ) = H(�k ) on
the Bloch Hamiltonian (10.10). Expressed in the valley/sublattice Hilbert space, it is
written as

TH(�q )T−1 = H(−�q ), T = (iτy ⊗ iσy) C. (10.12)

This antiunitary time-reversal operator satisfies T 2 = I, as expected for spinless par-
ticles. Owing to the emergence of the pseudospin 1

2
in sublattice space, the low-energy

Hamiltonian H(�q ) possesses a second time-reversal symmetry acting in each valley on
spin- 1

2
fermions [14]:

T̃H(�q )T̃−1 = H(−�q ), T̃ = (I⊗ iσy) C, (10.13)

which is a symplectic symmetry: T̃ 2 = −I. Two time-reversal symmetries, which are
defined as antiunitary operators commuting with the Hamiltonian, necessarily differ
by a unitary operator that commutes with the Hamiltonian: a standard symmetry [50].
Here, this symmetry emerges in the low-energy regime and consists of the exchange
of valleys (without reversal of momenta �q ): U = iτy ⊗ I. The presence of these two
time-reversal symmetries, an orthogonal and a symplectic one, leads to a possible
crossover between universality classes of phase-coherent weak localization physics: this
crossover is controlled by the correlation of the disorder, and more precisely whether
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the U symmetry is statistically preserved, i.e. whether disorder correlation is diagonal
in the valley index [59] (see also [5, 42] for more realistic and complex descriptions at
low energy). In the present lectures, we focus on transport properties of a single Dirac
cone corresponding to the situation where the total Hamiltonian including disorder is
valley-diagonal, i.e. is invariant under the symmetry U .

10.1.4 Overview of transport properties

The typical behaviour of the electrical conductivity of Dirac fermions is represented
in Fig. 10.1. A remarkable feature is the existence of a non-vanishing conductivity
at the Dirac point even in the absence of disorder [25, 26, 34, 46, 54, 62, 69]. We
expect the transport in this limit to be unconventional and quantum in nature as
the Fermi wavelength becomes increasingly large close to the Dirac point. Indeed,
this conductivity at the Dirac point was shown to correspond to a ‘pseudo-diffusive’
regime, with the statistics of the transmission coefficients being characteristic of diffu-
sive transport in conventional metals [62]. We will discuss this minimal conductivity
in the clean limit in a tunnel barrier geometry where it is related to the transport
through evanescent Dirac states [62], and its possible relation with the so-called Zit-
terbewegung of Dirac fermions [34]. When disorder is increased, both the density
of states at the Dirac point and the associated conductivity increase. This increase
can be described using a self-consistent Born approximation [54], or alternatively a
self-consistent Boltzmann approach that can be extended to the the regime at high
Fermi energies [2]. In this latter approach, the density of states is renormalized by
the fluctuations of disorder or chemical potential, which become dominant at very low
Fermi energy ε̃F = [〈(ε+ V )2〉V ]1/2. The quantum regime of weak disorder is difficult
to describe accurately within this Boltzmann approach [1]. The behaviour at stronger

Fermi energy εF

(a) (b)

k

A

BB

Conductivity σ V

Fermi energy εF0

weak disorder

“stronger” disorder

A

B

Fig. 10.1 Schematic behaviour of the conductivity as a function of the Fermi energy (b) for a
Dirac dispersion relation (a). A characteristic feature is the existence of a finite conductivity at
the Dirac point (point A), which increases with the disorder amplitude. At higher energies, a
more common diffusive metallic behaviour is recovered (point B), with intrinsically anisotropic
scattering properties.
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disorder in this quantum low-energy regime is a manifestation of the absence of An-
derson localization for a model of a single Dirac cone of fermions [13, 45, 51]. These
Dirac fermions are the signature of the bulk topological property of valence bands:
they cannot be gapped out, in particular by disorder (provided the bulk gap does not
close) [53]. This property was later used to obtain a classification of topological phases,
identifying those that allowed surface states robust towards Anderson localization [50].

At higher Fermi energies (point B in Fig. 10.1), we recover a standard situation
where the Fermi wavelength is much smaller than characteristic lengths for transport,
including the mean free path: a semiclassical approach via the Boltzmann equation
is possible. As we will see, in this regime, the manifestation of the Dirac nature of
the electrons lies in the anisotropy of scattering, even in the presence of ‘isotropic
impurities’. Naturally, this property requires the use of a transport time, different from
the elastic scattering time, to define the diffusion constant. For small samples in which
transport can remain phase-coherent over sizeable distances, quantum corrections to
this diffusive transport have to be taken into account. The standard description of
this quantum regime was extended to the case of Dirac diffusion in the context of
graphene [5, 6, 36, 42, 43]. In this context, the result depends on the type of disorder
and its symmetry with respect to valley indices: we obtain a standard weak-localization
physics (orthogonal class), or weak antilocalization (symplectic class). The situation
of Dirac surface states of topological insulators is simpler since no crossover is allowed
without magnetic disorder. We will describe this regime, following the diagrammatic
approach in the spirit of [4]. We will not discuss the Altshuler–Aronov effect. The
interested reader can turn to [52] for an alternative and interesting description of the
semiclassical regime for Dirac fermions as a propagation along classical trajectories.

10.2 Minimal conductivity close to the Dirac point

10.2.1 Zitterbewegung

The transport in the limit εF → 0 has been related to the peculiar nature of Dirac
fermions [34, 62]. In particular, the occurrence of a finite conductivity in the clean
limit was discussed in relation with Zitterbewegung, i.e. an intrinsic agitation of Dirac
fermions [34]. Indeed, the current operator �j = evF�σ associated with the Hamiltonian
(10.1) does not commute with it. Hence, 〈�j〉 is not a constant of motion for eigenstates
of the Hamiltonian, which signals the existence of a ‘trembling motion’, or Zitterbewe-
gung, around the centre of motion [64]. This Zitterbewegung was claimed to play the
role of an intrinsic disorder manifesting itself in a finite conductivity at εF = 0 [34, 35].
Of particular interest is the geometry of a large ‘tunnel’ junction of Dirac material at
the Dirac point. Let us express the current operator in the eigenstates basis (10.3) of
the Hamiltonian (10.1) with �k = keiθ:

jx = evF

(
cos θ i sin θ e−iθ

−i sin θ eiθ − cos θ

)
, jy = evF

(
sin θ −i cos θ e−iθ

i cos θ eiθ − sin θ

)
.

(10.14)
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In this basis, the non-commutativity of �j with the Hamiltonian originates from the
off-diagonal terms describing transitions between the ±vF �k eigenstates. It is natural
to expect this Zitterbewegung to manifest itself strongly close to the Dirac point and
in the presence of broadening of the eigenstates originating from either disorder or
confinement. This is indeed what occurs.

10.2.2 Clean large tunnel junction

Following [62], we consider a wide barrier at the surface of a topological insulator,
such that the length of the barrier L is much smaller than its circumference W around
the sample, as shown in Fig. 10.2. The confinement of the tunnel junction is described
by the potential eV (x)1 added to the Hamiltonian (10.1), with V (x) = 0 exactly
at the Dirac point for 0 < x < Lx and V (x) = V∞ outside the barrier (x < 0 and
x > L). The periodic boundary condition in the y direction around the sample implies
the quantization of momentum along y: kn = n2π/W , with −1

2W ≤ n ≤ 1
2W . The

conductance of the junction can then be deduced from the Landauer formula [32]

G =
W

L
σ =

e2

h

∑
n

Tn, (10.15)

where the Tn denote the transmission coefficients of the current carried by the different
modes of the junction. At ε = 0, only evanescent states carry current in the junction.
They are described by the eigenfunctions

ψ(x, y) =
1√
2

(
aeknx

be−knx

)
eikny. (10.16)

We recover here a crucial property of the Dirac Hamiltonian (10.1): at each boundary
x = 0 or x = L, these evanescent states are entirely polarized in either the ↑ or ↓ state

Left Contact Right Contact

W

L

j

Fig. 10.2 Schematic representation of a tunnel junction at the surface of a topological insula-
tor. In the ideal situation, for a chemical potential inside the bulk gap, only the Dirac surface
states transport the current between the contacts.
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(corresponding to localization in a single sublattice in the case of graphene). This
is a consequence of the chiral symmetry of the Dirac Hamiltonian [30]: the operator
C = σz anticommutes with the Hamiltonian (10.1). Hence, C relates eigenstates at
+ε(�k ) to eigenstates at −ε(�k ). However, at ε(�k ) = 0, this chiral symmetry implies
that all eigenstates of the Hamiltonian are also eigenstates of C. The conductance at
ε = 0 directly probes transport properties of these chirality eigenstates, although in
their evanescent form.

We can now solve the standard diffusion problem through the potential well and
find the transmission coefficients

Tn(�k = keiθ) =
cos2 θ

cosh2 knL− sin2 θ

� 1
cosh2 knL

for large V∞, i.e. kx � kn. (10.17)

In the limit of a wide and narrow junction, W � L, the ensemble of transmission
coefficients Tn samples accurately the underlying distribution function ρ(T ) and we
find a dimensionless conductance

g =
G

e2/h
=

+∞∑
n=−∞

Tn �
W

2πL

∫ +πL

−πL

1
coshx

dx =
W

πL
. (10.18)

This result corresponds to a minimal conductivity σmin = e2/πh. Quite remarkably,
the transmission coefficients are distributed according to the law [62]

ρ(T ) =
g

2T
√

1− T
, (10.19)

characteristic of the conventional orthogonal diffusive metallic regime. Accordingly,
the tunnel transport though a wide Dirac junction has been denoted a pseudodiffusive
regime. The occurrence of the diffusive distribution function of transmissions explains
the identification between this tunnel conductivity and the diffusive conductivity of a
long wide conductor in the presence of weak disorder presented in Section 10.2.3.

10.2.3 Minimal conductivity from linear response theory

The above minimum conductance at the Dirac point in the clean limit can be recovered
in the case of a large sample of size L = W by using the Kubo formula. We follow the
approach of [49] (see also the earlier work [40]) and consider the Kubo formula for the
conductivity calculated within linear response theory:

σij(ω, β, τ) =
�

4πL2

∫
dε
fβ(ε+ �ω)− fβ(ε)

�ω
Tr[Im ĜA(ε, τ) ĵi Im ĜA(ε+ �ω, τ ) ĵj ], (10.20)

where fβ(ε) is the Fermi–Dirac distribution function, the current density operator
reads �j = evF�σ, and the trace runs over the quantum numbers (spin and momentum)
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of electronic states. In this expression, Im ĜA(ε, τ ) = ĜA(ε, τ )− ĜR(ε, τ), where ĜR,A
correspond to the retarded and advanced Green’s functions for the Hamiltonian (10.1),
with or without disorder potential V :

ĜR/A(�k, ε, τφ) =
[(
ε± i �

2τφ

)
I−H(�k )− V

]−1

. (10.21)

Here τ stands either for an elastic mean free time τe in the disorder case or for a
phenomenological phase coherence time τφ(T ) for the Bloch states accounting for the
inelastic interactions of the electron with the phonons, other electrons, or magnetic
Kondo impurities [32]. In the presence of disorder, we approximate the average of the
conductivity over disorder 〈σ〉V by replacing the Green’s functions in (10.20) by their
average over disorder (see Section 10.3.2 for a discussion of this point and refinements).
This simply amounts to replacing the phase coherence time τφ by the shorter elastic
mean free time τe (see (10.48) and (10.50)). The (averaged) Green’s functions for the
Dirac fermions are written as

GR/A(�k, ε, τ) =
(ε± i�/2τ)I + �vF�k · �σ
(ε± i�/2τ)2 − ε2(�k )

. (10.22)

The trace over spin space in the expression (10.20) can now be performed. The
remaining order of limits is crucial: we keep τ finite and using

lim
β→∞

lim
ω→0

fβ(ε+ �ω)− fβ(ε)
�ω

= −δ(ε), (10.23)

we obtain the minimal conductivity (using η−1 = 2τ):

lim
β→∞

lim
ω→0

σij(ω, β, τ ) =
2
�

(evF
2π

)2
∫ ∞

0

dx
η2

(η2 + v2
Fx)2

=
e2

πh
, (10.24)

which is precisely the result found for the wide and narrow junction using the Landauer
formula. Note that a finite η or τ was crucial in deriving this result: its presence is
related in the clean case either to a dephasing time in the large sample geometry or
to a lifetime in the sample owing to the presence of the absorbing boundaries for a
narrow strip considered in Section 10.2.2. The independence of the result (10.24) on
τ and thus on a weak disorder breaks down as the disorder strength is increased, as
shown in numerical studies [1], and in agreement with contribution of the quantum
correction (weak antilocalization) described in Section 10.4.

10.3 Classical conductivity at high Fermi energy

At higher Fermi energies, represented schematically as the region of point B in Fig.
10.1, we recover a conventional situation of a metal with a Fermi wavelength 2π/kF
much smaller than lengthscales characteristics of transport (the mean free path le or
the size of the sample L). This regime is conveniently described using a semiclassical
description. First, we will identify the signature of the Dirac nature of excitations
within the Boltzmann equation approach, before resorting to the Kubo approach
previously introduced.
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10.3.1 Boltzmann equation

Classical phase space is spanned by variables �rc, �pc: a statistical description of a en-
semble of particles amounts to defining a density of states f(�rc, �pc, t) at time t. The
Boltzmann equation states that the evolution of this density of states is the sum of
three terms:

∂f

∂t
= −d�rc

dt
· �∇�rc

f − d�pc
dt
· �∇�pc

f + I[f ], (10.25)

where I[f ] is a collision integral defined below in (10.34), which describes the evolu-
tion of the density f due to scattering. To proceed in this semiclassical description of
electrons in crystals, we need equations of motions for d�rc/dt and d�pc/dt. It has re-
cently been understood that these equations depend not only on the band structures
ε(�k ) but also on geometrical properties of the field of eigenvectors associated with
these bands [67]. Although these geometrical characteristics do not enter the simplest
transport properties addressed in these lectures, it is interesting to introduce them for
extensions to, for example, magnetotransport. Let us sketch briefly the derivation of
these semiclassical equations of motion [41, 67].

10.3.1.1 Semiclassical equations of motion

We want to describe the time evolution of a semiclassical wavepacket restricted to
a single band indexed by n (or more generally a subset of bands). This amounts to
considering a wavepacket

|ψ(n)

�rc,�kc
〉 =

∫
d2�k

(2π)2
χ(�k − �kc)e−i[

�k+(e/�c) �A(�rc)]·�rc |ψ(�k, n)〉, (10.26)

where 〈�r |ψ(�k, n)〉 = ei
�k·�r〈�r |u(�k, n)〉 are eigenstates associated with the band n, and

the vector potential �A originates from the possible presence of a magnetic field.
Imposing the localization of the wavepacket around �rc, i.e.〈

ψ
(n)

�rc,�kc

∣∣∣ r̂ ∣∣∣ψ(n)

�rc,�kc

〉
= �rc, (10.27)

imposes that the phase of χ(�k − �kc) is related to the Berry connection in band n:

χ(�k − �kc) = |χ(�k − �kc)|ei(
�k−�kc)· �A(n)(�kc). (10.28)

In this expression, �A(n)(�kc) is a connection defined not on the field of electronic states
|ψ(�k, n)〉, but rather on the states |u(�k)〉 = e−i

�k·r̂|ψ(�k )〉 invariant under translations
on the lattice. These states are eigenstates of the �k-dependent Bloch Hamiltonian
H(�k ) = ei

�k·r̂He−i
�k·r̂. Following Berry [17], we can define a connection �A(n)(�kc) as-

sociated with the parallel transport within the space of eigenvectors |u(�k, n)〉 =
e−i

�k·r̂|ψ(�k, n)〉. It is this connection that naturally occurs in the expression (10.28):
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it should not be confused with other ‘projected’ connections that can be defined in
terms of Bloch eigenstates [16, 27].

Following Sundaram and Niu [58], we write down a classical Lagrangian

L =
〈
ψ

(n)

�rc,�kc

∣∣∣ i�∂t ∣∣∣ψ(n)

�rc,�kc

〉
−
〈
ψ

(n)

�rc,�kc

∣∣∣H ∣∣∣ψ(n)

�rc,�kc

〉
, (10.29)

with 〈
ψ

(n)

�rc,�kc

∣∣∣ i�∂t ∣∣∣ψ(n)

�rc,�kc

〉
=
e

c
�rc ·

d �A(�rc)
dt

+ ��kc ·
d�rc
dt

+ �
d�kc
dt
· �A(n)(�kc), (10.30)

〈
ψ

(n)

�rc,�kc

∣∣∣H ∣∣∣ψ(n)

�rc,�kc

〉
= ε(�kc)− �B · �m(�kc)− eV (�rc), (10.31)

where �m(�kc) is an orbital magnetic moment [67], which is neglected below. The
Lagrange equations on L provide the required classical equations of motion:

�
d�kc
dt

= −e �E − e

c

d�rc
dt
× �B(�rc), with �B = �∇�r × �A(�r), (10.32)

d�rc
dt

=
1
�
�∇�kε(�kc)−

d�kc
dt
×F(�kc), with �F(�kc) = �∇�k × �A(�kc). (10.33)

Note that in the presence of time-reversal symmetry, the Berry curvature F(�kc) van-
ishes and we recover the standard classical equation of motion in a crystal. Focusing
on situations in the absence of a magnetic field, we will thus forget these Berry terms
in the following.

10.3.1.2 Linear homogeneous response

We focus on the charge response of Dirac surface states to a homogeneous field:
this amounts to considering the homogeneous solutions f(�pc = ��kc, t) of the equation
(10.25). This simplification does not hold when considering, for example, the thermo-
electric current with a spatially varying temperature. In the homogeneous case, the
collision integral occurring in (10.25) is simply defined as

I[f ] =
∫

d2�k′

(2π)2
{f(�k′)[1− f(�k )]− f(�k )[1− f(�k′)]}M(�k,�k′)

=
∫

d2�k′

(2π)2
[f(�k′)− f(�k )]M(�k,�k′),

(10.34)

where M(�k,�k′) is a transition amplitude specified below in (10.41). By definition, the
equilibrium distribution, which is stationary without any external perturbing field,
satisfies I[feq] = 0. Within linear response theory, we expand the stationary homo-
geneous distribution to first order in the perturbing field �E around the equilibrium
distribution:

f(�k ) = feq(�k ) + f (1)(�k ), (10.35)
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where feq(�k ) = nF (ε(�k )− εF ), with nF and εF being respectively the Fermi–Dirac
distribution function and the Fermi energy. Here and in the following, we use the
simpler notation �k for the momentum parametrizing the semiclassical wavepacket.
The Boltzmann equation then simplifies to −e �E · �∇�kf = I[f ]. The linearity in f of
(10.34) allows us to write, to lowest order in �E,

−e �E · �∇�kfeq = I[f (1)]. (10.36)

10.3.1.3 Transport-time approximation

The standard transport-time ansatz for a solution of the Boltzmann equation (10.25)
amounts to replacing the collision integral (10.34) by I[f ] = τ−1

tr f : if the external field
�E driving the system out of equilibrium is turned off, then τtr describes the charac-
teristic time of relaxation of the distribution f towards equilibrium. We will discuss
the validity of this ansatz below. Introducing the group velocity �v(�k ) = �∇�kε(�k ), we
can rewrite (10.36) using the transport-time ansatz as

f (1)(�k ) = −e �E · [�v(�k )τtr]∂εnF (ε(�k )) � e �E · �Λtr(�k )δ(ε(�k )− εF ), (10.37)

where we have introduced the vector transport length �Λtr [55–57]. Equation (10.37)
expresses that the transport-time ansatz accounts for the application of an electric
field �E by a translation of the Fermi surface according to

f(�k ) = feq(�k )− eτtr
�

�E · �∇�kfeq

� feq

(
�k − eτtr

�
�E
)

= nF (ε(�k ) + e�Λtr(�k ) · �E ). (10.38)

For an isotropic Fermi surface, it is natural to expect the response to a homogeneous
electric field �E to be independent of the direction of application: a single transport
time is necessary to describe this response. However, for an anisotropic Fermi surface
with several symmetry axis, we expect different transport times or transport vectors
�Λ(�k, �E) to be necessary to describe the response to different orientations of the applied
electric field with respect to the Fermi surface. This is the case for the hexagonally
warped Fermi surface occurring e.g. in Bi2Te3 and introduced in eq.(10.5), as described
in [3]. Note that this anisotropy of the Fermi surface leading to the existence of different
transport vectors should not be confused with the anisotropy of scattering by disorder
which manifests itself as a discrepancy between transport and elastic mean free time.
In the case of Dirac surface states, the scattering is anisotropic, but the Fermi surface
remains isotropic when warping is neglected.

10.3.1.4 Conductivity

The current density can be deduced from (10.38) by using �j = e
∫
d2�k [f(�k )−

feq(�k )]�v(�k ). The conductivity tensor σαβ defined by jα = σαβEβ satisfies the Einstein
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relation σαβ = e2ρ(εF )Dαδαβ . To express the diffusion coefficients Dα, we introduce
the coordinate k‖ along constant-energy contours and ρ(ε, k‖) the corresponding
density of states satisfying d2�k/(2π)2 = ρ(ε, k‖) dε dk‖. We obtain

Dα =
1

ρ(εF )

∮
dk‖ ρ(εF , k‖)vα(k‖)Λα(k‖). (10.39)

In the case of an isotropic two-dimensional Fermi surface, we recover the usual form
Dx = Dy = D = τtrv

2
F /2, corresponding to

σxx(ε) = e2ρ(εF )
τtrv

2
F

2
=
e2

h

εF
2
τtr
�
, (10.40)

with ρ(εF ) = εF /(2π�2v2
F ) for Dirac fermions as opposed to ρ(ε) = m/(2π�2) and

σ = (e2/h)(v2
F τm/�) for parabolic bands.

10.3.1.5 Transport time

The conductivity depends on the phenomenological transport time in (10.40), which
we will now express in terms of the amplitude of the scattering potential. Using the
Born approximation, the transition amplitude of scattering is expressed in terms of
the matrix elements of the disorder potential introduced in (10.8):

M(�k,�k′) =
2π
�
〈|〈�k|V |�k′〉|2〉V δ(ε(�k )− ε(�k′)). (10.41)

The corresponding collision integral (10.34) satisfies the required condition I[feq] = 0
for any equilibrium distribution parametrized by the energy feq(ε(�k )). In (10.8), we
identify a contribution specific to the Dirac fermion originating from the last term,
which expresses a strong backscattering reduction: scattering is much less efficient for
Dirac fermions than for non-relativistic electrons. This property is a signature of time-
reversal symmetry for a single Dirac cone: the states |ψ(�k )〉 and |ψ(−�k )〉 carry a spin
1
2

and constitute a Kramers pair: they are thus orthogonal. This property implies that
scattering for Dirac fermions is intrinsically anisotropic: we thus have to resort to the
standard description of transport properties in the presence of anisotropic scattering.
Let us plug back the expression (10.41) in the Boltzmann equation (10.36) with the
transport-time ansatz:

− e �E · �v(�k )δ(ε(�k )− εF ) = I[f (1)] =
1
τtr
f (1)(�k )

=⇒ �

τtr
= 2π

∫
dθ′ ρ(εF , θ′)[1− v̂(θ) · v̂(θ′)] cos2

(
θ − θ′

2

)
γV(εF , θ, θ′). (10.42)

For Dirac fermions, v̂(θ) · v̂(θ′) = cos(θ − θ′): we obtain for an isotropic Dirac Fermi
sea ρ(εF , θ) = ρ(εF )/2π and a transport time independent of the incident direction:

�

τtr
= ρ(εF )

∫
dθ′

1− cos2 θ′

2
γV(εF , θ′). (10.43)
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The disorder amplitude γV was defined in (10.6) and(10.8). This expression for the
transport time has to be contrasted with the definition of the elastic scattering time
that appears in, for example, the Dingle factor for Shubnikov–de Haas oscillations:

�

τe
= ρ(εF )

∫
dθ′ γV(εF , θ′). (10.44)

The discrepancy between the transport and elastic scattering times is a consequence
of the anisotropic nature of scattering, which originates in the nature of the Dirac
fermions in the present case. For an isotropic disorder for which γV(εF , θ) = γV(εF )
independent of θ, we recover the standard result τtr = 2τe: it takes twice as long for
Dirac fermions to diffuse isotropically than for conventional electrons.

Note that the expression (10.43) also implies that

σ =
e2v2

F

2
ρ(εF )τtr, with ρ(εF )τtr =

2�

πγV(εF )
. (10.45)

As a consequence of this result, for Dirac fermions in the classical regime, the energy
dependence of the Boltzmann conductivity originates only from the disorder correl-
ations. Corrections to this behaviour can be attributed to a renormalization of the
density, requiring a self-consistent treatment beyond the Born approximation [38], or
to quantum corrections as described below.

10.3.2 Linear response approach

We aim at recovering the previous classical conductivity for the Dirac fermions within a
linear response approach that will allow us later to incorporate quantum corrections.
We start from the Kubo formula, introduced in Section 10.2.3 when studying the
minimal conductivity at the Dirac point.

10.3.2.1 Kubo formula

We consider the longitudinal conductivity σ = σxx of a sample of typical size L. This
conductivity is calculated within linear response theory from the Kubo formula intro-
duced in (10.20) in terms of the Green’s function defined in (10.21). Focusing on the
zero-temperature and ω = 0 longitudinal conductivity, we can consider the expression

σ =
�

2πL2
Re Tr[ĵxĜR(εF )ĵxĜA(εF )], (10.46)

where the trace runs over the quantum numbers (spin and momentum) of electronic
states and we have neglected contributions proportional to GRGR or to GAGA, which
are systematically of lower order than the terms we have kept in the following per-
turbative expansion in 1/kF le [4]. This conductivity depends on disorder through the
Green’s functions (10.21). We focus on the diffusive regime, corresponding to the
semiclassical regime where λF is small compared with the mean scattering length le.
The natural small parameter is 1/(kF le). In this regime, we do not expect the con-
ductivity to depend on the exact configuration of disorder, but only on its strength.
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Such a quantity is called a self-averaging observable: its typical value is identified with
its average over disorder configurations, which is easier to calculate.

Working perturbatively in the disorder allows us to expand the retarded and
advanced Green’s functions as follows:

ĜR/A = [(ĜR/A0 )−1 − V ]−1 = ĜR/A0

∞∑
n=0

(V ĜR/A0 )n, (10.47)

where the Green’s functions for the pure Hamiltonian are defined in (10.22) with τ = τφ
and no disorder potential. Averaging any combination of these Green’s functions over a
Gaussian distribution for V amounts to pairing all occurrences of the disorder potential
V . When this task is performed on the conductivity (10.46), two different pairings
appear: the first consists in pairing potentials V within the expansions of ĜR and ĜA
independently of each other, while the second pairing is of occurrences of V in the
expansion of ĜR with occurrences in the expansion of ĜA. The former amounts to
replacing ĜR and ĜA by their averages over disorder, while the latter corresponds to
the cooperon and diffuson contributions discussed below.

10.3.2.2 Averaged Green’s function and self-energy

Averaging of the expansion (10.47) over disorder can be accounted for by introducing
a self-energy Σ defined as

〈ĜR〉−1
V = Ĝ−1

0 − Σ, (10.48)

where, to lowest order in γV,

Σ(ε) =
∫

d�k′

(2π)2
〈V (�k′)V (−�k′)〉V GR0 (�k − �k′, ε) = γV

∫
d2�k

(2π)2
GR0 (�k, ε). (10.49)

The real part of this self-energy is incorporated in a redefinition of the arbitrary origin
of energies, while its imaginary part defines the elastic scattering time

−Im(Σ) =
�

2τe
= πγVρ(εF ). (10.50)

Hence, the averaging procedure of the Green’s function amounts to replace the dephas-
ing rate of the bare Green’s function by τ−1

φ → τ−1
φ + τ−1

e . In practice, τ−1
φ is often

negligible compared with τ−1
e in this Mathiessen rule, and averaged Green’s functions

are simply given by (10.22) with τ = τe. We can now use these expressions in the
average of the Kubo expression (10.46) by approximating 〈GRGA〉V by the product of
averages 〈GR〉V 〈GA〉V . Performing the remaining trace, we recover an Einstein formula
for the conductivity,

〈σ〉0 =
v2
F τe
2

= D0e
2ρ(EF ), (10.51)

but with a diffusion coefficient D0 that is half the correct Boltzmann expression
(10.40). This discrepancy is a consequence of the inherent anisotropy of scattering
for Dirac fermions, which manifests itself in the difference between the transport
and elastic scattering times. In the present perturbative expansion, it occurs as the
contribution of an additional class of diagrams.
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10.3.2.3 The dominant contributions: cooperon and diffuson

Standard diagrammatic theory of the diffusive regime amounts to summing an infinite
set of dominant diagrams perturbative in disorder strength [37]. These contributions
are conveniently represented by the diffusive propagation of pseudoparticles, the so-
called diffusons and cooperons (see [4] for a recent pedagogical presentation). We can
resort to a simple physical argument to gain an intuitive understanding of the origin of
these contributions. This is most conveniently done by considering the probability to
transfer an electron across the sample from position �r1 to �r2, which is closely related
to the conductivity. In a semiclassical description, this probability is related to the
amplitude A�r1�r2 of diffusion from �r1 to �r2, which itself can be summed à la Feynman
over contributions labelled by classical diffusive paths:

P (�r1, �r2) = |A�r1�r2 |
2

=

∣∣∣∣∣∣
∑
C:�r1→�r2

AC

∣∣∣∣∣∣
2

=
∑
C,C′

ACA∗C′ , (10.52)

where C and C′ are two diffusive paths (or scattering sequences for discrete impurities),
from �r1 to �r2. AC and AC′ represent the corresponding diffusion amplitudes along
these paths. Note that we can view A∗C′ as the amplitude of diffusion for a hole in the
Fermi sea.

Electrons are described at the point �r1 by a Bloch state, and when evolving along a
given path C, their phase is incremented by kFL(C), where L(C) is the length of C (we
neglect any geometrical Berry contribution in this argument). In a good metal, which
is the situation considered in this section, the Fermi wavelength 2π/kF is typically of
the order of the crystal lattice constant. Hence, this phase kFL(C) varies by an amount
of the order of 2π as soon as the path is modified over a (few) lattice spacing(s). Hence,
for two different paths C �= C′, the relative phase L(C)− L(C′) appearing in (10.52) will
vary by 2π over neighbouring paths for which the amplitude |ACA∗C′ | can be assumed
constant. Hence, this term will vanish upon the summation over the paths C and
C′ (corresponding to a disorder average). The only terms surviving this summation
are those for which L(C) = L(C′). This property is naturally associated with pairs
of identical paths C = C′, which can be viewed as the propagation of an electron
and a hole correlated by the disorder: this statistical coupling of paths by disorder
is conveniently viewed as the propagation of a pseudoparticle called a diffuson; see
Fig. 10.3(a). A second solution exists for a path C containing a loop; see Fig. 10.3(b).
In this case, the path C′ is identified with C except around the loop, along which the
direction of propagation is reversed. C′ has approximately the same length as C. The
corresponding contribution can be viewed as the diffusion of a diffuson up to and
from the loop, and the counterpropagation of a particle and a hole around the loop.
This counterpropagation can also be interpreted as the correlated propagation of two
particles along the same loop and called a cooperon by analogy with Cooper pairs in
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Fig. 10.3 (a) Contribution corresponding to an electron and hole moving along the same
path C = C′, described as the propagation of a diffuson. (b) Contribution corresponding to
an electron-like and a hole-like excitation moving in opposite directions along a loop of the
path. Along this loop, this corresponds to the propagation of two particles in the same direc-
tion, accounted for by the diffusive propagation of a cooperon. Note that in this case, quantum
crossing between paths occurs at the point 
r0.

superconductors. The existence of the cooperon is closely related to the time-reversal
symmetry of transport, which identifies the amplitude AC′ with AC: it will disappear
upon the application of a small magnetic field. Note that in Fig. 10.3(b), a crossing
of paths appears when the reconnection of a diffuson with a cooperon is drawn. The
number of such crossings will turn out to be the correct parameter for the perturbative
theory.

10.3.2.4 Classical or quantum?

In the presence of a dynamical environment accounting for the inelastic interaction
of the propagating electrons with other electrons, phonons, etc., we realize that the
contribution corresponding to the diffuson is not affected: both the electron and the
hole contributions encounter the same environment during their evolution, and are
not dephased with respect to each other. Their possible interference contributions are
not affected by this fluctuating environment: this is the signature of a classical con-
tribution. On the other hand, the cooperon contribution corresponds to an electron
and a hole propagating in opposite directions along the loop: they encounter different
dynamical environments during their propagation and are dephased with respect to
each other during this evolution. This is the manifestation of a quantum contribution:
we expect the cooperon contribution to correspond to loops of length smaller than
the typical dephasing length Lφ (with L2

φ � Dτφ). When we study the conductivity
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Fig. 10.4 Conventions for the diagrammatic perturbative theory.
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Fig. 10.5 Diagrammatic representation of the recursive calculation satisfied by the diffuson
structure factor.

fluctuations, we will encounter different cooperons and diffusons, which correspond to
the propagations correlated by the disorders of a particle and a hole evolving in differ-
ent thermal environments: in this situation, both cooperon and diffuson are affected
by a dephasing due to their environment, and correspond to quantum corrections to
the conductivity fluctuations.

10.3.2.5 Diffuson contribution to the conductivity

Let us focus for now on the classical contribution to the conductivity. For simplicity,
in the following we will consider a Dirac cone without warping (see [3] for a non-
perturbative treatment of warping using the diagrammatic formalism). According to
the previous discussion, the correction to the expression (10.51) of the conductivity
comes from contributions of the diffuson (Fig. 10.3(a)). The corresponding term
requires a summation over a geometric series of diagrams of the same perturbative
order [4, 37]. It is best represented diagrammatically: we will use the convention of
Fig. 10.4 to represent averaged Green’s functions and disorder correlations (second
cumulants). The real-space picture of the diffuson contribution can be represented as
a contribution to the conductivity: it corresponds to the insertion in the trace occurring
in the Kubo formula (10.46) of a sequence (diffusion path) of retarded and advanced
Green’s functions representing the evolution of a particle and hole, correlated by the
disorder. It turns out that sequences (or paths) of all lengths contribute to the final
result: the summation over all sequences amounts to considering a ‘diffuson structure
factor’ Γ obtained from the algebraic sum of terms shown in Fig. 10.5.

The recursive nature of this algebraic sum represented in Fig. 10.5 can be expressed
by the relation

Γαβ,γδ(�q ) = γVIαγ ⊗ Iβδ + γVΓαβ,μν(�q ) Πμν,γδ(�q ), (10.53)
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jα Π Γ

Fig. 10.6 Diagrammatic representation of (a) the bare and diffuson contributions to the aver-
aged conductivity and (b) the renormalization of the vertex current operator accounting for the
contribution of the diffuson.

where we have explicitly written the dependence on spin indices and Π is the quantum
diffusion probability [4]:

Πμν,γδ(�q ) =
1
L2

∑
�q1

〈GRμγ(�q1 + �q )〉V 〈GAνδ(�q1)〉V . (10.54)

By using the expression (10.22) for the Green’s functions, we can perform the integral
over momentum in the diffusive limit and obtain

Π(�q ) =
1

2γV

[(1− 2w2
e)I⊗ I + 1

2 (1− w2
e)�σ ⊗ �σ

− iwe(q̂ · �σ ⊗ I + I⊗ q̂ · �σ)− w2
e q̂ · �σ ⊗ q̂ · �σ] +O(w2

e), (10.55)

with we = τevfq/2� 1 in the diffusive limit and where we have used the notation
�σ = (σx, σy) and q̂ = �q/|q|. Note that in the present case, the ‘complexity’ of the
structure factor Γ, i.e. its spin content, originates from the free Green’s functions
of the Dirac particles embedded in the probability Π and not the symmetry of the
disorder correlations γV as is standard for quadratic bands [4].

The sum of the bare and diffuson contributions to the conductivity represented in
Fig. 10.6 is expressed as

σ =
�

2πL2
Re Tr[jxΠjx] +

�

2πL2
Re Tr[jxΠΓΠjx], (10.56)

where we have used the following condensed notation for the spin contractions:
Tr[jxΠjx] = jβαΠαβ,γδjγδ. These two contributions can be recast as a modification
or renormalization of the vertex current operator using (10.53), written in condensed
form as γ−1

V Γ = I + ΓΠ:

σ =
�

2πL2
γ−1

V
Re Tr[jxΠΓjx] =

�

2πL2
Re Tr[jxΠJx], (10.57)
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with the ‘renormalized’ vertex current operator represented in Fig. 10.6 and defined by

Jx = jx + ΓΠjx = γ−1
V

Γjx. (10.58)

Note that only the limit �q → �0 of Π(�q ) enters this expression, which from (10.55)
reduces to

Π(�q = �0 ) =
1

2γV

(I⊗ I + 1
2σx ⊗ σx + 1

2σy ⊗ σy). (10.59)

From this expression, we obtain the renormalized vertex

Jα = (evF )γ−1
V Γ(�q = �0 )σα

= (evF )[I⊗ I− γVΠ(�q = �0 )]−1
σα

= (evF )2(I⊗ I− 1
2σx ⊗ σx −

1
2σy ⊗ σy)

−1
σα

= 2(evF )σα = 2jα for α = x, y. (10.60)

The final contraction can be done without further algebra: we obtain twice the result
of (10.51). This result correspond to a renormalization by 2 of the current operator:
Jα = 2jα. Hence we recover the Boltzmann result of (10.45): the anisotropic scattering
inherent to the Dirac nature of the particles leads to a doubling of the transport time
with respect to the elastic scattering time.

Note that the notation of the first line of (10.60) is misleading and should be read
as Jα = (evF )γ−1

V
limq→0 Γ(�q )σα. Indeed, from the discussion around Fig. 10.3, we

expect Γ(�q ) to possess long-wavelength diffusive modes, corresponding to eigenen-
ergies � 1/(Dq2) of Γ(�q ). These diffusive modes encode the quantum corrections
to transport. As a consequence, in the limit �q → �0, the operator I− γVΠ(�q ) is no
longer invertible and Γ(�q ) becomes ill defined. However, we can explicitly check that
the contraction Γ(�q ) · σα remains well defined in this limit, which justifies a poste-
riori the above notation. Indeed, the renormalization of the elastic scattering time
into a transport time occurs on a short distance scale, and is expected to be in-
dependent from the long-distance physics of the diffusive quantum modes. This is
demonstrated by the above property: the vertex renormalization of (10.60) does not
depend on the vanishing modes of I− γVΠ(�q ), but only on its (non-universal) massive
modes.

10.4 Quantum transport of Dirac fermions

The last three decades have seen the exploration of electronic transport in conductors
below the micrometre scale [9, 18]. Owing to the interaction with its environment,
the phase φ of an electron is randomly incremented during its evolution: this phase
evolution on the unit circle is characterized by the rate of increase of the fluctuations
(δφ)2. As the electron evolves in real space, its phase φ spreads over the unit circle.
Beyond a characteristic length Lφ, the variance of the phase is of order (δφ)2 � (2π)2:
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the statistical uncertainty on the electron phase due to the coupling with the en-
vironment forbids any measurable interference effect. By lowering the temperature
(density of phonons), we increase the corresponding phase coherence length Lφ(T )
for the electrons (at lower temperatures, other mechanisms such as electron–electron
interactions and the Kondo effects on magnetic impurities take over). At temperatures
T � 100 mK, the typical order of magnitude of Lφ(T ) is a few micrometres. The study
of such small conductors at low temperature has led to the appearance of a new domain
of research: mesoscopic quantum physics [9, 18]. Many features of transport of such
mesoscopic conductors are remarkable: the quantum corrections to the conductance of
a mesoscopic conductor depend on the precise locations of impurities in a given sam-
ple: different mesoscopic samples prepared according to exactly the same protocol (or
successive annealing of a given sample allowing for disorder reorganizations) display
different values of conductance. In this regime, the phase-coherent conductance is said
to be a non-self-averaging observable: it fluctuates from sample to sample for sizes
L ≤ Lφ(T ). In the limit L� Lφ(T ), the conductor can be viewed as an incoherent
collection of pieces of size Lφ(T ) and relative fluctuations are statistically reduced: we
recover the previous classical regime. The description of the conductance of a phase-
coherent conductor requires the use of a distribution function, which for weak disorder
is a Gaussian characterized by two cumulants. Moreover, the conductance fluctuates
as a function of a weak transverse magnetic flux threading the sample. These fluctu-
ations should not be confused with noise: they are perfectly reproducible for a given
sample and do not fluctuate in time like typical 1/f noise. Indeed, the whole magne-
toconductance trace is modified as the sample is annealed: each curve appears as a
unique signature of the location of the impurities in the sample. It is a real fingerprint
of the configuration of disorder.

The nature of this magnetoconductance and its quantum origin can be understood
as follows. As hinted at in Section 10.3.2, along a given diffusive path, the phase of
an electronic state is incremented by δφL = kL, where L is the length of the path.
For electrons at the Fermi level, k � kF , and this phase δφL � 2πL/λF is extremely
sensitive on the lengthscale L, which is typically much larger than the Fermi wave-
length λF . Between different samples the positions of these impurities are different,
and all the lengths L are modified by at least λF , and correspondingly the phases δφL
are redistributed randomly. The conductivity being a non-self-averaging quantity, its
value thus differs from sample to sample. A different procedure allows redistribution
of these phases along the diffusive path, namely the application of a transverse mag-
netic field. The presence of such a field can be accounted for by an extra dephasing
e
∫
L
�A · d�l along each path L, where �A is the vector potential. The shapes of these

paths L and thus the associated magnetic phases are random: similarly to a change
in impurity positions, the magnetic field redistributes the phases associated with each
path in a sample and accordingly changes the value of the conductivity. Whenever a
new quantum of magnetic flux is added though the sample, the typical phase shift
between two paths crossing the sample is of order 2π, and we obtain a different value
of the conductivity. Moreover this function G(B), called a magnetoconductance trace,
provides an invaluable access to the statistics of conductance in the quantum regime.
Since both the magnetic field and the change in disorder amount to redistribution of
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the phases in a random manner, we expect both perturbations to lead to the same stat-
istics of the conductance. This is the so-called ergodic hypothesis, which turns out to
be quantitatively valid for the first two moments of the conductivity distribution [61].

Let us now consider the coherent regime of transport, relevant for transport on
timescales shorter than the dephasing time τφ(T ), defined from the imaginary part
�/(2τφ) of the self-energy for electrons; see (10.21). In this regime, and for weak enough
disorder, which is the case experimentally, the conductivity is Gaussian-distributed,
and is fully characterized by its first two cumulants. The first cumulant 〈δσ〉V de-
scribes the so-called weak (anti-)localization correction to the averaged conductivity,
while the second cumulant 〈(δσ)2〉V is associated with the universal fluctuations of
the conductivity from sample to sample or as a function of the magnetic field. We
have already guessed in the discussion in Section 10.3 that the origin of these quan-
tum corrections to the conductivity lies in the existence of long-wavelength statistical
correlations conveniently viewed as propagating diffuson and cooperon modes. In the
following, we will briefly review the description of the corresponding diagrammatic
contributions.

10.4.1 Quantum correction to the conductivity: weak antilocalization

The two contributions represented in Fig. 10.3 to the average conductivity correspond
to diagrams similar to that of Fig.10.6 with either a diffuson or a cooperon structure
factor. We have already seen in Section 10.3 that the diffusive mode of the diffuson
does not contribute to the average conductivity: only short-distance contributions
renormalize the vertex operator. Hence, we shall focus only on the contribution of
a cooperon structure factor represented in Fig. 10.7, where Γ̃ is a structure factor,
analogous to that in Fig.10.5, and accounting for an infinite series of maximally crossed
diagrams:

Γ = + + + +˜ .. .

This series of terms can be recast as a geometric series by time reversal of the advanced
branch: similarly to the diffuson, the cooperon structure factor satisfies a recursive
equation:

k + 1 Q
2

k – 1 Q
2 ḱ + 1 Q

2
ḱ + 1 Q

2

1 Q
2

1 Q
2

1 Q
2

k + 1 Q2ḱ +ḱ +
α

β

α

β

α

β

α

βδ δ

γ γ

= +

ḱ + 1 Q –
2

1 Q2ḱ +–q1

q1

ḱ + + q1

Γαβ,γδ(Q) Γαβ,μν(Q)
ν

μ
˜
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Fig. 10.7 Diagrammatic representation of the first quantum correction to the averaged con-
ductivity (left) and equivalent representation in terms of a contraction between a Hikami box
and a cooperon structure factor (right).

or, equivalently,

Γ̃αβ,γδ(�Q) = γVIαγ ⊗ Iδβ + γVΓ̃αβ,μν( �Q)Π̃μν,γδ( �Q), (10.61)

with

Π̃μν,γδ( �Q) =
1
V

∑
�q1

〈GRμγ(�q1)〉V 〈GAνδ( �Q− �q1)〉V . (10.62)

The value of Π̃ can be deduced by time reversal of the advanced branch of the expres-
sion (10.55) for Π(�q ). From inversion of (10.61) we obtain the long-wavelength behav-
iour of the cooperon structure factor Γ̃( �Q). Only one eigenmode is diffusive, with an
eigenvalue 1/(DQ2) for Q→ 0, corresponding to a singlet mode. Hence, in the diffusive
limit, the cooperon structure factor reduces to a projector onto this singlet mode:

Γ̃( �Q) =
γV

τe

1
DQ2

1
4
(I⊗ I− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz)

=
γV

τe

1
DQ2

|S〉〈S|, (10.63)

where D = v2
F τe is the diffusion constant and |S〉 is a singlet state as defined in

Section 10.4.3.
The weak antilocalization correction represented on the left side of Fig. 10.7 is

conveniently viewed as a contraction of a cooperon structure factor and a Hikami box,
as shown on the right side of Fig. 10.7. The corresponding contribution is

〈δσ0〉 =
�

2πL2
Tr[GA(�k )JxGR(�k )Γ̃( �Q)GR( �Q− �k )JxGA( �Q− �k )]. (10.64)

In this expression, the �Q integral (occurring in the trace over quantum numbers)
is dominated by the small �Q contribution originating from the diffusive pole of the
cooperon. This justifies a posteriori the projection on the single diffusive mode in
(10.63). Focusing on the most dominant part of this expression, we can set Q→ 0
except in the cooperon propagator, the Green’s functions being regular in �k: this
amounts to setting �k = �0 in the expression of the Hikami box.
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Fig. 10.8 First renormalized Hikami box as the sum of three contributions.

Let us now turn to the expression for this Hikami box: it turns out that besides
the contribution depicted in Fig. 10.7, two other terms of the same order have to
be included. This is a standard mechanism when scattering is anisotropic [4] and
follows from the nature of the Dirac Green’s functions. The three contributions consist
in considering a renormalized Hikami box as the sum of three terms represented in
Fig. 10.8. The integrals corresponding to the three terms are performed according to

H̃(0)
xx = 4

∫
�k

[GA(�k )σxGR(�k )]⊗ [GR(−�k )σxGA(−�k )]

= ρ(εF )
(

2τe
�

)3
π

16
(−4I⊗ I + 3σx ⊗ σx + σy ⊗ σy), (10.65)

H̃(1)
xx = 4γV

∫
�k

∫
�q1

[GA(�k )σxGR(�k )GR(−�q1)]⊗ [GR(−�k )GR(�q1)σxGA(�q1)]

=
π

16
ρ(εF )

(
2τe
�

)3

(I⊗ I− σx ⊗ σx), (10.66)

H̃(2)
xx = 4γV

∫
�k

∫
�q1

[GA(−�q1)GA(�k )σxGR(�k )]⊗ [GR(�q1)σxGA(�q1)GA(−�k )]

= H̃(1)
xx (10.67)

Summing these three contributions, we obtain the renormalized Hikami box:

H̃xx = H̃(0)
xx + H̃(1)

xx + H̃(2)
xx

= ρ(εF )
(

2τe
�

)3
π

16
(−2I⊗ I + σx ⊗ σx + σy ⊗ σy).

(10.68)

The resulting weak antilocalization correction is obtained via the final contraction
with a cooperon structure factor (10.63) as shown in Fig.10.7 (with H̃(0) replaced by
H̃), and leads to the result
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〈δσ〉V =
e2

π�

1
L2

∑
Q

1
Q2

=
e2D

π�

∫ τφ

τtr

dt

4πDt
(10.69)

=
e2D

π�

∫ τφ

τtr

P (0, t) dt (10.70)

� e2

πh
ln
Lφ
le
. (10.71)

The form of this correction appears reminiscent of its physical origin: it is due to
the cooperon interference at a point before and after a diffusive travel around a loop.
Thus, this correction is proportional to the probability P (0, t) that this cooperon
diffuses back to its origin on loops smaller than Lφ,

10.4.2 Universal conductance fluctuations

We now consider the second cumulant 〈(δσ)2〉V of the distribution function of con-
ductivity, with δσ = σ − 〈σ〉V . From the relation (10.40), σ = e2ρ(εF )D, we expect the
fluctuations of conductance 〈(δσ)2〉V to originate either from fluctuations of the dif-
fusion coefficient e2ρ(εF )〈δD〉V or fluctuations of the density of states e2D〈δρ(εF )〉V .
These two physical sources of fluctuations correspond to two different types of dia-
grams (Figs. 10.9 and 10.10). Their identification proceeds along the same lines as for
the average conductivity: similarly to a Lego game, we need to assemble the elementary
blocks we have identified: the cooperon and diffuson structure factors and the Hikami
boxes. The diffuson structure factor is deduced from that of the cooperon (10.63) by
time-reversal symmetry of the advanced branch: it reduces again to a projector on a
single state, denoted the diffuson singlet as defined in Section 10.4.3:

Γ(�q = �0 ) =
γV

τe

1
Dq2

1
4
(I⊗ I + σx ⊗ σx − σy ⊗ σy + σz ⊗ σz)

=
γV

τe

1
Dq2

|S̃〉〈S̃|.
(10.72)
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Fig. 10.9 Diagrams describing the contributions to the conductivity fluctuations accounting
for the fluctuations of the diffusion coefficient.
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Fig. 10.10 Diagrams describing the contributions to the conductivity fluctuations accounting
for the fluctuations of the density of state.

Following a similar approach to that adopted in the case of the cooperon, we identify
a second renormalized Hikami box for diagrams involving diffuson structure factors in
Fig. 10.9:

H = ρ(EF )
(

2τe
�

)3
π

16
(2I⊗ I + σx ⊗ σx + σy ⊗ σy). (10.73)

The resulting contractions of the diagrams of Fig. 10.9 between two diffuson or
cooperon structure factors lead to the result

Δσ2
1 = 8

(
e2

h

)2 ∑
�q

1
(L2q2)2

. (10.74)

This contribution can be interpreted as describing the fluctuations of the diffusion
coefficient D [4].

A second contribution to the conductance fluctuations originates from diagrams
with a different topology, represented in Fig. 10.10. They describe the fluctuations of
the density of states ρ(εF ) [4]. Their determination requires two additional Hikami
boxes:

H ′ = ρ(EF )
(

2τe
�

)3
π

16
(I⊗ I + σx ⊗ σx), (10.75)

H̃ ′ = ρ(EF )
(

2τe
�

)3
π

16
(I⊗ I− σx ⊗ σx). (10.76)

The final result after contraction in spin space of these diagrams is

Δσ2
2 = 4

(
e2

h

)2 ∑
�q

1
(L2q2)2

. (10.77)
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Summing the two contributions (10.74) and (10.77), we finally get the amplitude of
the universal conductance fluctuations (UCF):

〈(δσ)2〉V = 12
(
e2

h

)2 ∑
�q

1
(L2q2)2

=
12
π4

(
e2

h

)2 ∑
nx �=0,ny

1
(n2
x + n2

y)2
. (10.78)

The results (10.69) and (10.78) together define the quantum corrections to the diffusive
transport of Dirac fermions in d = 2. They correspond exactly to known results for
the symplectic class in d = 2, and the previous calculations appear as a tedious way
to recover these results for the specific case of Dirac fermions. In the next subsection,
we will discuss how this is indeed the case by introducing the notion of universality
class for quantum corrections to diffusive transport.

10.4.3 Notion of universality class

10.4.3.1 Universality class and number of diffusive modes

In deriving diagrammatically the perturbation theory of weak localization, we have
identified the building blocks as diffusive modes (either cooperon or diffuson) and
the Hikami boxes that reconnect these propagating modes to the current vertices.
Moreover, we have found that the quantum corrections to the two first cumulants
of the conductivity probability distribution function depend on the number of such
Goldstone modes. This unusual universality strongly points towards an effective field
theory approach underlying the above perturbation theory. This is indeed the case, and
the nonlinear sigma model developed to analyse the Anderson localization transitions
turns out to be a very elegant framework not only to understand the universal results
in the perturbative regime and classify all the possible universality classes [70], but also
to derive in a systematic manner the higher cumulants of the conductivity probability
distribution function [8]. In particular, the number of diffusive modes responsible for
the quantum corrections to the conductance appears as the ‘dimension’ of the target
space of this effective field theory. This classification of symmetry classes of quantum
transport has been used to analyse the occurrence of topological order in a gapped
phase from the stability of their surface states with respect to disorder [50]. In this case,
this stability manifests itself as a topological term allowed in the field theory action,
which forbids Anderson localization. Such topological terms are irrelevant within the
regime perturbative in disorder on which we focus here, and will not be discussed
further.

A discussion of the field theory approach to the weak localization of electrons goes
beyond the scope of the present lectures. A thorough discussion of the construction of
the generating functional for the conductance moments can be found in [8] (see also
[22]), while a recent pedagogical introduction can be found in the textbook [7]. The
general idea of this approach, inspired by the diagrammatic perturbative expansion
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Conductivity σ(φ)

Magnetic flux φ

0 φ0

UCF

Orthogonal

Symplectic

Unitary

〈σ〉V

Fig. 10.11 Schematic behaviour of the quantum contribution to the averaged conductivity,
observed in samples of size large compared with the phase-coherent lengthscale Lφ(T ), as a
function of a weak magnetic field for different symmetry classes. (i) In the orthogonal class,
corresponding for example to parabolic bands with charged impurities, a weak localization be-
haviour is present, which vanishes when a magnetic field is applied, leading to the characteristic
behaviour represented by the thick full curve. (ii) In the symplectic class, corresponding for
example to Dirac bands with charged impurities, the quantum correction at B = 0 corresponds
to a weak antilocalization, leading to the behaviour represented by the dashed curve. (iii) When
time-reversal symmetry is broken (unitary class), no dependence on a weak magnetic field is
observed (dotted line). For short samples of size comparable to Lφ(T ), fluctuations of the con-
ductivity occur as a functions of the magnetic field, characteristic of the unitary symmetry
class.

presented in Section 10.3.2, amounts to considering cumulants of pairs of Green’s
functions GRGA occurring in the Kubo formula (10.46). When doing so, the pairings
between fermionic fields corresponding to both the cooperon and the diffuson modes
are treated on an equal footing. This amounts, after standard field theory techniques,
to considering an action for the field

Q =

⎛⎜⎜⎜⎜⎝
d↑↑ d↑↓ −c↑↓ c↑↑

d↓↑ d↓↓ −c↓↓ c↓↑

c∗↓↑ c∗↓↓ d∗↓↓ −d∗↓↑
−c∗↑↑ −c∗↑↓ −d∗↑↓ d∗↑↑

⎞⎟⎟⎟⎟⎠ , (10.79)

where c and d correspond to the modes in the cooperon and diffuson pairing channels
(we consider spin- 1

2 particles with no additional quantum number, as opposed to,
for example, graphene). In a typical Landau approach, the dominant terms of this
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action in the long-wavelength limit can be determined from symmetry constraints:
the Goldstone modes of the resulting nonlinear sigma model, corresponding to the
diffusive cooperon and diffuson modes, are thus entirely determined by the dimension
of space and the statistical symmetry of the disordered model. We summarize the
results of this approach below.

The spin structure of the Dyson equation (10.53) reflects the construction of the
diffuson as the tensor product of two spins 1

2 associated with the retarded and advanced
Green’s functions. It is thus naturally diagonalized by using the basis of singlet and
triplet states for a spin 1

2 and a time-reversed spin (with T |↑〉 = |↓〉 and T |↓〉 = −|↑〉):

|S〉 = 1√
2
(|↑↑〉+ |↓↓〉), |T1〉 = 1√

2
(|↑↑〉 − |↓↓〉),

|T2〉 = |↑↓〉, |T3〉 = |↓↑〉.
(10.80)

Similarly, the cooperon’s structure factor is diagonalized in the basis of two spins 1
2
:

|S̃〉 = 1√
2
(|↑↓〉 − |↓↑〉), |T̃1〉 = 1√

2
(|↑↓〉+ |↓↑〉),

|T̃2〉 = |↑↑〉, |T̃3〉 = |↓↓〉.
(10.81)

In these bases, (10.53) and the equivalent equation for the cooperon are diagonalized
for each state: the various diffuson and cooperon modes propagate either diffusively
or not. We can write formally

ΓS/T (�q ) =
γV

τe

1
Dq2 + ηφ + ηD,S/T

, (10.82)

Γ̃S/T ( �Q) =
γV

τe

1
DQ2 + ηφ + ηC,S/T

, (10.83)

with ηφ = �/τφ. The various dephasing rates account for the possible decay over short
lengthscales of the respective mode: ηC/D,S/T = 0 for the diffusive mode, while it is
finite for modes contributing only on short lengthscales (crossover between different
universality classes can be described along these lines [23]).

The general expression for the quantum correction to the averaged conductivity is
the following sum of contributions:

〈δσ〉V = −e
2D

π�

⎛⎝−1
4

1
Ld

∑
Q

1

DQ2 + η
(C)
S + ηφ

+
1
4

∑
α

1
Ld

∑
Q

1

DQ2 + η
(C)
Tα

+ ηφ

⎞⎠ ,

(10.84)

where d is the dimensionality of diffusion. In this expression, the cooperon singlet mode
occurs as a negative correction, while all triplet modes contribute a positive correction:
this quantum correction thus depends solely on the number of modes of the cooperon
structure factor. The different symmetry classes, initially identified through random
matrix considerations (see [15] for a general review), correspond to different numbers
of cooperon modes:
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• In situations with spin-rotation symmetry, corresponding to a spinless Ham-
iltonian with a time-reversal symmetry satisfying T 2 = I, all cooperon modes
are present and contribute to the quantum correction, which is negative. This
corresponds to the weak-localization situation.

• When spin–momentum locking occurs, due either to the pure Hamiltonian (Dirac
case) or to the disorder type (spin–orbit disorder), all triplet modes are affected
and cannot diffuse on long distances. Only the singlet modes contribute to (10.84)
and we find a weak antilocalization. This corresponds to a situation where time-
reversal symmetry satisfies T 2 = −I. Note that the d = 2 situation of random
spin–orbit is special since disorder affects only the z components of spins: one
triplet and one singlet mode remain unaffected and we obtain a “pseudo-unitary’
class [31].

• Finally, when spin symmetry is broken, either by magnetic impurities or by a
magnetic field, no cooperon modes diffuse and we obtain a vanishing quantum
correction.

These three cases are summarized in Table 10.1.
Similarly, the amplitude of universal conductance fluctuations can be written as

the sum of the contributions from the different diffusive modes:

〈(δσ)2〉V = F (ηD,Sm + ηφ) +
∑

α=1,2,3

F (ηD,Tα
m + ηφ)

+ F (ηC,Sm + ηφ) +
∑

α=1,2,3

F (ηC,Tα
m + ηφ),

(10.85)

where

F (η) = 6
∑
�q

1
[(Lq)2 + η]2

. (10.86)

Hence the conductance fluctuations depend linearly on the number of diffusive modes.
This is summarized in Table 10.2.

Table 10.1 Summary of the symmetry classes for the different types of disorder for quadratic
and Dirac Hamiltonians.

SCALAR DISORDER RANDOM SPIN–ORBIT MAGNETIC

DISORDER

Quadratic dispersion Orthogonal Symplectic (d = 3) Unitary

Pseudo-unitary (d = 2)

Dirac dispersion Symplectic Symplectic Unitary
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Table 10.2 Summary of the numbers of singlet (S) and triplet (T) modes for the cooperon and
diffuson structure factors. The weak-localization and universal conductance fluctuations (UCF)
contributions are represented as respective integer factors depending solely on the numbers of
diffusive modes. The corresponding proportionality factors are defined in (10.84) and (10.85)

SYMMETRY TIME-REVERSAL DIFFUSON COOPERON WEAK UCF

CLASS SYMMETRY MODES MODES LOCALIZATION

Orthogonal T 2 = I 1 S + 3 T 1 S + 3 T −2 8

Symplectic T 2 = −I 1 S 1 S +1 2

Unitary 0 1 S 0 0 1

10.4.4 Effect of a magnetic field

10.4.4.1 Transverse magnetic field

In the presence of a magnetic field, the probability of return to the origin during time
t of a diffusive walk is modified to [4]:

Zc(t, B) =
φ/φ0

sinh(4πBDt/φ0)
(10.87)

where φ = BL2 and the argument of the sinh function is the dimensionless magnetic
flux through the region 4πl2t typically explored by the diffusive path during time t:
l2t = Dt. The corresponding quantum contribution to the conductivity can be written
as

〈δσ(B)〉V = (# C, S −# C, T)
e2D

π�

∫ τφ

τtr

Zc(t, B)

= (# C, S −# C, T)
[
Ψ
(

1
2

+
�

4eDBτtr

)
−Ψ

(
1
2

+
�

4eDBτφ

)]
,

(10.88)

where Ψ(x) is the digamma function. This formula is commonly used as a fit to
extract the phase-coherent time τφ from experimental transport measurements. Note
that in this case, the expression (10.88) describes a crossover from the orthogonal or
symplectic class at B = 0 to the unitary class at larger magnetic field, as represented
in Fig. 10.11.

10.4.4.2 Aharonov–Bohm-like oscillations

Finally, we consider a cylinder made out of a topological insulating material, with
a metallic Dirac metal at its surface (see Fig. 10.12). The cylinder is assumed to
be long compared with the dephasing lengthscale Lφ(T ) so that conductance fluctu-
ations are negligible (they are statistically reduced by the incoherent combination of
contributions of domains of size Lφ(T )). This conductivity is thus well described by its
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φ Conductivity σ(φ)

Flux φ

Orthogonal

Symplectic

Fig. 10.12 Schematic representation of the Aharonov–Bohm oscillations of a metal at the
surface of a cylinder. In the case of Dirac particles, we expect behaviour predicted by the
symplectic symmetry class.

average 〈σ〉V , which consist of both the classical contribution and the quantum correc-
tion. This quantum correction is due to the contribution of cooperon diffusive modes.
When a magnetic flux is threaded through the section of the cylinder, this cooperon,
which carries a charge, 2e acquires an Aharonov–Bohm phase, leading to oscillations
of the quantum contribution to the conductivity with a period φ̃0 = h/2e. As depicted
in Fig. 10.12, the phase of these oscillations is fixed by the sign of the quantum cor-
rection at φ = 0, and thus by the symmetry class. In the case of Dirac fermions, these
oscillations are reminiscent of the π phase acquired owing to momentum–spin locking
by particles when winding around the cylinder in the ballistic limit. However, the ab-
solute phase of these ballistic oscillations is very sensitive to energy, which renders it
hard to measure experimentally. See [11, 68] for discussions of this effect in the context
of the surface states of topological insulators and [12] for a detailed discussion.
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11.1 Introduction

The subject of these lectures combines several different manifestations of topology in
a condensed matter system. The most classical one is through the notion of texture.
By this, we mean any non-singular and topologically non-trivial spatial configuration
of some relevant order parameter. Textures are therefore qualitatively different from
defects, for which the order-parameter field exhibits a point-like singularity in two-
dimensional (2D) space, or more generally a codimension-2 surface of singularity
in D-dimensional space. In this latter situation, the set of points where the order-
parameter field is smooth exhibits a non-trivial topology, equivalent to that of a circle
S1. Denoting by M the order-parameter manifold, defects are naturally classified by
the group π1(M) of homotopy classes of smooth maps from S1 to M [1–3]. By con-
trast, textures with a finite energy correspond to configurations in which the order
parameter is uniform at infinity, which allows us to compactify physical space into
a D-dimensional sphere SD. Textures are then classified according to the higher ho-
motopy group πD(M). In most systems, textures appear as finite-energy excitations
above an ordered ground state. A remarkable aspect of quantum Hall ferromagnets is
that non-trivial textures have been predicted to form, if the electronic g factor is not
too large, as soon as electrons are added to or removed from a filled Landau level [4].
Spin textures on a 2D system are classified by π2(S2) = Z, so they carry an integer
topological charge Ntop. A striking prediction of Sondhi et al. [4] is that Ntop is iden-
tical to the electric charge: it is equal to +1 for a hole (skyrmion) and to −1 for an
electron (antiskyrmion). This picture has been confirmed experimentally, in particular
thanks to NMR measurements of the electronic spin susceptibility [5] and nuclear spin
relaxation [6]. Experimentally, it is easier to control the skyrmion density 1− ν than
their total number. Here ν denotes, as usual, the filling factor of the lowest Landau
level. For a small but finite skyrmion density, it has been predicted that the long-range
Coulomb interaction between the charges bound to skyrmions will favour their order-
ing into a 2D periodic lattice [7, 8]. Several experiments have provided substantial
evidence for the existence of skyrmion lattices in 2D electron gases close to ν = 1.
Let us mention for example specific-heat measurements [9, 10], NMR relaxation [11],
Raman spectroscopy [12], and microwave pinning-mode resonances [13].

More recently, the physics of quantum Hall ferromagnets has been stimulated by
the discovery of new systems that can provide access to more than two internal states
for each electron. The first of these is the quantum Hall bilayer [14], in which, be-
sides the physical electronic spin, the additional bilayer degree of freedom can be
viewed as a kind of isospin. Skyrmions in these systems have been studied in great
detail [15]. Unfortunately, bilayers are far from the maximal SU(4) symmetry that one
may expect in a system with four possible internal states. The discovery of graphene
opened a very promising way to achieve such a large symmetry. In graphene, the iso-
spin degree of freedom is implemented thanks to the existence of two inequivalent
Dirac points. It has been shown that in the presence of an external magnetic field B,
the couplings that break SU(4) symmetry are smaller than the symmetry-preserving
ones by a factor a/l, where a is the lattice spacing and l =

√
�/eB is the magnetic

length [16, 17]. Other possible examples of systems with more than two internal states
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are semiconductors with valley degeneracy [18–20] and cold atoms [21, 22]. Theoretical
work has been dedicated to the elucidation of phase diagrams for skyrmionic matter
in the presence of various physically relevant interactions and anisotropies [21–23]
and to the computation of the associated collective mode spectrum [24]. These lat-
ter calculations have been partly motivated by NMR relaxation-rate measurements
on bilayer systems [25, 26]. Recently, we have revisited these questions for fermions
with d internal states and for SU(d)-symmetric effective Hamiltonians [27]. This high
symmetry allowed us to set up an accurate variational calculation for the optimal
wavefunction describing a periodic lattice of skyrmions, for which a simple analytic
expression has been obtained. Because these periodic states fully break the under-
lying SU(d) symmetry, we expect a collective mode spectrum composed of d2 − 1
Goldstone branches and one magnetophonon branch. These expectations have been
confirmed by explicit calculations based on a time-dependent Hartree–Fock treatment
of our SU(d)-symmetric effective Hamiltonian.

The goal of these lectures is to provide a theory-oriented introduction to the phys-
ics of textures in quantum Hall ferromagnets, so they do not attempt to review this
already rich subject, and many important aspects will not be mentioned. To give an
idea, the APS website records 600 citations for the paper by Sondhi et al. [4]. Our
recent approach on periodic textures will be presented in Section 11.3, and the asso-
ciated collective modes will be the subject of Section 11.4. But before discussing our
contributions, I try to show in some detail how to derive the effective models that we
use from microscopic models of interacting fermions in the lowest Landau level. Estab-
lishing this connection is the goal of Section 11.2. Most of the results there are already
quite old and are due to many researchers [4, 15, 28–32]. I have tried to give a unified
presentation of these seminal works using the framework of coherent-state quant-
ization [33, 34]. This formalism appears at two stages, with different manifestations
and purposes. The first is to associate a Slater determinant |Sψ〉 composed of single-
electron orbitals in the lowest Landau level with a prescribed texture, described in
terms of a smooth d-component spinor field ψa(r) (1 ≤ a ≤ d). Coherent-state quant-
ization is used to construct precisely |Sψ〉 and to compute the expectation values of
some physical observables such as the particle density and the interaction energy. The
key remark here is that projection onto the lowest Landau level turns the physical
plane into a two-dimensional phase space, in which each single-particle quantum state
occupies an area equal to 2πl2. In the strong-field limit, this area goes to zero as 1/B,
so we have a kind of classical limit, in which we can neglect the non-commutation
between the two guiding-centre coordinates R̂x and R̂y. Going away from this limit
yields naturally a gradient expansion in which the small parameter is nl2, where n is
the average topological charge density. The second use of coherent-state quantization
is at the many-particle level. We can indeed view the Slater determinants |Sψ〉 as
coherent states for the many-fermion problem, spanning a low-energy subspace within
the fermionic Fock space. Although the mathematical aspects here are not as clear
to us as for the single-particle level, this viewpoint can still provide a useful intuition
for the many-body problem [35, 36], and will motivate our subsequent treatment of
collective dynamics in Section 11.4.
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11.2 Physical properties of spin textures

11.2.1 Intuitive picture

Before beginning our discussion of textures in quantum Hall systems, it is useful
to recall a few aspects of the physics of a single charge e particle moving on a 2D
plane in a strong uniform magnetic field. In this limit, the particle undergoes a fast
cyclotron motion with characteristic frequency ωc = eB/m. In the absence of disorder,
the corresponding energy spectrum is quantized according to En = �ωc(n+ 1

2
), with

n a non-negative integer. Each of these Landau levels is infinitely degenerate in the
thermodynamic limit. The physical origin of this degeneracy can be understood in
classical terms: in the absence of disorder, the centre of cyclotron orbits can be located
anywhere on the plane, and all these locations give the same energy. The coordinates
Rx and Ry of this so-called guiding centre are

Rx =
x

2
+
py
eB

, Ry =
y

2
− px
eB

. (11.1)

Quantum mechanically, they become operators, R̂x and R̂y, whose commutator is

[R̂x, R̂y] = −il2. (11.2)

In the limit of a very strong magnetic field, the cyclotron gap �ωc is larger than
other energy scales, in particular the scale e2/l associated with Coulomb interactions,
so we may project all the single-particle states onto the highest occupied Landau
level. To simplify the discussion, we shall assume that the electronic filling factor ν is
less than d, so this Landau level is the lowest one, corresponding to n = 0 and often
denoted by the acronym LLL. Physically, the only remaining degrees of freedom for
a given electron are, besides its d internal levels, its guiding-centre coordinates R̂x
and R̂y. Equation (11.2) shows that they behave as a canonically conjugate pair of
observables. This turns the physical plane into a 2D phase-space, with an effective
Planck’s constant �eff = l2. Heisenberg’s uncertainty principle suggests then that each
quantum state in the LLL occupies an area 2πl2, so the degeneracy of the LLL should
be equal to the system area divided by 2πl2, which is equal to the total magnetic flux
through the system divided by the flux quantum Φ0 = h/e: we may also say that each
single-particle state in the LLL occupies the area corresponding to one flux quantum.
This intuitive estimate turns out to give the exact degeneracy for each Landau level.

On physical grounds, the fact that a single charge added to or removed from a
fully polarized state at ν = 1 binds a spin texture is relatively easy to understand. To
be specific, let us remove one electron. The remaining N − 1 electrons would lower
their electrostatic energy if they could benefit from the created hole by moving slightly
away from each other. However, as we have just discussed, the physical plane becomes
like a phase space, with each single-particle state occupying an area threaded by
one flux quantum. The natural way to create a smooth distribution of the remaining
N − 1 electrons would be to remove one flux quantum through the whole plane. In
the absence of a Zeeman spin anisotropy, this can be done with a small energy cost
by twisting the spins slowly. The Berry phase associated with the spin texture creates
an artificial effective magnetic field, which adds to the physical external field.



494 Spin textures in quantum Hall systems

To formulate the previous remarks in more precise language, we describe the spin
texture by a smooth d-component spinor field ψa(r) (1 ≤ a ≤ d), which is expected to
have only small variations on the scale of the magnetic length. In this presentation,
I will often denote this spinor field by |ψ(r)〉. This notation is suggestive and con-
venient, although it has a potential risk of confusion, even at the single-particle level,
because of the presence of the r variable inside the ket. I trust the reader not to be
misled by this choice of notation. We suppose that the quantum state of the (N − 1)-
electron system can be described by a Slater determinant obtained from a collection
of single-particle orbitals |Φα〉 (1 ≤ α ≤ N − 1) that have the form

Φα,a(r) = χα(r)ψa(r), (11.3)

where χα(r) describes the remaining orbital degree of freedom, once the spins are
constrained to follow the prescribed texture ψa(r). We wish first to minimize the
kinetic energy of this state. A good guide is to minimize separately the kinetic energy
of the individual orbitals |Φα〉. A simple calculation shows that

〈Φα|(P − eA)2|Φα〉 = 〈χα|(P − eAeff)2 + Veff|χα〉, (11.4)

with

Aeff = A− Φ0

2π
A, A =

1
i
〈ψ|∇|ψ〉, (11.5)

and

Veff = 〈∇ψ|∇ψ〉 − 〈∇ψ|ψ〉〈ψ|∇ψ〉. (11.6)

A is often referred to as the Berry connection associated with the spin texture |ψ(r)〉.
The above expressions (11.5) and (11.6) are valid provided the spinor field |ψ(r)〉 is
everywhere normalized to unity, i.e. we impose 〈ψ(r)|ψ(r)〉 = 1 for all r. The total
kinetic energy is minimized by putting all the effective orbitals χα(r) in the lowest
Landau level of the effective magnetic field corresponding to Aeff, in the presence of the
potential Veff. Because Veff is small for a slowly varying texture, we expect that its effect
is subleading compared with Aeff. This level contains Neff states, where Neff is simply
equal to the number of flux quanta of the effective magnetic field through the system.
Now, it is an important fact that the total flux associated with the Berry connection
is 2π times an integer Ntop called the total topological charge. To be more precise,
this sharp ‘quantization’ holds when the spin texture goes to a constant value |ψ(∞)〉
far from the origin in all directions. This allows us to compactify the plane, which is
topologically trivial (it can be shrunk smoothly into a point), into a two-dimensional
sphere S2 , which has a non-trivial topology.

At this point, it is important to note that there is clearly a gauge freedom in
the definition of the spinor field |ψ(r)〉. As shown by (11.3), a change of |ψ(r)〉 into
eiθ(r)|ψ(r)〉, where the phase θ(r) is an arbitrary function, can be compensated by
the related change of χα(r) into e−iθ(r)χα(r), so that the physical orbitals |Φα〉 re-
main unchanged. It is then more appropriate to view |ψ(r)〉 as a representative of
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the complex line it generates in the complex space Cd. In mathematical terms, the
spinor field |ψ(r)〉 should be viewed as a map from S2 to the complex projective space
CP d−1. This map can be used to define a line bundle over S2, whose Chern number
is the topological charge Ntop. Coming back to the main discussion, we therefore have
the very important relation

Neff = N −Ntop. (11.7)

If we wish to describe a system with one hole, we need to get Neff = N − 1, so that
Ntop = 1. Likewise Ntop = −1 for an added electron. This shows that topologically
non-trivial textures (called skyrmions) are bound to extra charges, the driving force
being the Coulomb interaction.

Before going further, let us give an illustration of a single-skyrmion texture in the
d = 2 case. Then, we can associate with each spinor (ψ1, ψ2) the expectation value
n(r) = 〈ψ(r)|σ|ψ(r)〉, where σ = (σx,−σy, σz) denotes the usual Pauli spin matrices.
We can use this map from CP 1 to S2 to construct a spin texture if we choose a
map from the physical plane to CP 1. For r = (x, y) in the plane, let us pick ψ1 =
z and ψ2 = 1, where z = x+ iy. At the origin z = 0, n(0) = −ez, and, far from it,
n(∞) → ez. Explicitly, we get

n(x, y) =
(

2x
|r|2 + 1

,
2y

|r|2 + 1
,
|r|2 − 1
|r|2 + 1

)
, |r|2 = x2 + y2. (11.8)

This map from the plane to S2 is nothing but the inverse of the stereographic pro-
jection of S2 to the z = 0 plane from the north pole. To find n(x, y), we simply draw
the line joining the point (x, y, 0) to the north pole (0, 0, 1). This line intersects the
unit sphere x2 + y2 + z2 = 1 at a second point, besides the north pole, which is simply
n(x, y). This construction is depicted on Fig. 11.1. It shows clearly that each spin value

N

O r

n

Fig. 11.1 Stereographic projection used to construct a single skyrmion. To find the spin orien-
tation n at a point r on the z = 0 plane, one has simply to find the intersection between the
unit sphere and the line joining r to the north pole N.
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on S2 (with the exception of the north pole) is reached exactly once under the inverse
stereographic projection. We also note that when |r| = 1, n(x, y) = (x, y, 0), so the
spin configuration, restricted to the unit circle, coincides with a 2π vortex. However,
unlike the vortex, which has a singular core and no well-defined limit as |r| → ∞, the
texture is everywhere smooth and reaches the north pole if |r| → ∞ along all possible
directions. This qualitative difference with a 2π vortex is obtained by allowing spins
to move away from the z = 0 plane.

Although physically appealing, the previous discussion is not totally satisfactory.
Its main problem is that minimizing the expectation value 〈χα|(P − eAeff)2 + Veff|χα〉
doesn’t imply that the single-particle states |Φα〉 belong to the lowest Landau level
(corresponding to the physical magnetic field). This problem disappears if one con-
siders, like Pasquier [29, 30], the case of a positive topological charge and a subset of
textures in which the components ψa(r) of |ψ(r)〉 are analytic functions of z = x+ iy.
Because the lowest Landau level corresponds (in the circular gauge) to wavefunctions
of the form ψ(r) = f(z) exp(−|z|2/4l2) with f(z) analytic, we see that if the orbital
parts χα(r) are of this form, then multiplying them by an analytic spinor ψa(r) will
produce single-particle states Φα,a(r) that are also in the lowest Landau level. As
shown by MacDonald, Fertig, and Brey [28], Slater determinants associated with such
textures are exact ground states for a model with Nel < N electrons and a point-like
interaction. However, it is not always sufficient to restrict ourselves to analytic tex-
tures. The first reason is that in the presence of spin anisotropies, or even isotropic but
long-range interactions, the optimal textures are no longer analytic. Another reason
is that we wish to keep the possibility of studying excited states, that live outside
the analytic subspace. In spite of these restrictions, these works by Pasquier have
brought important ideas, in particular the realization that we can use tools from geo-
metric quantization to analyse physical properties of quantum Hall textures. In these
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Fig. 11.2 A periodic spin texture for the SU(2) case (d = 2). The projection of the spins on
the horizontal plane is shown. This triangular pattern corresponds to the optimal variational
state described in Section 11.3.4.
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lectures, I will show that geometric quantization is also a very useful tool to construct
a large class of textures, not limited to analytic functions.

11.2.2 Construction of spin textures

Guided by the previous discussion, we would like to find a way to associate a Slater
determinant |Sψ〉 for Ne electrons in the lowest Landau level with a smooth spinor field
ψa(r) (1 ≤ a ≤ d). On physical grounds, this could be achieved by switching on the
following auxiliary Zeeman-like Hamiltonian acting on a single-particle wavefunction
φa(r):

(Ĥψ,clφ)a(r) = −ψa(r)
d∑
b=1

ψ∗b (r)φb(r). (11.9)

The ground state of Ĥψ,cl is infinitely degenerate, being composed of all the single-
particle states of the form φa(r) = f(r)ψa(r), where f(r) is an arbitrary function with
complex values. Excited eigenstates of Ĥψ,cl are also infinitely degenerate, since they
correspond to wavefunctions φa(r) that are orthogonal at every point r to the local
spinor ψa(r); that is,

∑d
b=1 ψ

∗
b (r)φb(r) = 0 everywhere. In the following discussion, it

will be convenient to view single-particle Hamiltonians as d× d matrices whose entries
are operators acting on the orbital part of the wavefunction. With this convention, we
may write Ĥψ,cl as

(Ĥψ,cl)ab = −ψa(r)ψ∗b (r), 1 ≤ a, b ≤ d. (11.10)

It turns out that this is not quite the construction that we need, because it doesn’t
take into account the projection on the lowest Landau level. Denoting by PLLL the
self-adjoint projector onto this level, a natural candidate to create a texture would
come from looking at the ground state of Ĥψ = PLLLĤψ,clPLLL, or, with the previous
notation,

(Ĥψ)ab = −PLLLψa(r)ψ∗b (r)PLLL, 1 ≤ a, b ≤ d. (11.11)

As we explained in Section 11.2.1, the projection on the lowest Landau level turns
the physical plane into a two-dimensional phase space, in which coordinates Rx and
Ry become canonically conjugated. In this quantization process, the role of Planck’s
constant � is played by the square of the magnetic length l, in tune with the general
picture that each quantum state occupies an area 2π� in phase space. The limit of
large magnetic fields, where l is much smaller than the characteristic length associated
with the spatial variations of the texture field ψa(r), can therefore be viewed as a
semiclassical limit. In this limit, we expect the following qualitative properties for the
spectrum of Ĥψ [37]: the two degenerate levels with eigenvalues −1 and 0 are replaced
by two bands whose widths are at most proportional to l2, containing N −Ntop and
(d− 1)N +Ntop states, respectively, and separated by a well-defined gap. It is then
natural to define the quantum state associated with the smooth texture ψa(r) as the
Slater determinant |Sψ〉 composed of the N −Ntop single-particle states lying in the
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lowest band of Ĥψ. The goal of this subsection is to investigate the physical properties
of such states. With this purpose in mind, all the relevant information is encoded in
the projector P̂ψ on this lowest band. Our first task is then to write explicit expressions
for P̂ψ in terms of the texture ψa(r).

The two equations that we wish to solve are

[Ĥψ, P̂ψ] = 0, (11.12)

P̂ψP̂ψ = P̂ψ. (11.13)

The main difficulty here is that we wish to diagonalize a d× d matrix (Ĥψ)ab whose
elements are themselves operators, rather than numbers. A very important remark is
that these operators do commute in the classical limit l2 → 0, so the usual diagonal-
ization methods (designed to work with commuting numbers) can be applied there.
One can hope then that the non-commuting nature of the elements (Ĥψ)ab can be
dealt with in a semiclassical expansion. That this is indeed possible is well known in
the mathematical literature, where it has been shown that the projector P̂ψ can be
constructed as a formal power series in l2 [38, 39].

In doing these calculations, it will be useful to make use of the correspondence
principle between classical and quantum mechanics, to represent operators such as
(Ĥψ)ab and (P̂ψ)ab in terms of functions of the underlying phase-space coordinates
x and y. It is a general fact that there are many ways to represent operators by
functions over classical phase space in such a way that standard classical mechanics
emerges as a limit of this quantization process when � ≡ l2 → 0. Rather than being a
problem, this ambiguity has positive aspects, because it allows us to choose the precise
correspondence which simplifies our calculations. In the present problem, we shall use
the so-called covariant symbol in Berezin’s terminology [34], also called the Husimi
distribution in the quantum optics and quantum chaos communities.

For a given operator f̂ acting in the lowest Landau level, the associated covariant
symbol f(z, z̄) is simply the expectation value of f̂ taken on the normalized coherent
state |Φz̄〉 centred at (x, y), with z = x+ iy. To bring more fluidity to this presentation,
the precise definition and elementary properties of these coherent states are relegated
to Appendix 11.A. There, we also show that a given operator is uniquely determined by
its covariant symbol, from which it can be explicitly constructed through the normal-
ordering procedure.

The non-commuting algebra of quantum operators can be represented as a deform-
ation of the commuting algebra of functions over phase space. To see this, we need
to know the covariant symbol of the product of two operators. It is common to write
f̂ ĝ = f̂ � g, where the explicit formula for the star product is

f � g = f exp
[
−i l

2

2

(←
∂x
→
∂y −

←
∂y
→
∂x

)
+
l2

2

(←
∂x
→
∂x +

←
∂y
→
∂y

)]
g. (11.14)

This may be represented as a power series in l2:

f � g =
∞∑
n=0

l2nf �n g (11.15)
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with

f �0 g = fg, (11.16)

f �1 g = −1
2
i{f, g}+

1
2
∇f · ∇g. (11.17)

The Poisson bracket is defined as usual by

{f, g} =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
. (11.18)

Equations (11.16) and (11.17) imply that

[f̂ , ĝ] = −il2{̂f, g}+O(l4), (11.19)

which is an expression of the correspondence principle between classical and quantum
mechanics.

With this choice of correspondence between functions and operators, it is natural
to modify accordingly the definition of the single-particle Hamiltonian Ĥψ and to
replace (11.11) by

(Ĥψ)ab = − ̂ψa(r)ψ∗b (r), 1 ≤ a, b ≤ d. (11.20)

This new definition does not have any effect on the physics, because it simply modifies
the way we parametrize Slater determinants |Sψ〉 in terms of classical spinor fields
ψa(r).

Let us write then P̂ψ = P̂0 + l2P̂1 +O(l4), and compute the first two terms P̂0

and P̂1 in the semiclassical expansion of P̂ψ. We have dropped the ψ subscript on
P̂0 and P̂1 to lighten the notation. From now on, we shall replace operators like Ĥψ

and P̂ψ by their d× d matrix symbols Hψ and Pψ. For two such matrix symbols
A ≡ Aij(r) and B ≡ Bij(r), the matrix star product A � B is defined by the usual
matrix multiplication rule, but with the ordinary product replaced by the star product,
i.e.

(A � B)ik =
∑
j

Aij � Bjk (11.21)

Similarly, we define

[A,B]� = A � B −B � A. (11.22)

To zeroth order in l2, (11.12) and (11.13) give

[Hψ, P0] = 0, (11.23)

P0P0 = P0. (11.24)
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This is the standard diagonalization problem for a Hermitian matrix. Because we are
interested in the eigenvalue of Ĥψ that goes to −1 in the classical limit, we choose

(P0)ij = ψiψ
∗
j . (11.25)

Here, we have assumed that the local spinor field is everywhere normalized, i.e.∑
j |ψj(r)|2 = 1 for any r.
The first-order terms in (11.12) and (11.13) read

[Hψ, P1] + [Hψ, P0]1 = 0, (11.26)

P0P1 + P1P0 + P0 �1 P0 = P1. (11.27)

Here, we have used the notation

[A,B]� =
∞∑
n=0

l2n[A,B]n. (11.28)

These equations can be seen as ordinary matrix equations for P1:

[Hψ, P1] = −[Hψ, P0]1, (11.29)

P1 − P0P1 − P1P0 = P0 �1 P0. (11.30)

Because P0 = −Hψ, [Hψ, P0]� = 0, which implies [Hψ, P0]1 = 0. Therefore, P1 has to
commute with P0. Multiplying (11.30) by P0 on both sides and subtracting the two
results gives a necessary condition for the existence of P1:

P0(P0 �1 P0) = (P0 �1 P0)P0. (11.31)

This condition is always satisfied, because the star product is associative: starting
from P0 � (P0 � P0) = (P0 � P0) � P0 and keeping the first-order term in l2 gives exactly
(11.31). Using this property, it is easy to find that P1 is given by

P1 = (1− 2P0)(P0 �1 P0). (11.32)

This is the most important result of this section. We emphasize that it holds for an
arbitrary smooth spinor field ψa(r). The small parameter in the expansion of Pψ is
just the ratio between the typical length over which ψa(r) varies and the magnetic
length l. Let us check that this result allows us to compute the local charge density
bound to the texture. From (11.32) and (11.17), using the classical expression (11.25)
for P0 gives

(P1)jk = − 1
2
i({ψj , ψ∗k}+ {ψj , ψl}ψ∗l ψ∗k + ψjψl{ψ∗l , ψ∗k}+ ψj{ψl, ψ∗l }ψ∗k)

+
1
2
∇ψj · ∇ψ∗k +

1
2
(∇ψj · ∇ψl)ψ∗l ψ∗k +

1
2
ψjψl(∇ψ∗l · ∇ψ∗k)

− 1
2
ψj [∇ψl.∇ψ∗l − 2ψl(∇ψm · ∇ψ∗l )ψ∗m]ψ∗k. (11.33)
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It can be checked that this expression is invariant under local gauge transformations.
A direct consequence is

Tr[P1(r)] = −B(r) = −2πQ(r). (11.34)

Here, B = ∂xAy − ∂yAx is the curvature of the Berry connection, and Q(r) is the
topological charge density associated with the ψ texture. The local particle density

ρ(r) =
∑
a

〈ψ+
a (r)ψa(r)〉 (11.35)

is equal to (1/2πl2)Tr(Pψ(r)), as can be seen from (11.136) in Appendix 11.C.
Therefore,

ρ(r) =
1

2πl2
−Q(r) +O(l2). (11.36)

This is a local form of (11.7), because 1/2πl2 = B/Φ0 is the particle density in a filled
Landau level. Because the integrated result, (11.7), is a relation between integers, we
expect that the spatial integral of all higher-order corrections in l2 to ρ(r) are equal
to zero.

11.2.3 Energetics of spin textures

We consider the usual SU(d)-symmetric Hamiltonian with two-body potential
V (r − r′):

H =
1
2

∑
ab

∫
d2r

∫
d2r′ V (r − r′)Ψ+

a (r)Ψ+
b (r′)Ψb(r′)Ψa(r), (11.37)

where the single-particle creation and annihilation operators are projected onto the
lowest Landau level, as detailed in Appendix 11.C. In the Slater determinant associated
with the classical texture ψa(r), we can use Wick’s theorem to evaluate the expectation
value of H, and we get 〈H〉ψ = 〈H〉H,ψ + 〈H〉F,ψ, with

〈H〉H,ψ =
1
2

∑
ab

∫
d2r

∫
d2r′ V (r − r′)〈Ψ+

a (r)Ψa(r)〉ψ〈Ψ+
b (r′)Ψb(r′)〉ψ, (11.38)

〈H〉F,ψ = −1
2

∑
ab

∫
d2r

∫
d2r′ V (r − r′)〈Ψ+

a (r)Ψb(r′)〉ψ〈Ψ+
b (r′)Ψa(r)〉ψ. (11.39)

Using (11.138) from Appendix 11.C, we can express these energies in terms of the
matrix symbol Pψ(r) as

〈H〉H,ψ =
1

2(2πl2)2

∫
d2r

∫
d2r′ V (r − r′)Tr[Pψ(r)] Tr[Pψ(r′)], (11.40)

〈H〉F,ψ = − 1
2(2πl2)2

∫
d2r

∫
d2r′ V (r − r′)Tr[Pψ(s(r, r′))Pψ(s(r′, r))]

× exp
[
− (r − r′)2

2l2

]
. (11.41)
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Here, we have set

s(r, r′) =
r + r′

2
+
i

2
ẑ × (r′ − r). (11.42)

Let us first consider the case of a point-like interaction V (r − r′) = Wδ(r − r′). We
get

〈H〉ψ =
W

2(2πl2)2

∫
d2r ({Tr[Pψ(r)]}2 − Tr[Pψ(r)2]). (11.43)

For a fully polarized system, we can choose a basis in internal space such that
(Pψ)ab(r) = δa1δb1f(r), and 〈H〉ψ = 0 as expected, because the orbital wavefunction
is completely antisymmetric, so it is impossible for two particles to be at the same
point. Expanding the integrand in (11.43), we get

{Tr[Pψ(r)]}2 −Tr[Pψ(r)2] = 2l2[TrP1 − Tr(P0P1)] +O(l4). (11.44)

From (11.33), we find

Tr(P0P1) = −1
2
B − 1

2
(〈∇ψ|∇ψ〉 − 〈∇ψ|ψ〉〈ψ|∇ψ〉). (11.45)

Putting everything together gives

〈H〉ψ = − W

4πl2
Ntop +

W

8π2l2

∫
d2r (〈∇ψ|∇ψ〉 − 〈∇ψ|ψ〉〈ψ|∇ψ〉). (11.46)

We now turn to the physically important case of Coulomb interaction,
V (r) = e2/4πεr. In fact, the Hartree contribution is easily written for an arbitrary
interaction. Equation (11.38) becomes, taking (11.36) into account,

〈H〉H,ψ =
1
2

∫
d2r

∫
d2r′ V (r − r′)

[
1

2πl2
−Q(r) +O(l2)

] [
1

2πl2
−Q(r′) +O(l2)

]
.

(11.47)

Therefore,

〈H〉H,ψ =
N − 2Ntop

4πl2
Ṽ (k = 0) +

1
2

∫
d2r

∫
d2r′ V (r − r′)Q(r)Q(r′). (11.48)

We may object that the last term is not the only O(l0) contribution to 〈H〉H,ψ. We
should in principle include O(l2) terms in the local particle density. However, because
the density in a filled Landau level is spatially uniform, such terms will appear in
〈H〉H,ψ only through their integral over the whole plane. As we have discussed at
the end of Section 11.2.2, these integrals are expected to vanish because the total
number of electrons, Ne = N −Ntop, contains only the first O(l0) correction due to
the topological charge of the texture.

Let us now consider the Fock term. Because the Gaussian kernel in (11.41) is
sharply peaked around the origin, with a characteristic length equal to l, it is natural
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to expand the trace Tr[Pψ(s(r, r′))Pψ(s(r′, r))] around r = r′. The following integrals
are useful: ∫

dx

∫
dy

1√
x2 + y2

exp
(
−x

2 + y2

2l2

)
= π

√
2π l, (11.49)

∫
dx

∫
dy

x2√
x2 + y2

exp
(
−x

2 + y2

2l2

)
= π

√
π

2
l3. (11.50)

Keeping the first two terms in the semiclassical expansion of 〈H〉F,ψ gives

〈H〉F,ψ = − e2

16π
√

2π εl3

∫
d2r

[
1 + 2l2 Tr(P0P1) +

1
4
l2 Tr(∇P0 · ∇P0)

]
. (11.51)

Finally, using (11.45), the Fock contribution for the Coulomb interaction reads

〈H〉F,ψ = − e2

8
√

2π εl
(N −Ntop) +

e2

32π
√

2π εl

∫
d2r (〈∇ψ|∇ψ〉 − 〈∇ψ|ψ〉〈ψ|∇ψ〉).

(11.52)
Note that the first term has the expected form for the Fock contribution in a fully
polarized system, which is equivalent to a system of spinless fermions. It is negative
and proportional to the particle number, in agreement with the physical interpretation
that it removes the Coulomb self-interaction of all particles present in the system.
The value of the stiffness in the second term is consistent with the value given in
the literature [4, 15], in which the Coulomb interaction potential is often written as
V (r) = e2/εr (Gaussian units).

11.2.4 Choice of an effective model

So far, we have computed properties of a single Slater determinant |Sψ〉 associated with
a smooth spinor ψ. Here, we would like to construct an effective model by considering
the family M of such Slater determinants as an (overcomplete) basis of low-energy
states. An essential ingredient is the overlap 〈Sψ|Sψ′〉 between two states in M. The
reader is invited to check that the modulus of this overlap can be simply expressed in
terms of the corresponding projectors P̂ψ and P̂ψ′ :

|〈Sψ|Sψ′〉|2 = Det(I − P̂ψP̂ψ′ P̂ψ). (11.53)

This implies that

log |〈Sψ|Sψ′〉|2 =
∫

d2r

2πl2
TrCd [Cov. Symb. log(I − P̂ψP̂ψ′ P̂ψ)]. (11.54)

The leading order in l2 is easily extracted by taking the principal symbols, that is, by
making the approximation Pψ � |ψ(r)〉〈ψ(r)|. At this leading order, the star product
becomes the ordinary product, and we have

log |〈Sψ|Sψ′〉|2 =
∫

d2r

2πl2
TrCd log

{
I − [1− |〈ψ(r)|ψ′(r)〉|2]|ψ(r)〉〈ψ(r)|

}
+O(l2).

(11.55)
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Finally,

log |〈Sψ|Sψ′〉|2 =
∫

d2r

2πl2
log |〈ψ(r)|ψ′(r)〉|2 +O(l2). (11.56)

This form of the overlap is compatible with a lattice model where each of its N
sites hosts a quantum degree of freedom with d independent internal states. Further-
more, Slater determinants associated with textures can be seen as coherent states.
To substantiate this claim, let us consider the Hilbert space that is a tensor product
of N copies of Cd. Coherent states can be defined as factorizable states of the form
|Cψ〉 = |ψ(1)〉 ⊗ |ψ(2)〉 ⊗ · · · ⊗ |ψ(N)〉, where |ψ(i)〉 ∈ Cd for all i. Note that we have
here a redundancy because changing |ψ(j)〉 into eiθ(j)|ψ(j)〉 modifies only the global
phase of |Cψ〉. There are least two ways to deal with this. The first is to lift this
ambiguity by fixing a gauge. For example, one may impose that ψ1(j) be real and
positive. The problem with this prescription is that it is useless when ψ1(j) is equal
to zero. To cover the whole projective space CP d−1, we have to consider for each site
j at least d open subsets characterized by ψi(j) �= 0 for 1 ≤ i ≤ d and patch them
together. This procedure is mathematically clean, although it may not be the most
convenient for practical calculations. The second way, which we will follow, is to work
with unconstrained spinors, but keep in mind that all physical properties are invariant
under local gauge transformations.

The overlap between two such states is given by

〈Cψ|Cψ′〉 =
N∏
i=1

〈ψ(i)|ψ′(i)〉. (11.57)

Taking the squared modulus and transforming slightly, we get

log |〈Cψ|Cψ′〉|2 =
N∑
i=1

log |〈ψ(i)|ψ′(i)〉|2. (11.58)

In the semiclassical limit of slowly varying textures, the discrete texture |ψ(i)〉 becomes
a smooth one |ψ(r)〉 and we can approximate the sum by an integral, which gives
exactly the same leading term as in (11.56) previously derived.

This discussion motivates the following semiclassical model to describe a system
containing Neff = N −Ntop electrons in the lowest Landau level. The semiclassical
limit is reached when the typical distance between nearby skyrmions is large compared
with the magnetic length, that is, when Ntop << N . The expectation value of the
Hamiltonian on Slater determinants detailed in Section 11.2.3 suggests the following
form for the energy in this effective model:

〈H〉ψ ≡ 〈Cψ|H|Cψ〉 = 〈H〉ex,ψ + 〈H〉el,ψ, (11.59)

where

〈H〉ex,ψ = Eex

∫
d2r

(
〈∇ψ|∇ψ〉
〈ψ|ψ〉 − 〈∇ψ|ψ〉〈ψ|∇ψ〉〈ψ|ψ〉2

)
(11.60)

expresses the short-range part of the Coulomb interactions (exchange energy) and
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〈H〉el,ψ =
1
2

∑
ab

∫
d2r

∫
d2r′ V (r − r′)Q(r)Q(r′) (11.61)

is the residual long-range part due to the spatial variations of the topological charge
density Q(r). Equation (11.60) has been written for the most general (not necessarily
normalized) spinor field |ψ(r)〉. The presence of the second term in the integrand
ensures the expected local gauge invariance of 〈H〉ex,ψ.

How should we use 〈H〉ψ ? The first viewpoint is that the family M of Slater de-
terminants |Sψ〉 associated with smooth spinor fields provides a good starting point
for a variational calculation of the ground state for a system of N −Ntop electrons
(with Ntop << N). This is a very useful approach indeed, which is strongly supported
by the fact that it gives the exact ground states for a model with point-like repul-
sive interactions when 0 ≤ Ntop << N . We shall dedicate a substantial part of these
lectures to such studies, with emphasis on spatially periodic textures (Sections 11.3.3
and 11.3.4).

But the use of 〈H〉ψ extends beyond the variational determination of ground states
and their properties. Viewing M as a family of coherent states embedded in the
electronic Fock space, 〈H〉ψ can be regarded as the covariant symbol of an effective
Hamiltonian operator from which the low-energy dynamics can, in principle, be recon-
structed. This second viewpoint is in tune with a long tradition in many-body physics.
The general idea is that most variational approximations involve a particular continu-
ous family of trial states (such as Slater determinants for Hartree–Fock or general BCS
states for Hartree–Fock–Bogoliubov approximations), which can often be regarded as
a classical phase space. The underlying quantum dynamics in electronic Fock space can
then be conveniently analysed from the perspective of coherent-state quantization. For
several illustrations of this viewpoint, the reader is invited to consult [35, 36, 40]. We
shall refer only briefly to coherent-state quantization of spin textures, in a discussion
of the quantum zero-point correction to the variational energy 〈H〉ψ (Section 11.3.2).

A third way to use 〈H〉ψ is somewhat intermediate between the two previous ones.
In the spirit of the time-dependent Hartree–Fock approximation, it regards 〈H〉ψ as
a classical Hamiltonian. The associated dynamics on M is expected to approximate
rather well the full quantum dynamics. The situation is reminiscent of quantum an-
tiferromagnets. There, strictly speaking, the semiclassical limit is reached when the
spin S is large. But it is well known that, at least for magnetically ordered systems,
observations on real systems with a small value of S and calculations on a semiclassical
expansion in 1/S can show surprisingly good agreement. Most likely, classicality is an
emerging property in such systems. Even starting from ‘extremely quantum’ spins 1

2
at

the microscopic level, coarse graining leads to effective spins that tend to behave more
and more classically as the spatial scale grows. This analogy with quantum magnets
is especially natural for the periodic textures considered in Sections 11.3.3 and 11.3.4.
Their spontaneously broken SU(d) symmetry makes them similar to non-collinear
long-range ordered antiferromagnets.

Let us now derive the classical equations of motion generated by 〈H〉ψ. The
first important consideration here is that the time-dependent Schrödinger equation
i(∂/∂t)|Ψ〉 = H|Ψ〉 can be derived from the following variational principle:
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δ

∫ tf

ti

(
i〈Ψ|∂Ψ

∂t 〉 − 〈Ψ|H|Ψ〉
)
dt = 0. (11.62)

In other words, Schrödinger’s equation can be regarded as a classical Hamilton
equation in Hilbert space! The corresponding Hamiltonian function takes the value
〈Ψ|H|Ψ〉 on the state |Ψ〉. To specify the dynamics, we also need to know the under-
lying symplectic structure (or Poisson brackets). If M is the dimension of the Hilbert
space, the Schrödinger equation reads

∂Ψa

∂t
= −i∂〈Ψ|H|Ψ〉

∂Ψ̄a
,

∂Ψ̄a

∂t
= i

∂〈Ψ|H|Ψ〉
∂Ψa

, 1 ≤ a ≤M. (11.63)

Writing Ψa = (qa + ipa)/
√

2, with qa and pa real variables, we get exactly the usual
form of Hamilton’s equations:

∂qa
∂t

=
∂〈Ψ|H|Ψ〉

∂pa
,

∂pa
∂t

= −∂〈Ψ|H|Ψ〉
∂qa

. (11.64)

A great advantage of variational principles is their ability to deal with constraints. The
previous discussion suggests that a reasonable approximation would be to constrain
the time evolution to take place within the manifold M of coherent states |Sψ〉. The
variational principle then becomes

δ

∫ tf

ti

⎡⎣i N∑
j=1

〈ψ(j)|∂ψ(j)
∂t
〉 − 〈H〉ψ

⎤⎦ dt = 0. (11.65)

To simplify the writing, we have assumed here that the local spinors are normalized,
that is 〈ψ(j)|ψ(j)〉 = 1. Taking the continuum limit N →∞, this becomes

δ

∫ tf

ti

[
i

∫
d2r

2πl2
〈ψ(r)|∂ψ(r)

∂t 〉 − 〈H〉ψ
]
dt = 0. (11.66)

We shall consider this Hamiltonian dynamics on M further in Sections 11.3.1 and
11.4.1. A slight modification of it will be useful, in order to deal with the local gauge
symmetry sending |ψ(r)〉 into f(r, t)|ψ(r)〉, with f(r, t) an arbitrary function. Allowing
functions such that |f |2 �= 1 can be important if we deal with spinors that are not
normalized by construction (such as spinors with holomorphic components). Again,
this symmetry expresses the invariance of physical quantities with respect to changes in
the global factor in front of the wavefunction. The original variational principle (11.62)
can be modified slightly to make this generalized gauge symmetry manifest, and this
gives

δ

∫ tf

ti

(
i
〈Ψ|∂Ψ

∂t 〉
〈Ψ|Ψ〉 −

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

)
dt = 0. (11.67)
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The corresponding evolution equation is

i

(∣∣∂Ψ
∂t

〉
−
〈Ψ|∂Ψ

∂t 〉|Ψ〉
〈Ψ|Ψ〉

)
= H|Ψ〉 − 〈Ψ|H|Ψ〉〈Ψ|Ψ〉 |Ψ〉. (11.68)

This is equivalent to i
∣∣∂Ψ
∂t

〉
= H|Ψ〉+ f(t)|Ψ〉, where f(t) is an arbitrary function.

This modified equation has the same physical content as the usual one. To see this,
let us diagonalize H in an orthonormal basis |α〉, so H|α〉 = ωα|α〉, 1 ≤ α ≤M . If
|Ψ(t)〉 =

∑M
α Ψα(t)|α〉, then we have

Ψα(t) = g(t)e−iωαtΨα(0), g(t) = exp
[
−i

∫ t

0

f(t′)dt′
]
. (11.69)

Adapting this to the case of the constrained dynamics on the coherent-state manifold
M gives

δ

∫ tf

ti

⎡⎣i ∫ d2r

2πl2

〈
ψ(r)

∣∣∣ ∂ψ(r)
∂t

〉
〈ψ(r)|ψ(r)〉 − 〈H〉ψ

⎤⎦ dt = 0. (11.70)

We shall use this variational principle in Section 11.4.1. It is very close in spirit to the
time-dependent Hartree–Fock approximation, with the difference that the wavefunc-
tion of the system is not allowed to be the most general Slater determinant, but one
of the form |Sψ〉.

11.2.5 Classical ground states of the CP d−1 model

The previous discussion shows that it is very useful to look for the spinor fields that
minimize the variational energy 〈H〉ψ. Since the energy scale Eex is of order e2/εl, we
see that 〈H〉el,ψ/〈H〉ex,ψ is proportional to ln1/2, where n is the average topological
charge density. In our semiclassical limit, ln1/2 << 1 and the term 〈H〉el,ψ can be
treated as a perturbation with respect to the leading term 〈H〉ex,ψ. It is therefore
natural to concentrate on the CP d−1 model defined by the energy functional 〈H〉ex,ψ.
This model has been studied in great detail by field theorists, starting in the 1970s.
A very pedagogical presentation of many of its properties can be found in Rajaraman’s
book [41]. Our first concern is to find the minima of 〈H〉ex,ψ with the constraint of a
fixed topological charge. To achieve this, we use the Bogomol’nyi–Prasad–Sommerfield
(BPS) inequality, which states that

〈H〉ex,ψ/Eex ≥ 2π|Ntop|. (11.71)

To prove this bound in the present case, we start from the following expressions:

〈H〉ex,ψ
2Eex

= I + J, (11.72)

πNtop = I − J, (11.73)



508 Spin textures in quantum Hall systems

with

I =
∫
d2r

(
〈∂z̄ψ|∂zψ〉
〈ψ|ψ〉 − 〈∂z̄ψ|ψ〉〈ψ|∂zψ〉〈ψ|ψ〉2

)
, (11.74)

J =
∫
d2r

(
〈∂zψ|∂z̄ψ〉
〈ψ|ψ〉 − 〈∂zψ|ψ〉〈ψ|∂z̄ψ〉〈ψ|ψ〉2

)
. (11.75)

Since both I and J are positive, we have I + J ≥ |I − J |, thereby proving the in-
equality (11.71). This proof also shows that this lower bound is reached if and only
if J = 0 for Ntop ≥ 0 or I = 0 for Ntop ≤ 0. A sufficient condition for this to hold is
|∂z̄ψ〉 = 0 for Ntop ≥ 0 or |∂zψ〉 = 0 for Ntop ≤ 0. So the variational exchange energy
is minimal for analytic textures when holes ares added (Ntop ≥ 0) or for anti-analytic
ones when particles are added (Ntop ≤ 0). This is striking, because these spaces of
analytic (or anti-analytic) textures are quite large. If we fold the plane onto a finite
torus, using periodic boundary conditions, they form a dNtop-dimensional complex
vector space.

It is interesting to apply the inequality (11.71) to the case of point-like interactions.
Keeping the first two terms in the l2 expansion of 〈H〉ψ given in (11.46), it gives

〈H〉ψ ≥
W

4πl2
(|Ntop| −Ntop). (11.76)

This becomes an equality for analytic spinors when Ntop ≥ 0, so that 〈H〉ψ = 0. This is
consistent with the form of the Slater determinant |Sψ〉 in this case. Its wavefunction,
in first quantization, reads

Ψ(r1a1, . . . , rNe
aNe

) =
∏
i<j

(zi − zj)
Ne∏
i=1

ψai
(zi)e−|zi|2/4l2 . (11.77)

The first factor prevents two particles from occupying the same position, so this wave-
function is an eigenstate of the point-like interaction Hamiltonian with eigenvalue zero
[28–30].

11.3 Periodic textures

11.3.1 Perturbation theory for degenerate Hamiltonians

We have just seen that in the manifold M, the ground states of 〈H〉ex form a rather
large submanifold D composed of analytic textures for Ntop ≥ 0 (and anti-analytic
ones when Ntop ≤ 0). What is the effect of the residual interaction 〈H〉el on such a
system? We know that some care has to be taken while perturbing degenerate systems.
The first task is to recast the unperturbed 〈H〉ex ≡ H0 in a form that is convenient
for a perturbative analysis. This raises immediate difficulties for degenerate systems,
because we have to understand how the ground-state manifold D behaves with respect
to the symplectic structure of M.

Let us pick a point on D and perform a linear analysis of the equations of motion
around it. If H0 is positive and vanishes on D, then the Williamson theorem [42] states
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that we can find canonical coordinates in a neighbourhood of this point (taken as the
origin) such that the second-order Taylor expansion of H0 at the origin reads

H0 = 1
2

N0+Nd∑
j=N0+1

p2
j + 1

2

N∑
j=N0+Nd+1

ωj(p2
j + q2j ), (11.78)

with ωj > 0. Here N0, Nd, and Nm are non-negative integers such that N = N0 +
Nd +Nm is the total number of degrees of freedom, and hence the dimension of M
is 2N . In our system of textures, the number of degrees of freedom is dN , where N
denotes the number of flux quanta through the system. The conflict of notation should
not be a problem, because the discussion in this subsection is mostly conceptual.

Near the origin, D is defined by the equations

pN0+1 = . . . = pN = 0 = qN0+Nd+1 = . . . = qN (11.79)

This leaves q1, . . . , qN0+Nd
, p1, . . . , pN0 as independent coordinates on D near the ori-

gin, so the dimension of D is 2N0 +Nd. N0, Nd, and Nm will be referred to as the
numbers of zero modes, drift motions, and massive modes, respectively. The important
remark here is that the dimension of D doesn’t fix separately the values of N0 and Nd.
These values can be extracted by a different procedure [43], which we outline here.

Phase-space geometry is not Euclidean (because there is no distance invariant un-
der canonical transformations) but symplectic. Its basic object is not a metric, but a
rank-two antisymmetric form ω =

∑N
j=1 dpj ∧ dqj . This form assigns to two infinitesi-

mal vectors (δpi, δqi) and (δ′pi, δ′qi) the number ω(δ, δ′) =
∑N

j=1(δpj δ
′qj − δqj δ′pj).

This form is invariant under canonical transformations and in particular, under Ham-
iltonian evolutions. If N = 1, this conservation law is just Liouville’s theorem on the
conservation of phase-space volume. The invariance of ω shows that the notion of or-
thogonality of two infinitesimal vectors (in the sense of ω) has an intrinsic meaning.
A simple inspection shows that the tangent vectors at the origin that are orthogonal
to all tangent vectors along D correspond to δp1 = . . . = δpN0+Nd

= 0 = δq1 = . . . =
δqN0 . This implies that the restriction of ω to the tangent space of D at the origin
contains a d-dimensional subspace of vectors that are orthogonal to all tangent vectors
along D. This subspace (the kernel of the restriction of ω) is spanned by the drift mo-
tions, for which the only non-zero components of the velocity are q̇N0+1, . . . , q̇N0+Nd

.
Such motions are generated by Hamiltonians of the form

∑N0+Nd

j=N0+1 ajpj . Their phys-
ical importance is that, unlike small oscillations associated with massive modes, they
are in principle unbounded, which makes them qualitatively different from both zero
modes and massive modes.

This local analysis is interesting, but it raises immediately the question whether
it can be extended to a larger region (i.e. an open subset in M) intersecting D.
The answer is positive, with the assumption that Nd should be constant along the
intersection of D with this region. If this condition is satisfied, we can find canonical
coordinates such that a normal form similar to (11.78) holds, with two differences.
First, the massive-mode frequencies ωj may vary alongD so that ωj becomes a function
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of q1, . . . , qN0+Nd
, p1, . . . , pN0 . Second, the quadratic kinetic term associated with drift

motion is not necessarily diagonal, and is replaced by 1
2

∑N0+Nd

i=N0+1

∑N0+Nd

j=N0+1(g
−1)ijpipj ,

where gij(q1, . . . , qN0+Nd
, p1, . . . , pN0) is a metric tensor on D.

I am not going to discuss the proof of this result here, because I fear that it may be
of limited interest to most readers. We expect that this should be a direct consequence
of the relative Darboux theorem for a submanifold D of a symplectic manifold M [44].
1 One version of this theorem states that if coordinates (p′i, q

′
i) exist such that D is

defined by the equations p′N0+1 = . . . = p′N = 0 = q′N0+Nd+1 = . . . = q′N , and that ω
takes its canonical form on D, then there exists a smooth one-to-one transformation
from (p′i, q

′
i) to canonical coordinates (pi, qi) on M that acts like the identity on D.

Given this relative Darboux theorem, the main task seems to be to prove the existence
of the coordinates (p′i, q

′
i) with the desired properties. This is easy in two particular

cases. When Nd = 0, the restriction of ω to D is non-degenerate, so the existence of
these coordinates is provided by the usual Darboux theorem applied to the submanifold
D. When N0 = 0, all pairs of tangent vectors along D at an arbitrary point of D
are orthogonal, so the restriction of ω to D is zero. The existence of the required
coordinates follows because we impose only the value of ω on D. For intermediate
values of Nd (between 1 and dimD − 1), we have to prove that the distribution of
Nd-dimensional subspaces on D obtained by taking the kernel of the restriction of ω
is integrable, i.e. that this kernel coincides with the tangent space to the submanifolds
defined by fixing the values of all coordinates, except q′N0+1, . . . , q

′
N0+Nd

. I believe that
this is true,2 and probably well known to mathematicians, although I haven’t been
able to locate a proof in the literature.

Coming back to our problem, we have rather good numerical evidence (but no con-
ceptual proof, unfortunately) that in the case where D is the submanifold of analytic
textures, we have Nd = 0. In this situation, we may therefore write

H0 = 1
2

N∑
j=N0+1

ωj(p2
j + q2j ) ≡

Nm∑
j=1

ωj(ps, qs)Jj . (11.80)

Here, we have introduced the slow variables (ps, qs) ≡ (p1, . . . , pN0 , q1, . . . , qN0), which
are good canonical coordinates on D, and action variables Jj for massive modes.

For this Hamiltonian, the Jj ’s associated with massive modes are integrals of mo-
tion. When they are non-zero, they can induce a motion along D, because Hamilton’s
equations read as follows for 1 ≤ j ≤ N0:

q̇j =
Nm∑
k=1

∂ωk
∂pj

(ps, qs)Jj , (11.81)

ṗj = −
Nm∑
k=1

∂ωk
∂qj

(ps, qs)Jj . (11.82)

1 I am grateful to San Vu Ngoc for a discussion on this point and for directing my attention to the

relative Darboux theorem.
2 B. Douçot, Handwritten notes in French, available upon request.
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At the classical level, we may take Jk = 0 for all k, and no motion along D is gen-
erated. Quantum-mechanically, this is no longer true, and we can no longer ignore
the quantum zero-point-energy correction Hqzpc coming from the massive modes. Its
effect is to lift the degeneracy between the classical states lying on D, and to favour
the minima of Hqzpc. A more detailed discussion of this quantum correction is given
in Appendix 11.D.

Let us now switch on a small perturbation H1, which it is natural to expand in
powers of the massive-mode action-angle coordinates pN0+j =

√
2Jj cos θj , qN0+j =√

2Jj sin θj:

H1 = H
(0)
1 +

Nm∑
j=1

J
1/2
j

[
aj(ps, qs)eiθj + āj(ps, qs)e−iθj

]
+O(Jj), (11.83)

where H(0)
1 and aj are of order ε.

At first order in ε, we may keep only the term H
(0)
1 in H1. Indeed, the term

proportional to J1/2
j corresponds to a constant driving force that pulls the massive co-

ordinates away from their unperturbed equilibrium value at Jj = 0. This shift induces
a change in the energy of the massive mode j of order |aj |2/ωj that is proportional
to ε2/ωj and therefore of higher order in ε than the H

(0)
1 term. We see also that

this induced ε2 contribution to the effective Hamiltonian is smaller when the charac-
teristic frequencies associated with massive modes are large. To summarize, the first
corrections due to the H1 perturbation are captured by the effective Hamiltonian

Heff = Hqzpc(ps, qs) +H
(0)
1 (ps, qs). (11.84)

We emphasize once again that it acts on the degenerate manifold D, which is symplec-
tic because Nd = 0, so it constitutes a good classical phase space. On this manifold,
Heff is the sum of the quantum zero-point correction due to the massive modes of H0

and the perturbation H1, restricted to D.
These considerations motivate us to discuss briefly the spectrum of massive oscil-

lators in the vicinity of a periodic analytic texture, which therefore belongs to D, and
was chosen to minimize the perturbation H

(0)
1 (ps, qs) ≡ 〈Hel〉ψ. The construction of

this optimal texture will be presented in Section 11.3.3.

11.3.2 Remarks on the Hessian of the exchange energy

To be specific, we assume a positive topological charge. The discussion of Section 11.2.5
shows that the variational energy can be conveniently be written as

〈H〉ex,ψ/Eex = 2πNtop + 4J, (11.85)

where J is defined by (11.75) Consider now small deviations |ψ〉 → |ψ〉+
√
〈ψ|ψ〉 |φ〉

away from the analytic spinor |ψ〉. Inserting this ansatz into (11.85) gives directly the
second derivative (Hessian operator) of 〈H〉ex,ψ:

〈H〉ex,ψ/Eex = 2π|Ntop|+ 4〈φ|M+PM |φ〉+ . . . (11.86)
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Here, we have introduced two operators M and P acting on the spinor fields φ
describing small deviations. Explicitly,

M |φ〉 = |∂z̄φ〉+
1
2
〈∂z̄ψ|ψ〉
〈ψ|ψ〉 |φ〉, (11.87)

P |φ〉 = |φ〉 − |ψ(z)〉〈ψ(z)|
〈ψ(z)|ψ(z)〉 |φ〉. (11.88)

A very important property of the operator M is that

[M,M+] = 1
2B(r) = πQ(r). (11.89)

Here, B = ∂xAy − ∂yAx is the gauge-invariant flux density associated with the
Berry connection. If B(r) is constant, then the spectrum of M+M is { 1

2Bn, n =
0, 1, 2, . . . }. As we are going to show in the next subsection, the spatial variations
of B(r) are quite small for the optimal periodic texture. The residual inhomogeneities
are not expected to close the gaps in this Landau-level-like spectrum. What is more
difficult to analyse is the effect of the projector P . It imposes the local variation |φ(r)〉
to be orthogonal to the reference spinor |ψ(r)〉. This is certainly a serious perturbation
for small values of d. At large d, the probability for two randomly chosen spinors to be
orthogonal becomes large, so we may expect that the effect of P is small in the large-d
limit. Most likely, the Hessian of the CP d−1 model is gapped, with an energy gap of
order (e2/4πεl)nl2, where Q(r) = n. Good numerical evidence that this is indeed true
has been obtained recently by Dima Kovrizhin, using the dynamics given by (11.70).
His results for d = 3, with the reference spinor described as in Sections 11.3.3 and
11.3.4, are shown in Fig. 11.3.
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Fig. 11.3 The spectrum of the Hessian in the case d = 3. The flat branch at zero frequency
corresponds to variations within the analytic subspace. The first Landau-like level is broadened
by the combined effect of the periodic modulation of the Berry flux B(r) and of the projector P .
Nevertheless, there is a clear gap between the degenerate zero-energy level and this broadened
first Landau level.
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In view of (11.84), we need to estimate the quantum zero-point-energy correction
due to the massive modes of 〈H〉ex. The form of the Hessian (11.86) shows that it
is bilinear in φa(r) and φ̄a′(r′). The discussion in Appendix 11.D suggests then that
Hqzpc should vanish, because it is only sensitive to squeezing operators, which would be
detected by the presence of quadratic terms of the form φa(r)φa′(r′) or φ̄a(r)φ̄a′(r′)
in the Taylor expansion of the covariant symbol 〈H〉ex. But such terms are clearly
absent from (11.86). At this stage, we therefore conjecture that Hqzpc = 0. A sound
mathematical theory of the family |Sψ〉, viewed as coherent states in the fermionic
Fock space, doesn’t seem to be available, in part because of the infinite dimensionality
of the space of possible smooth textures. Physically, we expect the presence of a spatial
cutoff below the magnetic length, so we might be able to get back to the more familiar
situation of a finite-dimensional family. Besides the previous formal argument, our
conjecture seems to be supported by two different observations. It has indeed been
found by a combination of numerical and analytical studies that quantum corrections
to the effective energy functional introduced in Section 11.2.4 are small [45]. Second, as
observed long ago, analytic textures are exact zero-energy eigenstates for a model with
point-like repulsive interaction [28–30], and therefore their degeneracy is preserved to
all orders in quantum fluctuations. Of course, it is not clear whether this conclusion,
valid for the model with point-like repulsion, can be transferred to the quantum CP d−1

model. In Section 11.2.3, we have computed to O(l2) the correction to the expectation
value of the interaction energy, and this led to the CP d−1 energy functional (11.46).
I don’t know if the next corrections arising from both Hartree and Fock terms will
cancel. Unfortunately, the computation of the Fock term requires knowledge of P2

in the series expansion of Pψ, whose expression is a priori quite complicated. So the
precise relationship between the quantum CP d−1 model and the model with point-like
repulsion remains an interesting open question.

11.3.3 Variational procedure for energy minimization

Let us consider the case 0 < Ntop << N , so that 〈H〉ex,ψ is minimized for analytic tex-
tures. Neglecting the quantum zero-point correction coming from the finite-frequency
modes of the Hessian of 〈H〉ex, we have then to minimize 〈H〉el,ψ with the constraint
of a fixed topological charge. Intuitively, the Coulomb interaction being repulsive, one
would like to make the topological charge density as uniform as possible. This motiv-
ates a variational search within the class of periodic textures. Let us then pick two
independent vectors γ1 and γ2 on the plane. Our goal is to construct holomorphic
spinor fields ψa(z) such that all physical properties of the corresponding texture are
periodic under translations by γ1 and γ2. This seems at first impossible, because the
only holomorphic functions that have such double periodicity are constants. However,
we should view |ψ(z)〉 as a representative of the complex line it generates, so the ap-
propriate notion of periodicity is that for any lattice vector γ = n1γ1 + n2γ2 (with n1

and n2 integers), there should be a holomorphic function fγ(z) such that

|ψ(z + γ)〉 = fγ(z)|ψ(z)〉. (11.90)
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A particularly important class of functions satisfying this is the family of θ functions,
which satisfy fγ(z) = exp(aγz + bγ), aγ and bγ being complex numbers, which are
functions of the lattice vector γ. These two functions are called the type of the θ
function. A remarkable mathematical result states that any periodic holomorphic map
from the complex plane to CP d−1 is obtained, up to a gauge transformation, from a
holomorphic spinor field whose d components are θ functions of the same type [46].
An important example of θ functions is

θp(z) =
∑
n

exp
{
i
[
πτd

(
n− p

d

)(
n− 1− p

d

)
+ 2
√
d
(
n− p

d

)
z
]}

. (11.91)

Here, we have chosen γ1 = π
√
d and γ2 = π

√
dτ , with Im τ > 0, and p is an integer.

These functions satisfy

θp(z + γ1) = θp(z), (11.92)

θp(z + γ2) = e−i2
√
dzθp(z). (11.93)

In particular, we have aγ1 = 0 and aγ2 = −i2
√
d. Let us compute the topological charge

of such a texture enclosed in the parallelogram P(γ1, γ2) spanned by the two basis
vectors. This is done easily because(

〈ψ|∂zψ〉
〈ψ|ψ〉

)
(z + γ) = aγ +

(
〈ψ|∂zψ〉
〈ψ|ψ〉

)
(z). (11.94)

From this, we deduce that

1
2π

∮
P(γ1,γ2)

A · dl =
1

2πi
(aγ1γ2 − aγ2γ1). (11.95)

The topological charge enclosed in P(γ1, γ2) is then equal to d. A similar calculation
shows that the phase of these θ functions winds by 2πd when one goes counterclock-
wise around P(γ1, γ2). This domain therefore contains d zeros for each θ function of
the above type. Another remarkable result is the special case of the Riemann–Roch
theorem for a complex torus. It states that the θ functions of a given type form a
complex vector space, whose dimension is finite and is equal to the topological charge
within P(γ1, γ2). For the type given by (11.92) and (11.93), a possible basis is the set of
θp’s for 0 ≤ p ≤ d− 1. The positions of zeros in P(γ1, γ2) are illustrated on Fig. 11.4.

These properties are very reminiscent of the problem of a quantum particle on a
torus in the presence of a uniform magnetic field [47]. This is not a coincidence, because
quantum wavefunctions in the lowest Landau level are analytic functions multiplied by
exp(−|z|2/4l2). To fold the plane onto a torus, periodic boundary conditions are im-
posed by fixing the eigenvalues of the magnetic translation operators along γ1 and γ2,
which commute only if P(γ1, γ2) encloses a finite number of flux quanta Φ/Φ0. These
boundary conditions impose that the analytic factors in the admissible wavefunctions
are θ functions of a prescribed type, with the corresponding topological charge equal
to Φ/Φ0.
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γ1

γ2

Fig. 11.4 [Colour online] Location of zeros of the basis θp functions for d = 4: black [blue]
circles, p = 0; dark grey [green], p = 1, light grey [red], p = 2; white [yellow], p = 3.

It is also useful for our purposes to understand the action of translations on θ
functions. We have

θ(z − w + γ) = exp[aγz + (bγ − aγw)] θ(z − w). (11.96)

This shows that the translated function z → θ(z − w) is again a θ function. While
aγ is preserved in this operation, bγ is in general modified. To preserve bγ as well,
we have to multiply the transformed function θ(z − w) by an exponential factor. We
make then the following definition:

Twθ(z) = eμ(w)zθ(z − w). (11.97)

This new transformation preserves bγ if and only if

μ(w)γ − aγw ∈ 2πZ. (11.98)

Because this holds in particular for both γ1 and γ2, the possible values of w are
discrete, and they correspond to the points of a lattice generated by γ1/d and γ2/d:

w(n1, n2) =
n1

d
γ1 +

n2

d
γ2, (11.99)

μ(w) =
n1

d
aγ1 +

n2

d
aγ2 . (11.100)

As in the case of a particle in the lowest Landau level, this is a projective representation
of translations, and, more precisely,

TwTw′ = ei(2π/d)(m1m
′
2−m2m

′
1)Tw′Tw. (11.101)



516 Spin textures in quantum Hall systems

Note that the phase factor (m1m
′
2 −m2m

′
1)/d has a simple meaning: it is the topo-

logical charge inside the parallelogram delimited by w and w′. These translations have
a simple action on the basis function θp:

T γ1
d
θp = ei(2πp/d)θp, (11.102)

T γ2
d
θp = λθp+1, (11.103)

where λ = e−iπτ(d+1/d).
Given all these preparations, we see that the general periodic texture with periods

γ1 and γ2 takes the form

ψa(r) =
d−1∑
b=0

Mabθb, (11.104)

where Mab are the complex entries of a d× d matrix M . The global SU(d) symmetry
manifests itself through the invariance of 〈H〉el under the transformation M → UM ,
where U is an arbitrary unitary matrix.

11.3.4 Properties of periodic textures

After a substantial amount of numerical work, due to Dima Kovrizhin, it appears that
the variational energy 〈H〉el is minimal for τ = eiπ/3, and M = I (the identity matrix).
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Fig. 11.5 [Colour online] Spatial variations of the topological charge density for the optimal
periodic crystal with d = 4.
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This corresponds to a spontaneous symmetry breaking of the global SU(d) symmetry.
In fact, all unitary matrices M are ground states of 〈H〉el. The optimal value of τ
corresponds to a triangular lattice of skyrmions. Such a state has been represented for
d = 2 on Fig. 11.2.

An interesting property of these periodic textures is that the spatial modulation
of the topological charge density is more periodic than the ansatz M = I suggests
at first glance, in the sense that its elementary periods are γ1/d and γ2/d. At large
d, the modulation contains mostly the lowest harmonic, and its amplitude decays
exponentially with d. The large-d behaviour can be computed explicitly for a square
lattice:

Q(x, y) � 2
π
− 4de−πd/2[ cos(2

√
d x)− 2e−πd/2 cos2(4

√
d x) + (x↔ y)] + . . .

(11.105)
A picture of these spatial modulations is shown in Fig. 11.5.

Only the triangular lattice seems to yield a true local energy minimum. This is
most directly seen by computing eigenfrequencies of small-deformation modes, using
the method to be described below.

11.4 Collective excitations around periodic textures

11.4.1 Time-dependent Hartree–Fock equations

Let us now turn to collective excitations around such textures. What we are going to
do is very reminiscent of the traditional linear spin-wave theory in quantum magnetic
systems. We shall use the variational formulation of the quantum dynamics given by
(11.70), where the variation of |ψ(r, t)〉 has to be taken within the subspace of analytic
spinors. To achieve this, it is convenient to work on a system with finite volume, to
keep the phase-space dimension finite. One way to do this is to introduce a large
supercell P(N1γ1, N2γ2), containing dN1N2 topological charges. We fix the type for
the θ functions across this supercell. The corresponding allowed translations take the
form

w(m1,m2) =
m1

dN2
γ1 +

m2

dN1
γ2, (11.106)

μ(m1,m2) =
m1

dN2
aγ1 +

m2

dN1
aγ2 . (11.107)

These can be used to construct a basis of dN1N2 θ functions:

χp,m1,m2 = Tw(m1,m2)θp, 1 ≤ m1 ≤ N2 − 1, 1 ≤ m2 ≤ N1 − 1. (11.108)

Now, it is important to note that the type of these θ functions across the elementary
cell P(γ1, γ2) depends on (m1,m2) since

χp,m1,m2(z + γ)
χp,m1,m2(z)

= eaγz+bγ+cγ (11.109)
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and, for example,

cγ1 = −i2πm2

N1
, cγ2 = i2π

m1

N2
. (11.110)

We see that the type associated with a P(γ1, γ2) cell is N2-periodic in m1 and N1-
periodic in m2: somehow, we recover a notion of Brillouin zone, although we do not
have periodicity in the usual sense (as for plane waves or Bloch functions), because
we are dealing with analytic functions.

We are now looking for small deviations away from the optimal texture, assuming
that

ψa(z, t) = θa(z, t) +
∑

p,m1,m2

Ma,p,m1,m2(t)χp,m1,m2(z). (11.111)

In the spirit of spin-wave theory, we assume here that the amplitudes Ma,p,m1,m2(t)
are infinitesimals of order one. Using the fact that the topological charge density in
the reference texture is γ1- and γ2-periodic, we deduce that the linearized equations
of motion couple (m1,m2) only to itself and to (−m1,−m2). This is very similar to
what we would get in a superfluid or in a quantum antiferromagnet if we could identify
(m1,m2) with the momentum of the excitation. The same structure has been obtained
for the Bogoliubov theory of collective modes in superfluids in the presence of a vortex
lattice [48]. The new feature here is the presence of internal degrees of freedom, leading
to matrix eigenvalue equations of size 2d2 × 2d2, but because of the high symmetry
of the Q(r) profile, and in particular its γ1/d- and γ2/d-periodicity, this large matrix
structure breaks into small blocks of size 2 by 2, which makes the computation of the
collective mode spectrum much easier!

11.4.2 Collective-mode spectrum

To analyse the corresponding collective-mode spectrum, let us first concentrate on the
zero-momentum sector (m1,m2) = (0, 0), which yields a Hamiltonian system withN =
d2 degrees of freedom. As we have seen, this sector exhibits a d2-dimensional ground-
state manifold obtained by letting the unitary group act on the reference texture,
given by M = I. To proceed further, it is useful to return to the general analysis of
Section 11.3.1 concerning the classical dynamics in the vicinity of a degenerate ground-
state manifold D. There, we introduced a normal form characterized by three integers
N0, Nd, and Nm. Recall that the dimension of D is 2N0 +Nd. What is the effect of
changing the value of Nd while keeping the dimensions of M and D fixed? Let us
show, by a few examples that it affects qualitatively the structure of the linearized
equations of motion.

The simplest case is dimD = 1. This is realized for (N0, Nd, Nm) = (0, 1, 0). An
example of this is provided by a free particle in one dimension with Hamiltonian
H = 1

2P
2. Here D is the X axis, and the equations of motion read(

Ẋ

Ṗ

)
=
(

0 1
0 0

)(
X

P

)
. (11.112)
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An important feature is that this matrix is not diagonalizable—it forms a Jordan block
with eigenvalue zero. In physical terms, this means that moving away by ε along the
P axis generates drift motion parallel to D with velocity ε.

Next, let us consider dimD = 2. The first possibility is to have (N0, Nd, Nm) =
(0, 2, 0). Let us assume that D is the (X1,X2) plane. A simple choice for H is H =
1
2P

2
1 + 1

2P
2
2 , with the corresponding equations of motion⎛⎜⎜⎜⎝

Ẋ1

Ṗ1

Ẋ1

Ṗ1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
X1

P1

X2

P2

⎞⎟⎟⎟⎠ . (11.113)

There are now two Jordan blocks, one for each flat direction along D. This situation
is characterized by the fact that generating functions of drift motions, P1 and P2,
commute everywhere, and in particular on the ground-state subspace.

A second possibility with two degrees of freedom is (N0, Nd, Nm) = (1, 0, 1). As
an example, we may take D to be the (X1, P1) plane and the Hamiltonian as H =
1
2ω

(
X2

2 + P 2
2

)
, with the equations of motion⎛⎜⎜⎜⎝

Ẋ1

Ṗ1

Ẋ1

Ṗ1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 ω

0 0 −ω 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
X1

P1

X2

P2

⎞⎟⎟⎟⎠ . (11.114)

Here, we have only one zero eigenvector for each flat direction and there is no Jordan
block. Besides, there is a finite-frequency oscillator. The qualitative difference with
the previous case is that the generating functions of drift motions, X1 and P1, do not
commute on D.

It is instructive to see how these two possibilities can be realized in a simple system
with two classical spins. We choose H = �S1 · �S2, with the constraints ||�S1||2 = s1, and
||�S2||2 = s2. The ground-state manifold D is easily obtained. It is parametrized by a
unit vector �n such that �S1 = s1�n and �S2 = −s2�n. So D is a two-dimensional sphere.
Because of the global spin-rotation symmetry, we can always induce motions along
D by taking the components of the total angular momentum operator as generators.
The classical equations of motion,

d�Si
dt

= (�S1 + �S2)× �Si, (11.115)

exhibit the eigenfrequencies {0, 0, s1 − s2, s2 − s1}. We see that something special hap-
pens when the two spins have the same length. In the general case, s1 �= s2, so that
�S1 + �S2 �= 0 on D. Because of this, the generators of global rotations do not commute
on D, which shows that we are in the second case, according to the previous discussion.
This is consistent with the fact that we have a massive mode here.
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The case s1 = s2 is special in that the generators of global rotations commute on
D, so we are in the first case with two Jordan blocks. Physically, these drift motions
correspond to a precession of both spins along �S1 + �S2, which is small but non-zero for
small deviations away from D in the system phase space. In mathematical terms, in
the vicinity of D, the symplectic structure on M is similar to the familiar one on the
cotangent bundle over D. In this situation, physicists usually prefer the Lagrangian
formulation, which here takes the form

L ∝ (∂t�n)2. (11.116)

This case is very close to what happens in a Néel antiferromagnet, and is illustrated
in Fig. 11.6

Let us now come back to the collective dynamics around the optimal texture.
We can show that we are dealing with a situation very much like the latter case,
with rotations replaced by SU(d) transformations. We consider the infinitesimal one
corresponding to the anti-Hermitian matrix ξ. It is easy to show that the generator of
this transformation is the functional

Φξ = i

∫
d2r

∑
a,b

ψ̄a(r)ξabψb(r)
〈ψ(r)|ψ(r)〉 . (11.117)

Using the symmetries between the basis θ functions θp(r), such as (11.102) and
(11.103), it is easy to show that on the optimal texture for which ψp(r) = θp−1(r),
the integral gives a contribution proportional to

∑
a,b δabξab = Tr ξ = 0 for ξ in the

Lie algebra of SU(d). So we have Nd = d2 − 1, and therefore we expect exactly d2 − 1
Jordan blocks for the linearized equations of motion in the zero-momentum sector.
This has been confirmed by detailed numerical studies for d ∈ {2, 3, 4}. The miss-
ing degree of freedom corresponds to diagonal generators, which make the difference
between the Lie algebras of U(d) and SU(d). But the equations of motion are ill de-
fined in this two-dimensional block, in agreement with the fact that it corresponds to
uniform gauge transformations.

Let us now consider a small but finite momentum (in the sense of (m1,m2)),
which may be treated as a small perturbation. When it acts on any of the d2 − 1
Jordan blocks obtained for zero momentum, we observe that this block disappears, and

–n n

S2 S1

Fig. 11.6 [Colour online] Illustration of drift motion for a spin configuration (thick black ar-
rows) close to the antiferromagnetic ground state. Spins precess around the total magnetization
(vertical white [blue] arrow) at an angular velocity that is proportional to the deviation from
collinearity.
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Fig. 11.7 Collective mode spectrum of an SU(3) skyrmion lattice with Coulomb interactions.
The spectrum is shown along the diagonal cut through the Brillouin zone, k1 = k2. The lowest-
lying mode at small wavevectors is the magnetophonon. All remaining modes are linear gapless
excitations. Some of theses branches appear degenerate, because of the particular symmetry of
the chosen wavevectors. The total number of Goldstone branches is 32 − 1 = 8.

gives rise to a pair of opposite eigenfrequencies, which grow linearly with momentum.
Putting all the perturbed blocks together, we have d2 − 1 Goldstone branches that
disperse linearly. There remains another mode, which originates from the diagonal
generators at zero momentum, whose dispersion is not always linear in momentum,
and depends on the shape of the long-range interaction. For a repulsive potential
V (r) ∝ r−α, the corresponding dispersion relation is ω ∝ k1+α/2. This is reminiscent
of the dispersion of magnetophonons in a 2D Wigner crystal [49]. All these features
can be clearly identified on Fig. 11.7.

11.4.3 Towards an effective sigma model description

Can we go beyond this linearized dynamics? The analogy with antiferromagnets sug-
gests that it should be possible. It is well known that in these systems, the key to this
upgrade beyond linear spin-wave theory is to replace an expansion in small deviations
away from the reference ordered state by a gradient expansion, which is, in a nonlinear
setting, reminiscent of the perturbation theory of Jordan blocks by a small momentum
performed in the linear case. In the case of Néel order, we get the O(3) nonlinear sigma
model, whose Lagrangian density reads

L ∝ (∂t�n)2 − (∂x�n)2 − (∂y�n)2. (11.118)

Clearly, this generalizes (11.116) to slowly varying configurations. In the SU(d) case,
we should expect an expression of the form

L ∝ Tr
(
∂tg A ∂tg

+ − ∂xg Bx ∂xg+ − ∂yg By ∂yg+
)
, (11.119)
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where A, Bx, and By are fixed d× d matrices and g(r, t) ∈ SU(d) is slowly varying in
space and time, in perfect analogy with non-collinear antiferromagnets [50].

The connection between this slowly varying matrix field g(r, t) and the actual
time-dependent spinor ψa(r, t) is expected to be something like

ψa(r, t) =
d∑
b=1

gab(r, t)θb−1(r). (11.120)

The problem that we face here is that this effective model is supposed to capture
the low-energy dynamics in the classical manifold of analytic textures. The previous
relation would force g(r, t) to be holomorphic, that is, ∂z̄g = 0, but then it would run
into conflict with the unitarity of g(r, t). We may speculate that a similar effective
theory to that in (11.119) could continue to hold but that (11.120) would have to
be replaced by something compatible with the analyticity constraint. A natural idea
would be to write

ψa(r, t) = Phol

(
d∑
b=1

gab(r, t)θb−1(r)

)
, (11.121)

where Phol is a projector (to be precisely defined) on the space of holomorphic func-
tions. Note that we may have a similar deformation of the algebra of functions over
the plane as that considered in Section 11.2.2, given the strong resemblance between
the lowest Landau level and the subspace of holomorphic functions. In particular, a
notion of star product should emerge, through the relation

Phol(fPhol(gθ)) = Phol((f � g)θ). (11.122)

These remain open questions at present. Even if this effective description of the residual
interaction between the d2 − 1 Goldstone branches in terms of a nonlinear sigma model
on a ‘non-commutative plane’ is validated by future studies, another framework is
likely to be needed to account for the interactions between the magnetophonon and
these Goldstone modes. So the subject is far from being closed!

11.A Coherent states in the lowest Landau level

Let us choose the circular gauge. It is well known that the lowest Landau level corres-
ponds in this gauge to wavefunctions of the form ψ(r) = f(z) exp(−|z|2/4l2), where
z = x+ iy if r = (x, y). An orthonormal basis on the infinite plane is given by

〈r|n〉 =
(z/l)n√
2π2nn! l

e−|z|
2/4l2 . (11.123)

The projector on the lowest Landau level is then constructed as

PLLL =
∞∑
n=0

|n〉〈n| (11.124)
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Explicitly,

〈r|PLLL|r′〉 =
1

2πl2
exp

(
zz̄′

2l2
− |z|

2 + |z′|2
4l2

)
. (11.125)

The state PLLL|r′〉 belongs to the lowest Landau level. It has the distinctive property
that it is orthogonal to the codimension-1 subspace of all the wavefunctions ψ that
vanish at r′. Therefore, we expect it to be strongly localized around r′, which is
confirmed by a direct inspection of the behaviour of |〈r|PLLL|r′〉| when r gets close to
r′. This is then a natural candidate to define the coherent state centred at r′. Let us
normalize this state. We have

〈r′|P2
LLL|r′〉 = 〈r′|PLLL|r′〉 =

1
2πl2

. (11.126)

The normalized coherent state centred at r′ is thus |Φz̄′〉 =
√

2π lPLLL|r′〉, and we
have

〈r|Φz̄′〉 = Φz̄′(r) =
1√
2π l

exp
(
zz̄′

2l2
− |z|

2 + |z′|2
4l2

)
. (11.127)

This expression motivates the notation because r′ is involved only through z̄′ in the
analytical part (i.e. function of z) of the wavefunction Φz̄′(r). The overlap between
two coherent states is given by

〈Φz̄|Φz̄′〉 = exp
(
zz̄′

2l2
− |z|

2 + |z′|2
4l2

)
. (11.128)

In particular, since |〈Φz̄|Φz̄′〉| = exp(−|z − z′|2/4l2), this overlap decreases very
quickly beyond a spatial scale given by the magnetic length. We also see that when
this length goes to zero, coherent states become orthogonal, which fits nicely with our
intuition of the classical limit.

11.B From covariant symbols on a two-dimensional
plane to operators

It is convenient to introduce a raising operator b+ and a lowering operator b, both
acting in the lowest Landau level according to

b+|n〉 =
√
n+ 1 |n+ 1〉, b|n〉 =

√
n |n− 1〉. (11.129)

They satisfy the usual commutation relation [b, b+] = 1. From this definition and the
expression (11.127) for coherent states, we see that

|Φz̄〉 = e−|z|
2/4l2

∞∑
n=0

1√
n!

(
z̄√
2 l

)n
|n〉 = e−|z|

2/4l2 exp
(

z̄√
2 l
b+
)
|0〉. (11.130)
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From this, we check the important relations

b|Φz̄〉 =
z̄√
2 l
|Φz̄〉, 〈Φz̄|b+ =

z√
2 l
〈Φz̄|. (11.131)

This shows that the covariant symbol is very easy to extract for normal-ordered op-
erators (or Wick-ordered operators in Berezin’s terminology), i.e. linear combinations
of monomials of the form (b+)mbn. The previous relations show indeed that

ẑmz̄n = (
√

2 l)m+n(b+)mbn. (11.132)

11.C Single-particle density matrix in a texture Slater determinant

In a large magnetic field, and for a filling factor less than d, a very good approxima-
tion in which to study the low-energy physics is to restrict the single-particle states
to the lowest Landau level. It is then convenient to introduce projected creation
operators Ψ+

a (r) and annihilation operators Ψa(r) for a single electron in internal
state a at position r. Using the orthogonal basis |n〉 for n = 0, 1, . . . , these operators
are given by

Ψa(r) =
∞∑
n=0

〈r|n〉ca,n, Ψ+
a (r) =

∞∑
n=0

〈n|r〉c+a,n. (11.133)

Here, ca,n destroys an electron in the internal state a and the basis orbital state |n〉, and
c+a,n is the corresponding creation operator. Assuming the canonical anticommutation
rules {ca,n, c+a′,n′} = δaa′δnn′ , we have the less conventional

{Ψa(r),Ψ
+
a′(r

′)} = δaa′〈r|PLLL|r′〉. (11.134)

The effect of the projection is to smear the expected delta function δ(r − r′) on the
right-hand side and replace it by the matrix elements of the projector PLLL. As in the
main text, let us denote by P̂ψ the projector on the occupied subspace in the Slater
determinant associated with the classical texture ψa(r), and let Pψ(z, z̄) ≡ Pψ(r) be
the corresponding covariant matrix symbol. A very useful fact is that we can express
the single-particle density matrix in this Slater determinant, in terms of the covariant
symbol Pψ(r). Indeed,

〈Ψ+
b (r′)Ψa(r)〉 = 〈r|PLLL(P̂ψ)abPLLL|r′〉. (11.135)

So,

〈Ψ+
b (r′)Ψa(r)〉 =

1
2πl2

〈Φz̄|(P̂ψ)ab|Φz̄′〉 =
1

2πl2
(Pψ)ab(r, r′). (11.136)

The last term has to be understood as the result of a continuation process from the
diagonal part (Pψ)ab(r) to the non-diagonal one (Pψ)ab(r, r′). For any operator Â
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acting on the lowest Landau level, with covariant symbol A(z, z̄) = A(r), we have the
useful relation

A(r, r′) = A

(
r + r′

2
+
i

2
ẑ × (r′ − r)

)
exp

[
−i r × r

′

2l2
− (r − r′)2

4l2

]
. (11.137)

Finally, our main result is

〈Ψ+
b (r′)Ψa(r)〉 =

1
2πl2

(Pψ)ab

(
r + r′

2
+
i

2
ẑ × (r′ − r)

)
exp

[
−i r × r

′

2l2
− (r − r′)2

4l2

]
.

(11.138)

To prove (11.137), let us consider the operator f̂λ,μ, whose covariant symbol is
fλ,μ(r) ≡ fλ,μ(z, z̄) = exp(λz + μz̄). By taking derivatives with respect to the external
variables λ and μ, we can reach any monomial in z and z̄. From (11.132), we see that

f̂λ,μ = exp(
√

2 lλb+) exp(
√

2 lμb). (11.139)

The extended symbol is then easily computed:

fλ,μ(r, r′) ≡ 〈Φz̄|f̂λ,μ|Φz̄′〉 = exp(λz + μz̄′) 〈Φz̄|Φz̄′〉. (11.140)

Now, if an analytic function of x and y, g(x, y) = g(z, z̄), is continued to form the
function g(z, z̄′), the variable x = 1

2
(z + z̄) has to be changed into xnew = 1

2
(z + z̄′).

Likewise, y = 1
2 i(z̄ − z) has to be changed into ynew = 1

2 i(z̄
′ − z). Explicitly, we get

xnew =
1
2
(x+ x′)− 1

2
i(y′ − y), (11.141)

ynew =
1
2
(y + y′) +

1
2
i(x′ − x). (11.142)

This is conveniently expressed as

rnew =
r + r′

2
+
i

2
ẑ × (r′ − r). (11.143)

Using the expression (11.128) for the overlap between coherent states, we see that

fλ,μ(r, r′) = fλ,μ

(
r + r′

2
+
i

2
ẑ × (r′ − r)

)
exp

[
−ir × r

′

2l2
− (r − r′)2

4l2

]
, (11.144)

which establishes (11.137).
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11.D Hamiltonians with quadratic covariant symbol

To keep the discussion simple, let us consider a single degree of freedom, whose asso-
ciated phase space is the plane. It is convenient to use the notations of Sections 11.A
and 11.B, with the replacement l2 = �. Suppose that for some Hamiltonian Ĥ, the
covariant symbol H(z, z̄) ≡ 〈Φz̄|Ĥ|Φz̄〉 is minimal at some point z0. By a translation,
it is possible to shift the origin in the plane, so we may assume that z0 = 0. The Taylor
expansion of H(z, z̄) around the origin contains no linear term, so it reads

H(z, z̄) = E0 +
ω0

2
z̄z +

Δ
4
z2 +

Δ̄
4
z̄2 + . . . (11.145)

Here ω0 is real and positive, and Δ is complex. The corresponding quantum Hamil-
tonian Ĥ can be written in terms of b and b+ operators using the normal-ordering
prescription, as shown in Appendix 11.B:

Ĥ = E0 + �ω0b
+b+

�Δ
2

(b+)2 +
�Δ̄
2
b2 + . . . (11.146)

After a U(1) rotation b→ beiα, b+ → b+e−iα, it is possible to eliminate the phase of
Δ, which will then be assumed to be real. This quadratic Hamiltonian is diagonalized
by a Bogoliubov transformation: b = (cosh θ)β − (sinh θ)β+. Terms of the form β2 or
(β+)2 disappear if we choose tanh 2θ = Δ/ω0. We then get

Ĥ = E0 +
1
2

�(Ω− ω0) + �Ωb+b. (11.147)

Here Ω =
√
ω2

0 −Δ2 is the oscillation frequency of the harmonic mode. The quantum
zero-point correction to the variational estimate E0 of the ground-state energy is

Hqzpc =
1
2

�(Ω− ω0). (11.148)

This correction is always negative and it vanishes only when Δ = 0. This is in agree-
ment with the fact that the normal-ordered term �ω0b

+b is diagonal in the standard
oscillator basis and gives zero when applied to the coherent state |Φ0〉 = |0〉. Only the
(b+)2 term and its Hermitian conjugate can change the ground-state energy, but it is
purely off-diagonal, so the corresponding energy shift has to be negative.

This discussion may seem surprising to experienced readers who expect 1
2�Ω to be

the quantum zero-point energy of a harmonic oscillator. In fact, there is no contra-
diction between the two viewpoints, which differ only in a different choice of the
reference energy. If we start from the traditional harmonic-oscillator Hamiltonian
Ĥ = 1

2ω0(p̂2 + q̂2), we get Ĥ = �ω0b
+b+ 1

2�ω0. The corresponding covariant symbol
is H(z, z̄) = E0 + 1

2
ω0|z|2, so the traditional zero-point energy is incorporated in the

constant E0 = 1
2�ω0. In physical terms, Hqzpc measures the additional energy shift due

to squeezing phenomena induced by non-diagonal operators such as (b+)2 and b2. If the
coherent states initially chosen in our variational procedure are the correct ones, there
are no such squeezing terms, and the traditional zero-point energy is already correctly
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taken into account by computing the expectation value of the quantum-mechanical
operator Ĥ in the chosen coherent-state family. In our approach, a non-zero Hqzpc

signals that residual quantum fluctuations will dress the initial optimal coherent state
and introduce a finite amount of squeezing. Most of the above remarks can be gener-
alized to quadratic Hamiltonians with an arbitrary finite number of oscillators, but to
keep the discussion simple, we won’t elaborate further on this issue.
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[43] B. Douçot and P. Simon, J. Phys. A 31, 5855 (1998).
[44] V. I. Arnold and A. B. Givental, Symplectic geometry, in Dynamical Systems IV:

Symplectic Geometry and its Applications (ed. V. I. Arnold and S. P. Novikov),
pp. 1–136, Encyclopaedia of Mathematical Sciences, Volume 4, Springer-Verlag,
Berlin (2001), see p. 24.



References 529

[45] M. Abolfath, J. J. Palacios, H. A. Fertig, S. M. Girvin, and A. H. MacDonald,
Phys. Rev. B 56, 6795 (1997).

[46] O. Debarre, Complex Tori and Abelian Varieties, AMS/SMF, Providence,
RI/Paris (2005), see Chapter IV.

[47] F. D. M. Haldane, and E. H. Rezayi, Phys. Rev. B 31, 2529, (1985).
[48] S. I. Matveenko and G. V. Shlyapnikov, Phys. Rev. A 83, 033604 (2011).
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Preface

These lecture notes touch upon aspects of out-of-equilibrium behaviour in topologically
ordered systems, broadly interpreted. It should be noted that the selection of topics
reflects a personal choice and it is not intended as a systematic review. Hopefully,
these notes will stimulate the appetite of the interested reader to pursue further study
in this area of research.

12.1 Topological order, broadly interpreted

First, it should be pointed out that these lectures do not aim to introduce or ad-
here to a specific and accurate definition of topological order. Other lectures at
this school may serve that purpose. Here, ‘topologically ordered systems’ refers very
loosely to systems that do not develop a local order parameter at low temperature
(e.g. via the spontaneous breaking of a symmetry) and yet exhibit non-trivial global
properties.

Within this broad definition, which encompasses classical statistical- mechanical
systems as well as quantum-mechanical systems, we shall take topologically ordered
systems to be characterized by the following properties:

1. There is a lack of a local order parameter characterizing the low-temperature
phase; rather, these systems remain in a disordered ‘liquid’ state with non-trivial
non-local correlations.

2. The collective excitations of the low-temperature phase take the form of point-
like quasiparticles that carry a fraction of the microscopic degrees of freedom in
the system.

It is often the case that the low-temperature phase can be effectively interpreted
as a special vacuum, capable of hosting the emergent collective excitations as its
elementary particles.

The properties of the emergent excitations and those of the vacuum are closely
related. From a dynamical perspective, the vacuum determines both at the local and
at the global (topological) levels the rules of motion of the excitations. Vice versa, as
the quasiparticles move across the system, they change it. The excitations act indeed
as dynamical facilitators, since it is through their motion that the system can respond
to external perturbations and/or relax to equilibrium.

The close interplay between excitations and their vacuum is often responsible for
non-trivial and interesting dynamical properties, in particular when the system is
driven out of equilibrium. This is a rich and interesting regime, controlled by the
interplay of many (often independently tunable) factors, such as the interactions
between the emergent quasiparticles, the local and global kinematic constraints
imposed by the vacuum, and, in quantum-mechanical systems, the mutual statistics
of the excitations.
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For the reader who may be familiar with these models, examples include lattice
dimer models, vertex models (e.g. the six- and eight-vertex models in two dimensions
(2D) and spin ices in 3D), and the toric code model and Kitaev’s model.

In these lectures, we will discuss specifically the case of classical spin ice (Sec-
tion 12.2) and the quantum toric code (Section 12.3). The combination of strongly
correlated physics, topological order, and far-from-equilibrium behaviour makes the
study of these systems a tall order. For classical systems, we will see that one can make
substantial progress in understanding the dynamics, in particular following thermal
and field quenches, thanks to an effective modelling of the vacuum and its emergent ex-
citations. At the quantum-mechanical level, a similar modelling is not readily available
and the depth of our present understanding is limited to the study of leading en-
ergy barriers and asymptotic behaviour. We close with the discussion of an intriguing
parallel that can be drawn between the toric code Hamiltonian and a class of lat-
tice systems known as kinetically constrained models, which were designed to achieve
trivially disordered low-temperature phases with emergent long relaxation timescales
(Section 12.3.4).

12.2 Example 1: (classical) spin ice

As shown in Chapter 3 of this volume, the behaviour of spin-ice models and materials
at low temperature can be understood as a spin-liquid ‘vacuum’ with an emergent
gauge symmetry (inherited from the 2in–2out local constraint that minimizes the
energy). This vacuum hosts classical fractionalized excitations that take the form of
free magnetic charges in 3D, or emergent magnetic monopoles. (For a review, see
e.g. [1, 2].)

As a first approximation, the collective behaviour of these systems at low tem-
perature (Fig. 12.1) resembles that of a Coulomb liquid or pair plasma (i.e. a gas of
positive and negative Coulomb-interacting point charges, which is overall neutral) [3].

Such an effective description goes a long way to capture the low-temperature behav-
iour of spin ice, with far less effort than would otherwise be required by conventional
theoretical approaches for strongly correlated magnetic systems on a 3D lattice.

Ordered phase Spin ice (Coulomb) phase

Out of equilibrium (experimental)

Tf   500 mK T

?
Tp˜2 KTd =60 mK

Fig. 12.1 Schematic illustration of the different temperature regimes in spin ice. The theoret-
ically predicted ordering transition at Td appears to be prevented in experiments by freezing of
the magnetic degrees of freedom below a threshold temperature Tf , as evidenced for example by
a discrepancy between field-cooled and zero-field-cooled magnetization. The 2 in–2out spin-ice
regime undergoes a continuous crossover to trivial paramagnetic behaviour around Tp.
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An example can be found in the use of Debye–Hückel theory to obtain the low-
temperature heat capacity of spin ice. This is discussed in detail in [3] and we only
report here a brief outline of the approach for illustrative purposes. In order to com-
pute the heat capacity, one often looks for ways to approximate the free energy of the
system. With strongly correlated localized spins, it is customary for instance to use
appropriate truncated expansions. Rather than working with the spins directly, how-
ever, in spin ice one can choose to work with the effective description in terms of a gas
of Coulomb-interacting charges, focusing on the nature of the elementary excitations
and neglecting, to a first approximation, the 2in–2out spin background. One can then
assemble the free energy of the system in this new language:

F = Fchem pot + Fcharge entropy + Fel, (12.1)

where Fchem pot is the contribution due to the fact that emergent excitations cost
energy (chemical potential); Fcharge entropy is the entropic contribution of distributing
point charges on a lattice; and Fel is the electrostatic (or, better, magnetostatic)
contribution.

The first two terms are straightforward. Fchem pot ∝ ρΔ, where ρ is the monopole
density and Δ is their bare energy cost (i.e. their cost in a generic 2in–2out spin-ice con-
figuration infinitely far from any other monopoles); and Fcharge entropy ∝ −TSmixing,
where the mixing entropy takes the usual form Smixing ∝ −ρ ln ρ− (1− ρ) ln(1− ρ)
(for a more detailed expression accounting for positive and negative charges separately,
see [3]).

The third term is a tall order and an exact expression is not known. However,
several analytical approximations are readily available in the literature on Coulomb
liquids and charged plasmas. One of the simplest approximations goes under the name
of Debye–Hückel theory (see e.g. [4]). It provides an analytical expression for Fel in
terms of the ratio between the Coulomb interaction strength at nearest-neighbour
distance, Enn, and the temperature T as

Fel ∝ −T
[
1
2x

2 − x+ ln(1 + x)
]
, x ∝

√
Enn

T
ρ . (12.2)

We now have an expression for the full free energy F as a function of the monopole
density ρ. All the relevant parameters (Δ, Enn) and the proportionality constants
that have been omitted above can in fact be obtained independently from microscopic
details about spin ice. Therefore, by minimization with respect to ρ, one can solve
for the thermodynamic equilibrium value of the monopole density as a function of
temperature. From the latter, one then obtains the free energy of the system and,
using known thermodynamic relations, the heat capacity. In the non-interacting limit
Fel = 0, analytical expressions can be obtained, whereas in the Debye–Hückel case
above, one has to resort to a recursive set of equations that can be solved numerically
to the desired accuracy.

The outcome is in excellent agreement with numerical simulations as well as with
the experimentally measured behaviour of the heat capacity of the system at low
temperature [5]—far better than one can achieve with conventional approaches for
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strongly interacting localized spin systems. The Debye–Hückel approach also allows
one to obtain further insight into the system, for instance the behaviour of the density
of monopoles and their screening length.

Exercise 12.1 Using the parameters in [3], compute F (ρ) in the Debye–Hückel approximation
and obtain the recursive equations for the equilibrium monopole density.

The benefit of a Coulomb-liquid description is not limited to thermodynamic prop-
erties. It is also key to understanding response and equilibration in these systems. A
generic spin in a 2in–2out background can only flip if a thermal fluctuation allows it to
overcome the energy barrier to create a monopole–antimonopole pair, Δs = 2Δ−Enn.
This is unlikely to happen when the temperature is appreciably smaller than the bar-
rier, since the spin-flip process takes a correspondingly long time ∼ eΔs/T . On the
contrary, three of the four spins next to an isolated monopole can flip without incur-
ring such large energy barrier. Their reversal results in the monopole hopping from one
tetrahedron to the next (see Fig. 12.2), whereby the number of monopoles remains
unchanged (we disregard here the weaker energetic contribution due to long-range
interactions with other monopoles).

The first process can take place at a density ∼ (1− ρ) of sites on the lattice. There-
fore, the associated timescale is τ ∼ eΔs/T /(1− ρ) ∼ eΔs/T , at the regime of interest
of sufficiently low temperatures where ρ ∼ e−Δ/T � 1. The second process does not

Bare monopole
cost Δ

Activation barrier Δs

Fig. 12.2 On the left, a generic spin reversal in 2in–2out spin ice incurs a large energy barrier
due to the creation of a monopole–antimonopole pair. On the right, a monopole acts as a spin
facilitator, in that it allows three of the four neighbouring spins to flip without such barrier.
Flipping one of those spins results in the monopole hopping to a neighbouring tetrahedron and
no energy change in the system (up to long-range Coulombic interactions).
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incur an energy barrier, but it can only take place next to an existing monopole and
therefore τ ∼ 1/ρ ∼ eΔ/T . Which of the two processes dominates is determined by the
smallest of the two energy scales, Δ and Δs = 2Δ− Enn. In known spin-ice mater-
ials, Δ > Enn and spin flip via monopole hopping is exponentially preferred at low
temperatures.

From these observations, we conclude that magnetic monopoles act as facilitators
for the spin-flip dynamics in the system. Therefore, they play a key role in the way
the system responds to external perturbations and equilibrates. Typical timescales for
macroscopic response are proportional to the inverse density of monopoles, τ ∼ τ0/ρ,
where τ0 is some characteristic single-spin-flip timescale. A hydrodynamic theory that
demonstrates this relationship for non-interacting monopoles is presented in [6]. This
result captures well the leading order divergence of magnetic relaxation timescales
observed in AC susceptibility measurements [7, 8]. Corrections due to the Coulomb
interactions between monopoles were investigated numerically in [8]. (See also [9–15]
for other factors playing a role in the dynamical slowing down at low temperatures,
and potentially interesting open issues.)

Suggested reading See [6] for a derivation of the linear response dynamics in
the non-interacting monopole approximation using hydrodynamics of irreversible
processes.

In general, a system where point-like excitations freely moving in three dimensions
are responsible for bulk magnetic response is bound to exhibit an interesting separ-
ation of timescales. On the one hand, monopoles are only created and annihilated in
pairs. Therefore, monopole density relaxation processes involve monopole motion over
distances of the order of the average monopole–monopole separation ξ ∼ ρ−1/3. In a
ballistic regime where positive monopoles are driven towards negative monopoles, the
corresponding timescale is of the order of ξ monopole hops. At sufficiently high tem-
peratures and/or beyond the screening length, the monopole motion is diffusive and
the timescale varies as ξ2 ∼ ρ−2/3. Finally, any changes in the bulk magnetization and
other observables that depend on the local spin orientations require the monopoles to
visit a finite fraction of the spins in the systems. Therefore, on average, they have to
move across a finite fraction of ξ3 spins per monopole, corresponding to a timescale
of the order of ξ3 ∼ ρ−1.

The Coulomb-liquid nature of low-temperature excitations leads to other unusual
features in the dynamical behaviour of driven spin-ice systems close to equilibrium.
For example, response properties typical of electrolytes have been argued to apply
to spin ices in the form of an increase in the monopole density upon switching
on an external magnetic field, in an analogue of the second Wien effect [16–18]
in electrolytes. Experimental work testing this hypothesis has been presented [17],
but no consensus has yet been reached on the observation of a magnetic Wien
effect.
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Suggested reading It is insightful to revisit Onsager’s theory for electrolytes (see
e.g. [18]) and translate it into the magnetic language appropriate for spin ices [17].

These examples illustrate the close interplay between the nature of the fractional-
ized excitations in spin ice and its dynamical properties. Such interplay is bound to
be reflected, if not enhanced, when the system is brought strongly out of equilibrium.
In the following, we shall discuss a couple of examples in some detail. Specifically, we
shall consider sudden quenches from a high- to a low-monopole-density state, triggered
by tuning either the temperature or an applied magnetic field.

We mention in passing that the phase diagram of spin ice includes a critical end
point in presence of a magnetic field. ‘Slow quenches’ (i.e. continuous variations of the
parameters as functions of time) to or across the critical point should therefore give
rise to out-of-equilibrium scaling behaviour à la Kibble–Zurek, in the novel context
of a system with emergent gauge symmetry and emergent Coulomb-interacting quasi-
particles. Theoretical and experimental work investigating this possibility is currently
underway.

12.2.1 Thermal quenches

One way to cause the system to evolve from a state with high monopole density to
one with low monopole density is by lowering its temperature. Here we consider for
simplicity the case where the system is initially at infinite temperature (Ising para-
magnet) and it is suddenly quenched to a target (low) temperature [19]. In effective
Coulomb-liquid terms, this is equivalent to quenching a plasma where positive and
negative charges can be created (and annihilated) only in pairs, and each charge costs
some finite amount of energy Δ.

Immediately after the quench, the system is strongly out of equilibrium (e.g. the
monopole density is much larger than its thermodynamic value at the target tem-
perature). When coupled to a thermal bath, it will relax to equilibrium via the
available dynamical processes, namely monopole motion and monopole–antimonopole
creation/annihilation.

Note the stark contrast with conventional magnets, where thermal quenches are
usually described in terms of domain nucleation, growth, and coarsening [20]. In spin
ice, it is clear that this language is unlikely the right one to understand the evolution
of the system. Rather, we see that the language of reaction–diffusion processes is more
befitting.

Whereas monopole–antimonopole annihilation events lower the energy of the sys-
tem, pair-creation events face a finite energy cost Δs. Detailed balance (i.e. the
requirement that the dynamical processes are compatible with thermodynamic equi-
librium) imposes that creation is statistically suppressed with respect to annihilation
by a Boltzmann factor e−Δs/T .

For the sake of the discussion below, we limit ourselves to the case where the
target temperature is much smaller than the pair creation energy cost and e−Δs/T ∼
0. We can thus neglect creation processes altogether. Within this assumption, the
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equilibrium density of monopoles at the target temperature is also vanishingly small
and we shall set it to zero (recall that ρ ∼ e−Δ/T and Δ < Δs < 2Δ; therefore, Δs � T
implies Δ � T and ρ ∼ 0). The equations of motion for the monopole density can be
generically written as [21]

∂ρ±(r, t)
∂t

+∇ · J± = −κ ρ+(r, t)ρ−(r, t), (12.3)

J± = −D∇ρ±(r, t)− μq±ρ±(r, t)∇V (r, t), (12.4)

where ρ± and J± are the densities and currents of positive and negative monopoles,
respectively, κ is the annihilation reaction constant, and the two current terms are due
to diffusion (constant D) and deterministic drift caused by (long-range) interactions
(mobility μ, interaction potential V (r)). In spin ice systems, it is often the case that
the relevant constants can be estimated analytically or obtained from independent
comparisons with simulations or experiments, remarkably leaving few to no fitting
parameters in the equations!

12.2.1.1 Nearest-neighbour spin ice

Let us focus first on the case where spin–spin interactions are truncated at nearest-
neighbour distance and correspondingly the charges in the Coulomb liquid language
are non-interacting (V (r) = 0). Incidentally, in this case, Δs = 2Δ.

Within this approximation, the dynamical processes in the system are limited to
diffusion of non-interacting charges and monopole–antimonopole annihilation events.
At mean-field level (uniform system, no spatial dependence), the diffusive part is
irrelevant and we are left with a straightforward reaction equation:

dρ

dt
= −κρ2(t). (12.5)

The right-hand side is determined by the rate of monopole annihilation events, which
is proportional to the probability of finding a monopole–antimonopole pair in the
system (∼ ρ2) divided by the characteristic timescale for a single annihilation event to
take place (namely, the characteristic spin-flip timescale τ0). The constant κ ∝ 1/τ0
depends on details of the underlying microscopic lattice through a combinatorial factor
accounting for the ways to arrange two monopoles next to one another across a bond
of the lattice.

Exercise 12.2 Provide an estimate of κ for spin ice on the pyrochlore lattice and compare
your answer with the two values provided in [19] and reported in the caption of Fig. 12.3.

The mean field equation (12.5), complemented by the initial condition
ρ(t = 0) = ρ0, can be solved straightforwardly to find

ρ(t) =
ρ0

1 + κρ0t
, (12.6)
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and the long-time decay in the monopole density goes as t−1. The accuracy of the
mean-field solution in describing the behaviour of a nearest-neighbour spin ice depends
crucially on how uniform the initial charge distribution is, to ensure that diffusion
timescales are indeed irrelevant.

Spatial variations in the initial distribution of monopoles and antimonopoles can,
however, alter the behaviour significantly [22]. For instance, if the charges are distrib-
uted entirely at random with density ρ0, then the net charge fluctuations in a volume
of linear size � scale as

√
ρ0�3. Given that annihilation processes conserve the local

net charge (they always remove one positive and one negative monopole at the same
time), they cannot remove these fluctuations. After a time t sufficient for monopoles
to diffuse over the length � (i.e. � =

√
Dt), all possible annihilation events within the

volume of size � will have taken place, leaving behind a number ∼
√
ρ0�3 of monopoles

of the same charge owing to the statistical net charge fluctuations. The density of left-
over monopoles scales as

√
ρ0�3/�

3 = ρ
1/2
0 (Dt)−3/4; it decays with time more slowly

than the mean-field behaviour (∼ t−1) and therefore dominates at long times. (We
refer the reader to [22] for a more detailed derivation and discussion of this result.)

However, none of this in fact applies to spin ice. As a monopole travels along a
given path across the system, it modifies the underlying spin-ice vacuum by polarizing
the spins along the path. Another monopole of the same charge cannot follow the same
path in the same direction. Equivalently, we can drive at most �2 monopoles of equal
charge across a system of linear size � before the system becomes fully polarized and
no more monopoles of the same charge can travel in that same direction. This means
that the most net charge that can accumulate in a volume �3 of a spin-ice system is
of the order of �2. The density of leftover monopoles in spin ice therefore scales as√
�2/�3 = (Dt)−1 rather than (Dt)−3/4, which is no longer asymptotically slower than

mean-field behaviour.
These observations are confirmed by the excellent agreement between Monte Carlo

simulations of thermal quenches in nearest-neighbour spin ice and the solution of
the mean-field equation, (12.6), illustrated in Fig. 12.3. Notice that the agreement is
achieved without any fitting parameters!

12.2.1.2 Dipolar spin ice

Let us now consider the case of dipolar spin ice, where monopole excitations are
coupled by long-range Coulomb interactions. In general, they introduce an additional
energetic term that has a smoothing effect on spatial fluctuations of the net charge.
Therefore, the naive expectation from this coarse-grained picture is that the monopole
density decay following a thermal quench in dipolar spin ice is at least as fast as in the
nearest-neighbour case. (We refer the reader to [21] for a discussion of annihilation–
diffusion reaction processes with long-range interactions.)

Monte Carlo simulations confirm this expectation at short times, as illustrated in
Fig. 12.4(c). However, for sufficiently low target temperatures, a long-lived metastable
plateau develops in the time evolution of the monopole density. This new and un-
expected feature is due to a curious interplay between long-range emergent physics
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Fig. 12.3 Monopole density evolution in nearest-neighbour spin ice, after a thermal quench
from T = 10K to T = 0 K, for system sizes L = 32, 64, and 128. The analytical mean-field
result (12.6) is shown for κ = 3/2τ0 (dashed black line) and κ = 9/5τ0 (solid black line); see
[19]. (Reprinted with permission from [19]. Copyright 2010 by the American Physical Society.)

(the Coulomb-liquid description) and lattice-scale physics (related to how monopole
motion changes the underlying spin-ice vacuum).

When a positive and a negative monopole meet in spin ice, the spin between them
can sometimes be the minority spin rather than one of the three majority ones, as
illustrated in Fig. 12.4(a). In this case, flipping the spin does not annihilate the two
monopoles but rather creates an even more energetically costly defect: a 4in and a
4out pair of tetrahedra. At low temperatures, the likelihood of such process is so
low that it is effectively forbidden. We shall dub such monopole–antimonopole pairs
non-contractible. Once they meet at the ‘wrong’ spin (i.e. the minority spin), the
two monopoles of a non-contractible pair are bound together, held by their reciprocal
Coulomb attraction. This is a direct consequence of the long-range nature of the
dipole–dipole interaction.

The monopoles forming non-contractible pairs do not necessarily have to separate
in order to be able to annihilate. It can also happen that another (free) monopole col-
lides with the pair, whereby it can annihilate one of the monopoles in the pair (that
with opposite charge to the free monopole) and free up the other one. Pictorially,
one can think of this as radioactive decay, triggered by the absorption of a monopole,
in contrast to spontaneous decay of the pair, where the monopole and antimonopole
separate and annihilate elsewhere on the lattice. The radioactive process straightfor-
wardly reduces the energy of the system, whereas the spontaneous process incurs a
finite energy barrier.

Which of the two processes controls the long-time decay of the monopole density
depends on the relative population of free monopoles and non-contractible pairs. If
free monopoles are abundant, then one can expect that nearly all non-contractible
pairs will decay radioactively (vanishing energy barrier, fast relaxation channel).
If, instead, most monopoles in the system form non-contractible pairs, then their
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Fig. 12.4 [Colour online] (a) Spin configuration of two adjacent tetrahedra hosting a non-
contractible monopole–antimonopole pair. (b) Monte Carlo simulation of dipolar spin ice,
showing the total monopole density [red], non-contractible pair density [blue], and free-monopole
density [magenta], following a thermal quench from T = ∞ to T = 0.125K, with system size
L = 8 and Dy2Ti2O7 parameters. (c) Decay of the total monopole density in Monte Carlo
simulations of dipolar spin ice, following thermal quenches from infinite temperature to differ-
ent finite target temperatures (see the caption to Fig.3 in [19] for details). Inset: comparison of
the long-time tail of the monopole density with the Poissonian modelling of the spontaneous
decay of non-contractible pairs discussed in the text. (Reprinted with permission from [19].
Copyright 2010 by the American Physical Society.)

annihilation must occur via spontaneous decay (slow relaxation channel, due to the
finite activation energy barrier).

At high temperature, when the system is nearly paramagnetic and the defects are
dense, one can readily verify that the density of free monopoles is statistically larger
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(by about one order of magnitude) than the density of non-contractible pairs—as
reflected in the initial conditions that can be inferred from Fig. 12.4(c). Therefore, we
see that a population inversion is required to cause the system to relax via the slow
channel and to develop a long-lived metastable plateau at low temperature.

Exercise 12.3 Obtain an estimate of the density of non-contractible pairs in the paramagnetic
limit (i.e. randomly oriented Ising spins), and compare it with the total density of monopoles
in the same state.

Once again, the long-range Coulomb interaction plays a crucial role in determining
how the free versus non-contractible monopoles evolve with time. Indeed, free mono-
poles and antimonopoles are drawn together by Coulomb forces that are stronger
than the attraction between free monopoles and non-contractible pairs (charge–dipole
interaction). Naively, one would thus expect that the long-range interactions favour
direct annihilation of free monopoles over the radioactive decay of non-contractible
pairs. If the bias is sufficiently pronounced, it can eventually cause the density of free
monopoles to become vanishingly small, whereas the density of non-contractible pairs
remains finite, leading to the above-mentioned population inversion.

Numerical Monte Carlo simulations of dipolar spin ice suggest that this under-
standing of the behaviour of the system in terms of a Coulomb-liquid picture of
monopoles and non-contractible pairs is in fact correct. In particular, the population
inversion does take place and the density of non-contractible pairs is solely responsible
for the long-lived metastable plateau (see Fig. 12.4(b)).

As in the case of a nearest-neighbour spin ice, one can use differential equations for
reaction–diffusion processes to model the evolution of the monopole density following
a quench and to confirm the qualitative understanding presented above. The processes
that ought to be included are

(1) monopole–antimonopole annihilation;
(2) non-contractible pair formation;
(3) radioactive and spontaneous decay of non-contractible pairs.

They are qualitatively illustrated (with the exception of the spontaneous decay) in
Fig. 12.5(a). In contrast to the nearest-neighbour case, one has to introduce an add-
itional density variable to represent non-contractible pairs (a new ‘species’ of particles
whose evolution is directly related to that of the free monopoles).

Exercise 12.4 Write the differential equations corresponding to the diagrams in Fig. 12.5(a)
in the mean-field limit. Consider explicitly the limit where the temperature is much smaller
than the energy barrier for spontaneous decay and non-contractible pairs can only decay
radioactively. Solve the equations either analytically or numerically and compare the free ver-
sus non-contractible monopole densities (you should use initial conditions similar to those in
Fig. 12.4(b)). Try to identify qualitatively the range of parameters in the differential equations
for which a population inversion takes place and comment whether spin ice is likely to fall
within this range or not. (The differential equations coefficients for spin ice can be estimated
from microscopic probabilistic arguments akin to the derivation of κ in the nearest-neighbour
case.)
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Fig. 12.5 [Colour online] (a) Qualitative illustration of the dynamical processes involved in the
monopole density evolution following a thermal quench in dipolar spin ice. (A = positive and
B = negative monopole; D = non-contractible pair). (b) Example of a hexagonal path for the
spontaneous decay of a non-contractible pair. (Reprinted with permission from [19]. Copyright
2010 by the American Physical Society.)

Here we limit ourselves to modelling in some detail the long time tail of the
monopole density decay. As discussed above, it is evident from Fig. 12.4(b) that the
non-contractible pairs are largely responsible for this tail. Moreover, in this regime,
we expect that spontaneous decay of non-contractible pairs is the leading dynamical
process in the system.

First, we ought to estimate the typical energy barrier ΔEnc of a spontaneous
decay process. This is determined by the largest distance that a monopole and an
antimonopole in a non-contractible pair need to be separated by before they are
able to annihilate elsewhere in the lattice. The shortest possible path is illustrated in
Fig. 12.5(b). It requires separating the two monopoles up to third-neighbour distance,
before they are brought together again to annihilate. From the value of the magnetic
charge of a spin-ice monopole, using the known lattice spacing and the formula for the
magnetic Coulomb interaction, one can readily obtain

ΔEnc = −μ0

4π
Q2

m

(
1
d3n

− 1
dnn

)
. (12.7)

Exercise 12.5 Using spin-ice parameters from the literature, compute the value of ΔEnc for
Dy2Ti2O7 and Ho2Ti2O7.

Now that we have an estimate of the energy barrier, we can proceed with mod-
elling the spontaneous decay of non-contractible pairs. (Notice that the existence of
a hexagonal decay path for each non-contractible pair is far from obvious and ought
to be regarded as a working assumption here; it will be confirmed a posteriori by
comparison with simulations.) We shall assume that the spontaneous decay events are
uncorrelated and they obey a Poissonian distribution, with decay probability per unit
time P(t) = e−t/τnc/τnc. The timescale for the activated process is τnc = τ0e

ΔEnc/T ,
where τ0 is the characteristic microscopic spin-flip timescale (τ0 = 1 in Monte Carlo
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simulations). Finally, the non-contractible pair density at time t is determined by the
number of pairs that have not annihilated via spontaneous decay at any t′ ≤ t, i.e.

ρ(t) ∝ 1−
∫ t

0

P(t′) dt′ ∝ e−t/τnc . (12.8)

In the Coulomb-liquid description, the value of ΔEnc is well defined. However, one
should recall that it is in fact the result of a resummation of the dipolar interactions
between spins that neglects quadrupolar corrections [23]. Therefore, it is subject to
(small) statistical fluctuations in Monte Carlo simulations of dipolar spin ice, which
are reasonably fitted by a Gaussian distribution. In the case of Dy2Ti2O7 for example,
the peak of the distribution occurs at ΔEnc � 1.47 K and the variance is 0.01 K2 [19].
The value of ρ(t) in (12.8) ought to be averaged over such Gaussian distribution before
comparing with simulations:

G(ΔE) ∝ exp

[
− (ΔE −ΔEnc)

2

2σ2

]
, (12.9)

〈ρ(t)〉dis ∝
∫
G(ΔE)ρ(t;ΔE) dΔE

∝
∫

exp

[
− (ΔE −ΔEnc)

2

2σ2

]
exp

(
− t

τ0eΔE/T

)
dΔE. (12.10)

Notice that (12.8) has only one fitting parameter left: the proportionality constant,
i.e. the height of the metastable plateau induced by the long-lived non-contractible
pairs. The comparison between theory and simulations is illustrated in the inset in
Fig. 12.4(c). We note the good agreement over more than 20 orders of magnitude(!),
demonstrating that the qualitative understanding in terms of a Coulomb liquid and
non-contractible pairs is indeed correct, and that the choice of single-hexagon paths
for the spontaneous decay is justified.

We close by stressing the role played by the long-range Coulomb interactions be-
tween the monopoles in determining the strikingly different behaviour in dipolar versus
nearest-neighbour spin ice. On the one hand, they are responsible (at short range) for
the existence of metastable non-contractible pairs. On the other hand, their long-range
nature contributes to the population inversion that is key to the long-time plateau in
the monopole density at low temperatures.

12.2.2 Field quenches

An alternative protocol to drive a spin-ice system from high to low monopole density
involves the use of an applied magnetic field pointing in one of the global [111] crys-
tallographic directions. For intermediate and large field strength, the field maps in the
Coulomb liquid language onto a (staggered) chemical potential for the monopoles [23].
The resulting phase diagram is that typical of a liquid–gas system, with a first-order
transition line ending at a critical endpoint (see Fig. 12.6).
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Fig. 12.6 Phase diagram of spin ice in the presence of a [111] field. The vertical arrows rep-
resent field quenches from saturated ice (high monopole density) to kagome ice (low monopole
density), as discussed in the text. (Reprinted with permission from [24].)

To understand this phase diagram, it is convenient to divide the spin lattice (pyro-
chlore, or corner-sharing tetrahedral lattice) into alternating kagome and triangular
layers perpendicular to the field direction, as illustrated in Fig. 12.7(a). In the limit
of strong fields (the saturated ice regime), all of the spins point along the field dir-
ection while respecting the local easy axes (Fig. 12.7(b)). The ice rules are violated
everywhere and each tetrahedron hosts a monopole; the monopoles form an ‘ionic
crystal’ of alternating positive and negative charges. As the field strength is reduced,

(a) (b) (c)

Fig. 12.7 [Colour online] (a) With respect to the global [111] direction identified by the field,
the pyrochlore lattice can be seen as a stack of triangular [yellow] and kagome [green] layers
perpendicular to the field direction. The easy axis of the triangular spins is parallel to the
field, whereas the kagome easy axes are canted, all with the same projection factor 1

3
onto the

field direction. (b) Saturated spin-ice state. (c) Example of a kagome-ice spin configuration.
(Reprinted with permission from [24].)
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violations of the ice rules are no longer sufficiently offset by a gain in Zeeman energy,
and a regime where most tetrahedra obey the ice rule is recovered (at low tempera-
ture). This necessarily requires some of the spins to point against the applied field.
At intermediate field strengths, these are mostly spins in the kagome planes, because
their Zeeman energy is smaller by a factor of three compared with the spins in the
triangular planes. This leads to an extensively degenerate regime known as kagome
ice, illustrated in Fig. 12.7(c). At low field strengths, the kagome-ice regime becomes
entropically unstable to the conventional spin-ice regime, i.e. the ensemble of all config-
urations satisfying the ice rules irrespective of the polarization of the triangular spins.
All of these regimes cross over at sufficiently large temperatures into a conventional
paramagnetic regime.

The range of behaviours that can be investigated in quenches involving an applied
field is far richer than in thermal quenches [24]. For instance, the presence of phase
transitions can lead to qualitatively different responses, including the possibility of
critical slowing down and universal scaling à la Kibble–Zurek [42]. The fact that tri-
angular and kagome spins couple differently to the applied field can be used to tune
the dimensionality of the system (2D ↔ 3D). Moreover, the ability to tune both tem-
perature and Zeeman energy against the long-range Coulomb interaction allows us to
control the dynamical processes at play and even to alter the characteristic monopole
hopping timescales.

Here we focus for simplicity on field quenches across the first-order transition, while
the temperature is held constant. Our initial condition is the large-field (saturated-ice)
state, where each spin has positive projection in the direction of the field (Fig. 12.7(b)).
Every ‘upward-pointing’ tetrahedron is occupied by a positive monopole and every
‘downward-pointing’ tetrahedron by a negative monopole. Further, we only consider
temperatures and target field values whereby the thermal equilibrium state after the
quench is that of kagome ice. Here, the Zeeman energy of the triangular spins is
sufficiently larger than the temperature that they remain effectively fully polarized
in the field direction. On the other hand, the Zeeman energy of the kagome spins is
comparable to the temperature, and they are therefore disordered (in so far as the
ice rules due to exchange and dipolar interactions allow). We note that this choice
of temperature and field after the quench typically corresponds to a negligibly small
equilibrium monopole density—hence the quenches can be regarded once again to
be from high to zero monopole density, although the starting configuration is very
different from the initial paramagnetic state used in thermal quenches. For a more
detailed discussion of [111] field quenches in spin ice, we refer the reader to [24].

12.2.2.1 Initial decay

Immediately following a field quench from saturated ice at low temperature, the
monopole density is far greater than its thermodynamic equilibrium value. There-
fore, dynamical spin-flip processes that lead to monopole–antimonopole annihilation
become favoured.

Notice that the triangular spins do not participate in the initial decay of the mono-
pole density. Not only are they pinned by a larger Zeeman energy than the kagome
spins, but also—and more importantly—they are akin to the intervening spin in a
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Fig. 12.8 [Colour online] Pictorial representation of the initial monopole annihilation processes
within a kagome plane, from left to right. Positive and negative monopoles are represented by
grey [red] and black [blue] dots; the spins are not shown for simplicity. The [green] crosses
indicate the spins that have flipped in going from one configuration to the next (left to right
panels).

non-contractible pair. Flipping a triangular spin in saturated ice leads to the creation
of a 4in and a 4out defect rather than to the annihilation of two monopoles.

The initial dynamics of a field quench is thus confined to the 2D kagome planes.
Here, flipping a spin between two monopoles leads to their straightforward annihila-
tion, which lowers the energy of the system. The process continues so long as there
are kagome spins available between neighbouring monopoles, akin to a random dimer
deposition process on the bonds of the dual honeycomb lattice (see Fig. 12.8).

Notice that dimers can sometimes ‘desorb’ during the initial decay when thermal
fluctuations lead to a second reversal of the same spin, thus creating anew the two
monopoles that had previously annihilated. The desorption rate can be controlled by
tuning the value of the target field as well as the temperature. Here we focus for
simplicity on the regime where the desorption rate is negligible.

Ignoring the long-range Coulomb interaction between the monopoles, one should
expect to be able to model the initial decay process with reasonable accuracy at the
mean field level, given the uniformity of the charge distribution in the initial (satur-
ated) state. The equation of motion is thus the same as for nearest-neighbour thermal
quenches, (12.5). The agreement with Monte Carlo simulations of field quenches in
dipolar spin ice is excellent without fitting parameters (Fig. 12.9), suggesting that the
Coulomb interactions do not have a measurable effect on the reaction process.

The solution of the mean-field equations is temperature-independent. As time
passes, we see from Fig. 12.9 that the results of the simulations eventually depart from
the mean-field behaviour and become strongly temperature-dependent. This signals
the end of the initial (dimer-deposition-like) regime. Randomly selected neighbouring
monopoles have straightforwardly annihilated until only isolated ones are left behind,
and they need to diffuse across the system before their density can decay further.

Exercise 12.6 Implement a numerical algorithm (e.g. Monte Carlo) to estimate the density
of leftover monomers following a dimer deposition process on the honeycomb lattice. Compare
it with the density of monopoles in dipolar spin-ice simulations at the end of the initial decay
(from Fig. 12.9). Comment on the comparison in light of the fact that spin-ice simulations
include a small but non-zero desorption probability and long-range Coulomb interactions.
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Fig. 12.9 [Colour online] Monte Carlo simulations of field quenches in dipolar spin ice for
different values of the target field H: (a) 0.2 T; (b) 0.3 T; (c) 0.35 T. Only the initial (short-time)
decay of the monopole density is shown. The differently shaded [coloured] curves correspond
to different values of the temperature, and the superposed black line is the solution of the
mean-field equation (12.5), without any fitting parameters. (Parts (a) and (b) reprinted with
permission from [24].)

When the value of the target field becomes sufficiently large, it is no longer possible
to disregard desorption events. This is the likely cause of the departure from mean-field
behaviour at short times, which begins to appear in Fig. 12.9(c).

12.2.2.2 Intermediate regime

The initial decay ends when there are no more monopoles and antimonopoles next
to one another that can be annihilated by flipping the intervening spin. Monopoles
are now required to travel across the lattice before their density can be further
reduced.

Figure 12.10 illustrates the behaviour over a large time window, for different fields
and temperatures. In general, we observe that the relaxation timescales in the system
become substantially longer after the initial decay discussed in Section 12.2.2.1. The
new timescales show a clear temperature dependence (the lower the temperature, the
slower the decay), as one would expect in the presence of activation-energy barriers ob-
structing the relaxation. This scenario is similar to that observed in thermal quenches
in dipolar spin ice (Fig. 12.4(c)). However, we see that the behaviour in field quenches
is far richer, with intermediate-time regimes that appear to be distinct from both the
initial and the asymptotically long-time decay.

These intermediate regimes are controlled by finite-size, finite-time processes and
are rather challenging to model analytically. The comparison between analytics and
numerics is not as straightforward when we do not have access to some asymptotic
limit (e.g. short or long times). This interesting and unique regime of an emer-
gent reaction–diffusion process in presence of long-range Coulomb interactions and
kinematic constraints, which can in principle be accessed experimentally in spin-ice
materials, lacks a proper understanding to date.
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Fig. 12.10 [Colour online] Monopole density (thick lines), density of triangular spins in the
direction of the initial magnetization (thin dotted-dashed lines), and density of non-contractible
pairs (thin solid lines) from Monte Carlo simulations for a system of size L = 8 (8192 spins)
at temperatures T = 0.1, 0.15, 0.2, 0.3, 0.4, and 0.5 K [red, blue, green, magenta, cyan, and
yellow curves, respectively] for different fields H : (a) 0.2 T; (b) 0.4 T; (c) 0.6 T. At intermediate
times, some of the triangular spins reverse, as shown by the dip in their density; the latter has
been magnified by factors of 100 and 1000 in (a) and (b), respectively, to aid visualization. In
(c), the density of triangular spins in the direction of the applied field remains very nearly 1
throughout the simulations; the triangular spins remain polarized throughout the quench and
the monopole motion is effectively 2D. (The black dotted horizontal line in each plot indicates
the density threshold of one monopole in the entire Monte Carlo system.) (Reprinted with
permission from [24].)

12.2.2.3 Long-time behaviour

At long times, the monopole density decay becomes increasingly dominated by the
longest relaxation timescale in the system. We should therefore be able to capture the
physics of this regime by modelling its asymptotic behaviour analytically.

Whereas at small and intermediate target field values (Fig. 12.10(a) and (b)), most
of the monopoles at long times form non-contractible pairs, this is clearly not the case
at larger fields (Fig. 12.10(c)). Hereinafter, for simplicity, we shall focus only on the
latter case.

For large field values, the long relaxation times cannot be ascribed to long-lived
non-contractible pairs. Rather, it must be that an energy barrier impedes the diffusion
and annihilation of free monopoles. The origin of this barrier can be understood if we
recall that monopole diffusion at large fields and low temperatures takes place nearly
exclusively within each kagome plane, whilst the triangular spins remain fully polarized
(Fig. 12.10(c)).

Under these conditions, a positive monopole in a kagome plane has a lower Zeeman
energy when it sits in an upward-pointing tetrahedron than in a downward-pointing
tetrahedron (vice versa for a negative monopole, as illustrated in Fig. 12.11). If we
were to make a monopole hop across the kagome lattice, then at every other step it
would have to overcome a Zeeman energy barrier dE � 4.48H K (where H is the value
of the target field measured in tesla).

Alternatively, the system can create a monopole–antimonopole pair next to the
existing monopole and then annihilate the existing monopole with the oppositely
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dE = 4.48 H

dE = 4 J eff
nn –4.48 H

Fig. 12.11 [Colour online] Schematic representation of monopole motion in a kagome plane,
via ordinary hopping (upper intermediate diagram) and via pair-assisted hopping (lower inter-
mediate diagram). Both processes result in a negative monopole being transferred from a
downward-pointing tetrahedron (left diagram) to one of the four nearest downward-pointing
tetrahedra (right diagram). Each process encompasses two spin flips but, according to the order
in which they are executed, the two processes face different energy barriers dE with opposite
field dependence. The figure shows the value of the barriers for nearest-neighbour spin ice. In the
text, we discuss how they are modified in the presence of long-range dipolar interactions. The
field dependence, however, remains unchanged. The tails of the curved [green] arrows originate
from the spin being flipped in going from one diagram to the next. Only the spins in the front
three tetrahedra are drawn for convenience. The triangular spins remain polarized throughout.
(Reprinted with permission from [24].)

charged member of the pair. The outcome is equivalent to moving a monopole from
one Zeeman-favoured tetrahedron to another Zeeman-favoured tetrahedron two lat-
tice spacings away from the first. This process costs interaction energy (monopole
pair creation + Coulomb interactions), but it can be done while gaining Zeeman
energy. The corresponding barrier, using the Coulomb-liquid description, can be esti-
mated as dE � 2Δ− 2Enn +E2n − 4.48H K, where Δ is the bare monopole cost and
Enn (E2n) is the strength of the Coulomb interaction between two nearest-neighbour
(next-nearest-neighbour) monopoles.

Exercise 12.7 Using spin-ice parameters for Dy2Ti2O7 and Ho2Ti2O7 from the literature,
estimate the corresponding values of the pair-assisted hopping barrier.

Notice that the two dynamical processes have opposite dependence on the applied
field strength. Using spin-ice parameters appropriate for Dy2Ti2O7, the second process
(i.e. pair-assisted hopping) becomes energetically favoured with respect to the first for
H � 0.5 T. When H = 0.6 T (Fig. 12.10(c)), the barrier to pair-assisted hopping is of
the order of 2 K, whereas the barrier to ordinary hopping is approximately 3 K.

In order to confirm our understanding of the slowing down of the monopole hop-
ping, we attempt to collapse the long-time tails of the Monte Carlo simulations of
dipolar spin ice by rescaling time using the characteristic activated timescale edE/T .
For the target field H = 0.6 T, we find a good collapse when we choose dE = 2.4 K, in
reasonable agreement with the estimated value for pair-assisted hopping (Fig. 12.12).
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Fig. 12.12 [Colour online] Collapse of the long-time decay of the monopole density (thick
lines) and of the non-contractible monopole density (thin lines) after rescaling the time axis by
a factor e−2.4/T . The Monte Carlo simulations are for L = 10 with H = 0.6T and T = 0.13,
0.15, and 0.18 K [red, blue, and green curves, respectively]. The good quality of the collapse
indicates that the simulated systems are large enough for the energy scale of 2.4 K not to exhibit
any appreciable dependence on system size. (Reprinted with permission from [24].)

However, larger system sizes and longer simulation times are required for a more
discerning and conclusive comparison [24].

In summary, field quenches in spin ices offer a realization of several paradigmatic
concepts in non-equilibrium dynamics: dimer adsorption, Coulombic reaction–diffusion
physics, and kinetically constrained slow dynamics. There is an unusually high degree
of tunability, since one is able to control, say, the timescale of the elementary dynamical
move through a Zeeman energy barrier, the dimensionality of the final state (d = 2
for kagome versus d = 3 for spin ice), and the relative importance of dimer desorption
compared with Coulomb interactions between the monomers.

Given the availability of a range of experimental probes for magnetic systems and
the ability to apply time-dependent fields of the strength required for spin ice mater-
ials, we can expect that it will be possible to study some of these out-of-equilibrium
phenomena experimentally in the near future.

Further reading on recent experimental work in this direction—including a curi-
ous interplay between magnetic and thermal degrees of freedom leading to magnetic
deflagration effects [25]—can be found in [11, 26, 27] and references therein.

12.3 Example 2: Kitaev’s toric code

So far, we have considered out-of-equilibrium phenomena in classical topologically
ordered systems. The observed interplay between the non-local nature of the phase, the
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emergent excitations, and local kinematic constraints is likely to give rise to interesting
properties and phenomena also in related quantum-mechanical systems. However, the
study of strongly correlated quantum systems in two or higher dimensions far from
equilibrium is in general a tall order. For this reason, we shall focus here on one of the
simplest examples of quantum systems that exhibit topological order in 2D: Kitaev’s
toric code [28].

12.3.1 The model

The toric code is a system of spin- 1
2 degrees of freedom living on the bonds of a square

lattice, subject to the Hamiltonian

H = −λA
∑
s

As − λB
∑
p

Bp, (12.11)

where λA, λB > 0 are two coupling constants, and the star and plaquette operators

As =
∏

j∈star(s)

σxj , Bp =
∏
j∈∂p

σzj (12.12)

are defined as in Fig. 12.13. (The experienced reader will recognize this as a gauge-
fixed lattice gauge theory.) The beauty of the model lies in its simplicity. Every term
in the Hamiltonian commutes with every other, that is, [As, As′ ] = 0, [Bp, Bp′ ] = 0,
and [As, Bp] = 0, for all s, s′, p, p′. One can therefore diagonalize simultaneously all
these operators. Every eigenstate of H is also an eigenstate of each As and Bp (which
have eigenvalue ±1). With the choice of λA and λB both positive, the ground state
|ψ0〉 satisfies the equations

As|ψ0〉 = |ψ0〉, Bp|ψ0〉 = |ψ0〉, ∀s, p.
Despite its simplicity, the model and its ground state are far from trivial. Let us

assume periodic boundary conditions for the system (i.e. it is defined on a torus—
hence the first part of its name). The number of star (plaquette) operators equals the

σi

jεstar(s)

jε∂p

As

Bp =

σx
j

σz
j

=

∏
∏

1

2

As

Bp

Fig. 12.13 Illustration of the star As and plaquette Bp operators in the toric-code Hamilton-
ian. The figure also shows the support of two winding loop operators on the direct lattice, L1

and L2 (periodic boundary conditions are assumed).
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number of lattice sites N . However, not all of them are independent. The product of
all star (plaquette) operators is always 1 because it is the trivial product of squares
of spin- 1

2
(Pauli matrix) operators. (Notice, for instance, that every time we take the

product of two neighbouring star operators, the σxi operator shared between them is
squared, and similarly for plaquette operators.) Therefore, the number of independent
star and plaquette operators is 2N − 2, whereas the number of degrees of freedom
in the system is 2N . Specifying the values of all As and Bp determines uniquely the
energy of the system (H) but it does not identify a unique state. Rather, it identifies
a fourfold-degenerate manifold of states.

In order to resolve the ground-state degeneracy, we need to find two additional spin-
1
2 -like operators that commute with all As and Bp and yet are not directly dependent
on them. We can verify that there are no such operators with local support, and we
need to consider instead products of ensembles of spin operators that span the entire
width of the system. For instance, we can use the two loops L1 and L2 illustrated in
Fig. 12.13 and take the products

Γ1 =
∏
i∈L1

σzi , Γ2 =
∏
i∈L2

σzi . (12.13)

It is straightforward to see that the new operators Γ1 and Γ2 commute with one
another and with all Bp (trivially) and all As operators (the latter is a consequence of
the fact that Γ1,2 share either two or no spins with any of the star operators). Their
eigenvalues ±1 completely resolve the degeneracy.

The choice of paths L1 and L2 is immaterial so long as their respective winding
numbers are preserved (L1 winds around the torus in one direction once; L2 winds
once along the other direction). Given two different choices for L1, the product of
the two corresponding Γ1 operators is equivalent to the product of all the plaquette
operators in between them. In the ground state, the latter are all equal to 1 and so is
their product; hence, the two Γ1 operators must have the same eigenvalue. Similarly
for L2. (These additional operators are equivalent to winding Wilson loops that the
reader may be familiar with from lattice gauge theory.)

Notice that the nature of the degeneracy is not related to the breaking of a sym-
metry. Indeed, one can show that all local operators have trivial (namely, zero-range)
correlations. The degeneracy depends on the topology of the system: it is fourfold on
a torus (genus g = 1) and it is in general 22g-fold on a surface of genus g. The informa-
tion that distinguishes one ground state from another is contained in the eigenvalues
of the operators Γ1 and Γ2. These values cannot be determined from knowledge of
the state of any finite subset of spins in the system; we need to know their state for
a subset that spans the entire system. Moreover, we have seen that the eigenvalues of
Γ1 and Γ2 are independent of the microscopic choice of paths L1 and L2; they depend
only on their global properties, namely how they wind around the torus. As such, we
say that the system is topologically ordered, and the different degenerate states are
dubbed topological sectors.

The ability to store quantum information non-locally as a superposition of ground
states of this system, inherently protected from local perturbations, is responsible
for the great interest that Kitaev’s toric code has received in recent years from
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the quantum information and quantum computing communities (hence the second
part of its name).

Exercise 12.8 Check that the choice of σz operators in (12.13) is arbitrary and one could
equally use σx operators upon replacing the paths L1 and L2 on the direct lattice with equivalent
paths on the dual lattice. Discuss the action of the new winding operators with respect to the
old ones (equivalently, their commutation relations).

Although the toric code is indeed very different from spin ice, an interesting parallel
can be drawn between the two systems. Let us consider the eigenvalues ±1 of the σx

operators and let us represent them as arrows pointing from one sublattice to the
other (+) and vice versa (−). The star operators in the Hamiltonian favour a ground
state where the product of the σx operators around each site of the lattice is +1. In
the language of the arrows, this corresponds to enforcing an even number of arrows
pointing into (equivalently, out of) each site. This is the same as the 2in–2out ice rules
in spin ice, with the addition of 4in and 4out states. The plaquette operators in the
Hamiltonian are kinetic terms with respect to the arrow representation, introducing
quantum dynamics into an otherwise classical vertex model. In summary, the toric
code ‘looks like’ a quantum spin-ice model in 2D with the addition of low-energy
4in and 4out vertices. This addition is, however, responsible for a major difference in
their properties, whereby one system is in a Coulomb phase with an emergent gauge
symmetry and the other is in a Z2 topologically ordered state.

12.3.2 Elementary excitations

In order to understand the nature of the elementary excitations over the ground state
of the toric code, let us consider the action of a σxi operator applied to a given spin i.
While it trivially commutes with the star operators, the value of the σz component of
the spin is changed and therefore the two plaquette operators that share this spin ac-
quire a negative eigenvalue (Fig. 12.14(a)). The energy of the system is correspondingly
raised by 4λB .

L1
L1 L1

L2L2L2

σi σi σi

As

(a) (b) (c)

Bp

As

Bp

As

Bp

Fig. 12.14 [Colour online] Qualitative illustration of the creation and separation of plaquette-
type defects in the toric code. A single spin flip creates two negative plaquettes (a), which
can then separate via the action of other spin-flip operations without incurring further energy
barriers (b). If the two defective plaquettes wind around the entire system before annihilating,
they change the topological sector of the state (c).
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In a conventional spin- 1
2

ground state, a single spin reversal is typically the lowest-
energy excitation. Acting with further flipping operators costs increasingly more
energy. However, much like spin ice, this is not the case for the toric code. Consider the
action of another σxj at a site j that belongs to one of the two negative plaquettes cre-
ated by σxi . Having now two spins flipped, the eigenvalue of that plaquette reverts to its
lowest-energy (positive) state. On the other hand, there is a new plaquette that shares
spin j but not spin i, and its eigenvalue becomes negative. In a nutshell, the action
of σxj is to separate the negative plaquettes without introducing any further energetic
defects (akin to how appropriate spin flips separate monopoles in nearest-neighbour
spin ice without any energy cost). This is illustrated in Fig. 12.14(b). Therefore, the
elementary excitations in the toric code are deconfined plaquettes (equivalently, stars)
with negative eigenvalue. Each defect costs an energy 2λB (equivalently, 2λA). They
can only be created or annihilated in pairs.

In contrast to classical spin ice, we have here two types of excitations: defective stars
and defective plaquettes. Although they do not interact, they have non-trivial recip-
rocal statistics. Indeed, let us consider two negative plaquettes p and p′ on the lattice
(they can only be created in pairs and therefore it is not useful to consider only one of
them in isolation). In order to create these two excitations from the ground state of the
system, one has to choose a path from p to p′ on the dual lattice and act with the prod-
uct of all σxi operators along the path (see Fig. 12.14). One can check that the choice of
path is immaterial, since any two different paths differ from one another by products
of star operators (assuming that there are no star defects in between them). Similar
considerations apply to negative star operators at s and s′, with respect to paths on the
direct lattice from s to s′ and products of σzi operators. We can now imagine having two
plaquette and two star defects in the system; we keep three of them fixed and we drag,
say, one of the plaquettes around one of the star defects (but not around the other) and
back to its initial position (Fig. 12.15). The initial and final states are the same in terms
of the positions of the defects. However, the braiding operation of moving one plaquette
around a star necessarily changes the parity of the number of times that the dual path
p–p′ intersects the direct path s–s′. This results in the state of the system acquiring
an overall phase factor eiπ = −1. Plaquette and star defects have relative semionic
statistics!

l2 l2

l1 l1

l3

Fig. 12.15 [Colour online] Qualitative illustration of the braiding of a plaquette defect around
a star defect.
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Exercise 12.9 Construct the wavefunctions of the two states represented in Fig. 12.15, namely

|ψleft〉 =
∏
i∈l1

σx
i

∏
j∈l2

σz
j |ψ0〉,

|ψright〉 =
∏

i∈(l1∪l3)

σx
i

∏
j∈l2

σz
j |ψ0〉.

Using the well-known (anti-)commutation relations between Pauli matrices, show that the two
states are indeed identical up to an overall minus sign.

The emergence of quasiparticles with fractional statistics with respect to the micro-
scopic degrees of freedom in the system is another instance of fractionalization in
topologically ordered systems.

12.3.3 Dynamics

Once defective stars and plaquettes are created in the system, they are static in so
far as the action of the Hamiltonian is concerned. None of the operators in (12.11)
can alter their positions or values. Defects acquire dynamics only if we assume that
either thermal or quantum fluctuations are present, which generally couple to σx and
σz operators (as well as σy, but we shall not discuss that case in these notes). In the
presence of such fluctuations, the defects are able to move freely across the system.
Once again, similarly to spin ice, defects act as dynamical facilitators for the system’s
response and relaxation. Spin flips that result in the hopping of a defect do not incur
an energy barrier; whereas generic spin flips away from existing defects must overcome
the energy barrier to create two new excitations.

In contrast to spin ice, where the role of the defects as dynamical facilitators is
readily reflected in the magnetic response of the system (e.g. its susceptibility), the
case of the toric code is more subtle owing to the lack of any local correlations. Here,
we discuss how the dynamics of the excitations relates to the topological properties of
the system.

Let us prepare the system in a given topological sector. The creation, say, of a
pair of defective plaquettes only disrupts the spins along the path that was chosen to
generate them. Away from this path, the eigenvalues of the winding loop operators
in (12.13) remain unaltered. Once fluctuations allow the defective plaquettes to move
around, the eigenvalues of the winding loop operators are statistically well defined
only if the two plaquettes remain close to one another. Once they separate and wander
across the system, the information about the initial topological sector is lost. Indeed,
if we create a pair of negative plaquettes, wind them around the system, and then
annihilate them, the outcome is that all winding loop operators crossing the winding
path of the plaquettes change sign and the topological sector of the system changes
(Fig. 12.14(c)).

In order to understand how a defect-driven change in a topological sector takes
place dynamically, let us take a look at the shape of the relevant energy barrier.
Starting from the ground state, the system faces an energy increase for the creation of
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Distance(Pair separation and winding around the system)

Random walk

Thermal excitationBarrier

Tunnelling across

Δ = 4λA

Pair annihilationPair creation

τC ˜ e
Δ/T

τQ ˜ (t/Δ)–L

or 4λB

Fig. 12.16 Qualitative illustration of the shape of the energy barrier to changing topological
sector in the toric code via defect creation, diffusion, and annihilation. The arrows represent
thermal and quantum processes, with their relevant timescales.

two defects (Δ = 4λA or Δ = 4λB, depending on the type of defect). The energy then
remains constant as the defects move about. In order to change topological sector,
one of the defects has to separate from the other and wind around the system before
they annihilate. As a result, the width of the barrier is at least of the order of the
system size L, after which the energy decreases again to the ground-state value upon
annihilating the two defects. The shape of such barrier is depicted in Fig. 12.16.

Local quantum fluctuations can induce a change in topological sector by exciting
a virtual pair of defects and making them hop (while the system is in a virtual excited
state) across the entire lattice before they annihilate and the energy is finally lowered.
If the strength of the quantum fluctuations that couple to the σxi operators is t, then
the height Δ and width ∼ L of the barrier imply that the quantum tunnelling under
the barrier is a perturbative process of order L in t/Δ. The tunnelling rate ∼ (t/Δ)L

is therefore exponentially suppressed in the size of the system. Correspondingly, the
relaxation timescale from one topological sector to another due to local quantum
fluctuations grows exponentially with system size, τQ ∼ exp[L ln(Δ/t)].

This is to be contrasted with the analogous process in the presence of thermal
fluctuations. Once a pair of (real) defects has been thermally excited against the
energy cost Δ, they are free to diffuse across the system. The probability that they
wind around the system and then annihilate is related to the first-passage probability
of a random walk to come back to the origin after winding around the torus an odd
number of times, which is polynomial in L. The overall probability of the process
is therefore given by the product of the activation probability exp(−Δ/T ) times a
factor that does not depend on Δ or T and that scales polynomially in system size,
τC ∼ eΔ/t Poly(L).

Whether thermal or quantum processes are the dominant contribution to the re-
laxation of the system to equilibrium is thus a matter of order of limits. In a system of
finite size, there is a temperature below which the exponential slowing down of thermal
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processes due to the activation barrier exceeds the exponential suppression in system
size of quantum tunnelling, and the latter becomes the faster process (τQ � τC). On
the other hand, if the system becomes larger and larger at fixed temperature, then the
protection from quantum fluctuations is bound to become far greater than the pro-
tection from thermal fluctuations, and the latter become the faster relaxation channel
(τQ � τC). A more general discussion of quantum versus thermal relaxation processes
and their relation to (topological) quantum glassiness can be found in [29].

It is worth commenting that relaxation times that scale polynomially in system
size are unusual in ordered phases and signal a remarkable weakness. Whereas quan-
tum topological order in the toric code is highly robust to quantum perturbations,
it is immediately lost (in the thermodynamic limit) when the system is coupled to
a thermal bath. This issue is discussed in detail in [30–33]. Freeman et al. [34] use
numerical simulations to investigate the relaxation dynamics of the toric code coupled
to a thermal bath and discuss its connection to thermal fragility.

12.3.4 Intriguing comparison: kinetically constrained models

As illustrated in the examples above, the appearance of topologically ordered phases
(in lattice models) is closely related to the presence of dominant energy terms that
enforce local constraints (cf. dimer/vertex/plaquette constraints). Although insuffi-
cient to drive the system into a conventionally ordered phase, these terms are directly
responsible for the non-trivial global properties of the system.

It is interesting to draw a parallel between the role of local constraints in topo-
logically ordered systems and another area of research, namely that of kinetically
constrained models [35], where local constraints are used instead to induce non-
trivial dynamical properties (i.e. unusually slow response and equilibration while the
thermodynamic properties remain altogether trivial).

Kinetically constrained models have received much attention in the literature as
an attempt to understand the emergence of long relaxation timescales and glassiness
in systems without disorder.

Here, we briefly review two examples and comment on their analogies and differ-
ences with respect to the topologically ordered systems considered earlier. We limit
our discussion to classical 2D systems, although higher-dimensional [36] as well as
quantum [29, 37] examples are also available.

12.3.4.1 Square-lattice plaquette model

The first model we consider is an Ising model on a square lattice (with spins living on
the sites, not the bonds) and Hamiltonian [38]

H = −J
∑
p

∏
i∈p

Si (J > 0), (12.14)

where p labels the plaquettes on the lattice and
∏
i∈p Si is the product of the four

spins at the corners of plaquette p. It belongs to a broader class of models known
as gonihedric models and is also directly mappable onto Baxter’s eight-vertex model
(notice the direct correspondence with the toric code).



560 Out-of-equilibrium behaviour in topologically ordered systems on a lattice

The system does not exhibit any phase transitions as a function of temperature,
and the high-temperature paramagnetic phase is continuously connected to the low-
temperature phase where all plaquettes have the same sign (

∏
i∈p Si = +1 for J > 0).

This is most straightforwardly seen in the language of the dual variables τp ≡
∏
i∈p Si,

defined on the centres of the plaquettes of the original lattice, where the Hamiltonian
reduces to that of a trivial paramagnet,

H = −J
∑
p

τp. (12.15)

Notice that the Hamiltonian in (12.14) is invariant under transformations that flip
straight lines of spins on the direct lattice, spanning the entire system (notice the ana-
logies and differences with the winding loops introduced in the discussion of the toric
code). This invariance has two important consequences. First, the zero-temperature
limit when all plaquettes are polarized is sub-extensively degenerate (namely, the num-
ber of degenerate configurations scales with the exponential of the linear size L of the
system rather than the exponential of the volume L2). Second, all two-spin correlators

〈SiSj〉 =
∑
{Sk}

SiSj
e−βH

Z
, Z =

∑
{Sk}

e−βH , (12.16)

vanish identically at all temperatures. This is because there is always at least one
straight line (horizontal or vertical or both) that goes through spin i but not spin j.
Therefore, the correlators vanish by symmetry (so long as the system remains ergodic).

If the duality transformation trivializes the thermodynamics of the system, the
dynamical processes then become non-trivial. At low temperature, in order to transi-
tion from one lowest-energy configuration to another, the system must overcome an
energy barrier that is similar to that encountered in the toric code. First, a thermally
excited spin creates four defective plaquettes (Δ = 8J). Then, neighbouring spins can
flip to annihilate two defective plaquettes and create two new ones, thus effectively
separating the four defective plaquettes in pairs without changing the energy of the
system (see Fig. 12.17). In contrast to the toric code, however, the motion must follow
a straight line. If the pairs wind around the system before they annihilate, the system
ends in a new lowest-energy configuration. Once again, we expect relaxation timescales
that are exponential in the height of the barrier over the temperature, eΔ/T , times a
temperature-independent factor that scales polynomially with the system size.

Although we have considered the timescale for the system to relax from one lowest-
energy state to another, similar arguments apply to the relaxation timescales in the
system as the temperature is progressively reduced (see e.g. [38]).

12.3.4.2 Triangular-lattice plaquette model

The second model that we consider is similar to the former, but defined on the tri-
angular lattice (again with Ising spins living on the sites). The Hamiltonian of the
system can be written as [39]

H = J
∑
�

∏
i∈�

Si (J > 0), (12.17)
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Fig. 12.17 [Colour online] Illustration of defects in the square-plaquette model. A single spin
flip changes the sign of the four plaquettes to which it belongs, which are then pairwise free to
move along straight lines across the system. The bottom portion of the figure illustrates how
isolated defects are brought together to eventually annihilate, as the system attempts to reach
one of its defect-less ground states via the allowed (constrained) defect dynamics (see [38] for
details).

where & labels the downward-pointing triangular plaquettes and
∏
i∈� Si is the

product of the three Ising spins at their three vertices. (This is similar to—but
not to be confused with—the Baxter–Wu model, which includes upward- as well as
downward-pointing triangles.)

The thermodynamic properties of the system are best understood in terms of dual
variables τ� ≡

∏
i∈� Si, which live on the triangular lattice formed by the centres of

the downward-pointing triangles in the original lattice (Fig. 12.18(a)). If the linear
dimension of the system is a power of 2 (i.e. L = 2n, ∃n ∈ N) and periodic boundary
conditions are assumed, one can show that there is a one-to-one correspondence be-
tween the two representations of the system [39]. In the new language, the Hamiltonian
becomes

H = J
∑
�
τ�, (12.18)

i.e. that of an ensemble of non-interacting spins in an applied magnetic field. In the
dual language, it is straightforward to write the partition function of the system and
use the mapping to obtain correlation functions of the original degrees of freedom [40].
The system does not undergo a phase transition as a function of temperature and
the lowest-energy configuration (where all τ� = −1) is continuously connected to the
trivial paramagnetic phase.
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τ
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Fig. 12.18 [Colour online] (a) Illustration of the original triangular lattice of the S spins (light
grey lattice) and the dual triangular lattice of the τ spins (dark grey [blue] lattice). (b) The steps
(from left to right) to annihilate three defective plaquettes at the corners of a dual triangle of
side 2, by flipping three S spins in sequence. Notice that in the process we cannot avoid creating
one additional defect.

Whereas the duality transformation allows one to demonstrate straightforwardly
the trivial thermodynamics of the system, the dynamical processes become non-trivial.
Flipping an individual spin of the original system (S) now leads to changing the sign
(i.e. flipping) the three plaquette variables (τ) that share the spin (Fig. 12.18). This
should be contrasted with the corresponding defect dynamics in the toric code (where,
for example, flipping a bond spin changes the sign of the two adjacent star or plaquette
operators) and in the square-lattice plaquette model (where flipping a site spin changes
the sign of four plaquettes). Notice that the S spins live only in the upward-pointing
triangular plaquettes of the τ spin lattice.

The presence of such dynamical constraints plays a crucial role in the response and
equilibration properties of the system, which become drastically different from those
expected for a trivial paramagnet in an applied field. Similarly to the square-plaquette
model, Monte Carlo simulations show the emergence of unusually long relaxation
timescales and glassiness at low temperatures [39]. However, the behaviour in this case
is remarkably different from the activated behaviour encountered in the toric code and
in the square-plaquette model, since the characteristic timescale grows exponentially
with the square of the inverse temperature [39–41].

In order to understand this behaviour, let us consider how the system approaches
the lowest-energy state as the temperature is lowered. For this purpose, it is sufficient
to consider the lowest-energy excitations above the ground state where all τ� = −1.
It is possible to show that these excitations take the form of equilateral triangles of
linear size � = 2k, with k integer, that have single isolated defects τ� = +1 at each of
their three vertices, as illustrated in Fig. 12.18. (The proof is given in detail in [39]
and will not be reported here.)

These defect structures are metastable in that they cannot be removed (or moved)
without incurring an energy cost. The steps towards the annihilation of a structure
with k = 1 are shown explicitly in Fig. 12.18. They require flipping three original (S)
spins, which in turn flip three plaquette (τ) spins each. In the process, we generate
one more defect than the three we started with, and the overall energy barrier is
therefore 2J .

The same process can be iterated for larger defect structures: to annihilate a
structure of linear size 2k, one has to annihilate the three structures of linear size 2k−1
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within it, which requires overcoming the barrier to create one extra defect, 2J . The
situation is similar for each of the structures of linear size 2k−1, etc., until we arrive at
k = 1, where the process above applies. The overall barrier is thus Δ = 2Jk = 2J log2 �,
where � is the initial separation between defects.

Exercise 12.10 Follow the discussion in the text to prove that the smallest number of add-
itional intermediate defects that one ought to create in order to annihilate three defective
plaquettes at the corners of an equilateral triangle of side 2k is k.

In thermodynamic equilibrium, the average separation between defects scales as
the inverse square root of their density, namely � ∼ eJ/T , since from (12.18) we see
that the energy cost of a defect is 2J , whence their density is ∼ e−2J/T . There-
fore, Δ = 2J log2 e

J/T and the corresponding relaxation timescale is τ ∼ eΔ/T ∼
exp[2J2/(T 2 ln 2)].

Even though it is still the case that relaxation timescales diverge only in the limit
of zero temperature, the plaquette energy terms on the triangular lattice exhibit a
qualitatively different behaviour from those on the square lattice. They give rise to
an unusually strong slowing down that is exponential in the square of the inverse
temperature. This is a substantial improvement in robustness to thermal fluctuations.
One might thus wonder whether new lattice models can be designed where an ap-
propriate combination of plaquette energy terms manages to achieve, say, topological
order as in the toric code and exponential inverse temperature squared protection from
thermal fluctuations, as in the triangular-plaquette model. In this case, the enhanced
protection would not be thermodynamic (in the sense of topological order surviving
up to a finite-temperature phase transition) but rather dynamical, slowing down the
destabilizing thermal defects into a nearly glassy state.

12.3.4.3 Quantum kinetically constrained models

Quantum versions of kinetically constrained models also exist, although their discus-
sion is beyond the scope of these short lectures. They are in general less studied and
less well understood than their classical counterparts. Some examples are discussed
in [29], covering both 2D and 3D cases that exhibit energy barriers and quantum
relaxation rates akin to those illustrated in Fig. 12.16.

Similarly to the case of the toric code model, one finds that large but low-energy
barriers are effective at slowing down quantum tunnelling processes (exponentially
suppressed in the width of the barrier), yet they are rather ineffective with respect to
thermal fluctuations (exponentially suppressed in the height of the barrier but only
polynomially suppressed in the width). This leads to an interesting parallel between
classical and quantum glassiness, and the fact that (topological) quantum glassiness
can be a behaviour inherent to zero temperature, which disappears immediately at
any finite temperature [29].

As suggested in these notes, it is often found that a rich dynamical phenomen-
ology in quantum kinetically constrained models is accompanied by the emergence of
quantum topological order. In their dual description, quantum kinetically constrained
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models can be seen once again as models of point-like particles that move on a lattice
according to allowed and disallowed processes. Other models that typically exhibit
topological properties are those where particle hopping processes are accompanied by
non-trivial phase factors (see e.g. Haldane’s model, fractional Chern insulators, and
the recent artificial gauge fields in ultracold atomic systems). It will be interesting to
investigate how quantum kinetically constrained models behave when similar phase
factors are present in the allowed dynamical processes.

12.4 Conclusions

In summary, we have discussed a few examples of how systems with topological prop-
erties behave out of equilibrium. The topological nature of the low-energy state in
these systems is closely related to the fractionalized character of its elementary ex-
citations. In turn, we have seen that these excitations are directly responsible for
the response and equilibration behaviour. This intriguing interplay gives rise to a
rich variety of exciting phenomena that we are just beginning to understand and
classify.

In the context of statistical-mechanical models such as classical spin ice, we have
shown how the nature of the low-temperature phase and its excitations is reflected in
reaction–diffusion relaxation processes with local and global kinematic constraints as
well as emergent long-range Coulomb interactions. Spin ice thus offers a realization of
several paradigmatic concepts in non-equilibrium dynamics, with an unusually high
degree of tunability.

We have also discussed how a similar interplay between the topological ground
state and its fractionalized excitations leads to interesting equilibration properties in
quantum-mechanical systems, in the presence of both quantum and thermal perturba-
tions. However, the additional complexity of out-of-equilibrium quantum mechanics
in strongly interacting systems limits the discussion at present to somewhat simple
examples (e.g. the toric code) and achieves a far less detailed understanding than its
classical counterpart (e.g. spin ice and kinetically constrained models). Notwithstand-
ing this, one encounters interesting scenarios demonstrating the interplay of topological
order and glassiness, which raise intriguing questions. Quantum topological order ap-
pears to be more susceptible to thermal fluctuations than conventional (local) types
of order, at least in 2D and 3D. Could topological protection be improved by slowing
down (thermal) defects, i.e. freezing them into a glassy state? Can this be achieved
without disorder, using fractal structures as for example in the kinetically constrained
triangular-plaquette model?

Overall, this is an exciting and timely research direction, also thanks to recent
material and technological developments that are producing an increasing number of
experimental results on systems with topological properties out of equilibrium.
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Preface

This chapter is dedicated to the 70th anniversary of Schrödinger’s 1944 Lectures in
Dublin.

There are at present fundamental problems in theoretical physics awaiting solution, e.g. the
relativistic formulation of quantum mechanics and the nature of atomic nuclei (to be followed
by more difficult ones such as the problem of life). (P. A. M. Dirac, 1931)

In February 1943, Erwin Schrödinger presented a series of lectures at the Dublin
Institute for Advanced Studies with the title What is Life? The Physical Aspect of
the Living Cell. The lectures were subsequently published in the form of a small book
[1]. According to Google Scholar, this book has been cited even more frequently than
Schrödinger’s articles on quantum mechanics. In particular, it was credited by Crick
and Watson as the source of inspiration that led them to reveal the double-helix
structure of DNA.

My lectures at Les Houches were a celebration of the anniversary of Schrödinger’s
lectures, and for that reason I decided to share a title.

Besides Crick and Watson, Schrödinger’s book has been, and continues to be, a
source of inspiration to generations of physicists. But it seems to me that its full dimen-
sionality might not yet have been fully comprehended, or appreciated. In particular,
the book has many parallels to Philip Anderson’s highly inspiring 1972 article More is
different. Broken symmetry and the nature of the hierarchical structure of science [2].
Schrödinger clearly realized that Bol’she (bolbxe) makes a difference when he wrote
that

. . . living matter, while not eluding the ‘laws of physics’ as established up to date, is likely
to involve ‘other laws of physics’ hitherto unknown, which, however, once they have been
revealed, will form just as integral a part of this science as the former.

The time should be ripe to accept a universal formal definition of life in terms of
proteins and their dynamics: proteins are the workhorses of all living organisms, they
are true nanomachines that participate in all the metabolic activities that constitute
life as we know it. From this perspective, life is indeed something that can be mod-
elled and understood using both known and still to be revealed laws that govern the
subcellular physics of living matter. For a physicist like me, this is an exciting way to
try and answer Schrödinger’s question.

The underlying theme in my lectures is to view proteins as an exciting example of a
physical system where much of Anderson’s Bol’she can be found. Indeed, proteins seem
to bring together most of the contemporary lines of research in modern theoretical
physics: geometry of string-like structures, topological solitons, spin chains, integrable
models, equilibrium and non-equilibrium statistical physics, quest for entropy, emer-
gent phenomena, . . . and much, much more. Moreover, the tools that are needed to
fully understand proteins range from highly formal to extensively numerical, and for
a theorist there are almost endless opportunities to address questions with direct
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and important experimental relevance: physical, chemical, biological, medical, . . . The
amount of data is overwhelming and it is readily accessible. Experiments can be done
and directly compared with theoretical calculations and numerical computations; the
subject continues to grow at a highly exponential rate.

These lectures were prepared for students in condensed matter physics, both
theoretical and experimental. I assumed the students did not really have any prior
knowledge of proteins, that they did not even know what a protein looks like at the
atomic level. Thus, I begin with a protein minimum. It explains the basic facts that I
think one needs to know to get started in research on the physics of proteins. The rest
of the lectures address proteins from the point of view of a physicist, from a perspec-
tive that I hope appeals to the way a physicist thinks. As such, the presentation could
be somewhat intimidating to chemists and biologists, who might find the concepts
and techniques that I introduce as foreign, something they have not seen and are not
accustomed to, in the context of a problem that is traditionally viewed as theirs. How-
ever, I assure you that everything I describe is very simple. A good command of basic
algebra is all that it really takes to follow these lectures. Indeed, proteins brings phys-
ics together in a unique fashion with biology, chemistry, applied mathematics, even
medical research, Theory and expriments? with the goal of understanding matter that
is alive. I hope you ‘catch the bug’ too!

13.1 A protein minimum

13.1.1 Why proteins?

Proteins are nanoscale machines that control and operate all metabolic processes in all
living organisms. They often have to function with extreme precision: like most ma-
chines, those made of proteins need to have their parts and pieces in the right place,
in a good shape, and finely tuned. How else could these self-producing nanomachines
work in such great harmony, cooperate over an enormous range of scales, and up-
hold something as complex as life? Indeed, it is widely understood that the biological
function of a protein depends critically on its three-dimensional geometry. From this
perspective, the so-called protein folding problem, which aims to explain and derive
the shape of a biologically active protein using laws of physics, addresses the origin of
life itself [3, 4].

Furthermore, a wrong fold is a common cause for a protein to lose its function.
A wrongly folded protein can be dangerous, even fatal, to a biological organism. It
is now widely understood that diverse neurodegenerative diseases, including various
forms of dementia such as Alzheimer’s disease and Parkinson’s disease, type 2 diabetes,
and about half of all cancers are caused by wrong folds in certain proteins [5]. At the
same time, bacteria are on the rampage and emergent resistance through evolutionary
processes is rendering existing antibiotics ineffective at a rapid pace [6–8]. No effective
methods and treatments have been found to prevent or cure viral maladies like HIV,
Ebola, or respiratory syndromes such as SARS and MERS. Our future protection
against these and various other harmful and deadly pathogens depends on our skills
and knowledge to develop conceptually new, protein-level approaches to fight and
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eliminate our enemies. Research on proteins is really about ‘Saving the Planet’ as
much as in any video game or movie ever made. But it is for real: by doing research
on proteins you have a change to become a real-life ‘Gordon Freeman’.

For all these and many other reasons, the ability to accurately describe the physics
of proteins, their structure and dynamics, would have an enormous impact on biology,
pharmacy, and health sciences. It would provide huge benefits to society by paving
ways to prevent and cure many tormenting diseases. In particular, it would provide
us an answer to What is life? along the lines foreseen by Schrödinger.

In the following, I will give a short introduction to proteins, what you need to get
your research started as a physicist. For those who are really seriously interested in
the biological aspects, I recommend the textbook Molecular Biology of the Cell [9].

13.1.2 Protein chemistry and the genetic code

Proteins are one-dimensional linear polymers. They are composed of 20 different amino
acids that share a number of structural properties: there are the backbone atoms that
are common to all amino acids and there are the residues or side chains that are
different for each of the 20 amino acids.

In Fig. 13.1, we show the chemical composition of a generic amino acid. When two
amino acids meet, a chemical process can take place that joins them together into
a dipeptide plus water, as shown in the figure. When this process repeats itself, we
eventually arrive at a long polypeptide chain , a.k.a. a protein, as shown in Fig. 13.2.
Once the protein attains the correct shape, it becomes ready for biological action.

Note the carbon atoms that are denoted Cα in Figs. 13.1 and 13.2. These are
called the α-carbons, and they have a central role in protein structure. As shown in
the figures, the α-carbons connect the residues to the backbone; the Cα forms the
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Fig. 13.1 [Colour online] Amino acids have a common backbone with heavy-atom pattern
–N–C–C–O–, but there are also 20 different residues (side chains), which we denote here by R.
When two amino acids combine together we obtain a dipeptide, in addition to a water molecule.
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Fig. 13.2 [Colour online] Proteins are long linear chains of amino acids, each with a similar
backbone structure but 20 different residue structures (R).

centre of an sp3-hybridized tetrahedron that subjects it to strong steric constraints
and holds it rigidly in place relative to the other atoms. As we shall find, the α-carbons
largely determine the shape of the protein. Thus, much of our subsequent analysis of
protein structure and dynamics is based on the central role of the Cα, for reasons that
become increasingly apparent as we proceed.

In a living organism like you and me, the instructions for making proteins are
stored in our genome. At the level of DNA, the genetic code consists of a sequence of
nucleobases that connect the two strands of DNA. A group of three nucleobases corres-
ponds to a single amino acid; there is a segment of DNA for each protein. The genetic
code is copied from DNA to RNA in a process called transcription. This process, like
all other processes in our bodies, is driven by various proteins. Particular proteins
called enzymes act as catalysts to help and control complex biological reactions.

Our DNA consists of four different nucleobases. Hence, there are 4× 4× 4 = 64
different combinations. But two of them are instructions to stop the process of tran-
scription. Thus, we have a total of 62 combinations of nucleobases that encode the 20
amino acids—the genetic code is degenerate.

Research project 13.1 From the point of view of physics, we have an appetizing similarity
between the genetic code, where a group of three nucleobases corresponds to an amino acid,
and the Standard Model of particle physics, where baryons are made of three quarks. Can you
find a symmetry principle akin to the Eightfold Way that relates the 62 codons to the 20 amino
acids? Hint: A good way to start trying to do this is to follow [10].

Once formed, the RNA has the mission of carrying the genetic code to a ribosome.
A ribosome is essentially a nanoscale three-dimensional printer. It is made of proteins,
and it has the duty to produce new proteins according to the instructions given to it
by RNA. The process where a ribosome combines amino acids into a protein chain is
called translation.

13.1.3 Data banks and experiments

The amount of data and information available on the Internet is enormous, both
on the genetic code and on proteins. There are various open-access libraries both on
the sequences and on the structures of proteins; the amount of data is already more
than any single person can possibly ever analyse, and it continues to increase at an
exponential rate.
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For those who are mainly interested in biology and related bioinformatics, an
excellent resource on protein sequences and their biological function is UniProt:

http://www.uniprot.org/

This data bank contains presently almost 90 million different protein sequences. As
shown in Fig. 13.3(a) the number of known sequences grows at a very high, exponential,
rate.

For those who are mainly interested in physics of proteins, the Protein Data Bank
(PDB) is an excellent resource:

http://www.pdb.org/

As shown in Fig. 13.3(b), the number of known protein structures in the PDB is
around 100 000 and growing—but not at all as fast, since only about 0.1% of known
protein sequences have a known structure.
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Fig. 13.3 (a) The increase in the number of sequences in UniProt, as a function of year.
(Taken from http://www.uniprot.org/.) (b) The increase in the number of structures in the
PDB as a function of year. Both annual increase and accumulated total are shown. (Taken from
http://www.pdb.org/.)
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Numerous other good sources of information exist and can be found on the Internet.
For example, the PSI Structural Biology Knowledgebase is a comprehensive database
for various structural aspects of proteins. It can be found at

http://sbkb.org/

Most of the 100 000 structures in the PDB have been resolved using X-ray crystallog-
raphy. But other techniques are also being used. In particular, the number of NMR
structures is increasing. Until now, it has been very difficult to resolve long protein se-
quences using NMR techniques. Most NMR structures are quite short, and those with
more than 100 amino acids are rare. The advantage of NMR over X-ray crystallography
is that, because no crystallization is needed, NMR can more easily provide dynamical
information. It is possible to follow proteins in motion using NMR, while crystallized
structures have problems moving. However, X-ray techniques such as small-angle X-ray
scattering (SAXS) and wide-angle X-ray scattering (WAXS) are now being developed
that can observe proteins in motion. In the near future, further techniques, such as
those using free-electron lasers, will be able to provide detailed structural and dynam-
ical information at very short timescales. Various other methods are also in use and
under development. The experimental study of protein structure and dynamics is still
very much in its infancy. This makes the study of proteins an exciting field to enter
for those who are experimentally minded, as well as for theoreticians.

The protein crystals in the PDB are ordered and they are commonly presumed
to display a crystallized conformation that is close to the biologically active one. But
most proteins are apparently intrinsically unstructured. Such proteins cannot be crys-
tallized into any kind of biologically unique conformation. When these proteins are
biologically active, they do not have any single conformation. Instead, they change
their form, perpetually. Most proteins in our bodies are like this, intricate nanoma-
chines that are in constant activity. Very little—in fact next-to-nothing—is known
about the structural aspects of intrinsically unstructured proteins. In these lectures,
we shall look at examples of both ordered and intrinsically disordered proteins.

Our experimental considerations will mainly make use of a subset of crystallo-
graphic PDB structures that have been measured with ultra-high precision, with
a resolution better than 1.0 Å. The reason why we prefer to use these ultra-high-
resolution structures is because of a process called refinement that commonly takes
place during experimental data validation and model building [11]. During refinement
and validation, one iteratively improves the parameters of an approximate trial struc-
ture from experimental observations, until some kind of a best fit between the trial
structure and the observed diffraction pattern is obtained. As an ansatz, and as refer-
ence, the process utilizes known experimental crystallographic structures. Widely used
experimentally determined, and highly accurate, template libraries of small molecules
include that of Engh and Huber [12]. Thus, the process of refinement might introduce
a bias towards structures that are already known. In particular, it is not clear to what
extent the structure of a small molecule persists in the complex, highly interactive
environment of a large protein.

Indeed, it is important to recognize and keep in mind that the PDB data files are
prone to all kinds of errors [11, 13–15]. The data should be used with care. MolProbity
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is an example of a web server that can be used to analyse the quality of an experimental
protein structure. It can be found at

http://molprobity.biochem.duke.edu/

One might presume that in the case of ultra-high-resolution structures—those that
have been measured with better than 1.0 Å resolution—the quality of observed dif-
fraction patterns should be very good. These structures should have much less need
for refinement during model building. Thus, they should be much less biased towards
known structures. The number of misplaced atoms should be relatively low.

In order to minimize radiation damage, crystallographic structures are often meas-
ured at temperatures near that of liquid nitrogen i.e. around 80–90 K. Thus, the
thermal fluctuations in the atomic coordinates should be small. In the PDB data,
the experimental uncertainty in the atomic coordinates is estimated by the (tempera-
ture) B-factors. Besides the thermal fluctuations, these B-factors also summarize all
the other uncertainties that the experimentalist thinks affects the precision. In Fig.
13.4, we show the distribution of the Debye–Waller fluctuation distance in our sub-
set of ultra-high-precision structures for the Cα atom coordinates. The fluctuation
distance can be estimated using the Debye–Waller relation

√
〈x2〉 ≈

√
B

8π2
. (13.1)
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Fig. 13.4 The distribution of the Debye–Waller fluctuation distance for the Cα atoms
among those crystallographic PDB structures that have been measured with better than
1.0 Å resolution.
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Fig. 13.5 An example of a PDB file, in this case the amino acid histidine (HIS). The second
column lists the atom number (98–107) along the backbone. The third column lists the type of
atom; CA stands for Cα and entries 98–101 are the backbone N-Cα-C-O atoms of HIS. Entries
102–107 are side chain atoms. In this case, HIS is the 12th amino acid along the backbone. The
(x, y, z) coordinates are listed in the following three columns. The B-factors are listed in the
last column, before a list of the chemical symbols. Note that in this list, the hydrogen atoms
are absent (hydrogens can be difficult to observe).

This corresponds roughly to the one-standard-deviation uncertainty in the experimen-
tally measured coordinate values. Figure 13.5 is an example of a generic PDB entry
that shows how the B-factors are listed, together with the atomic coordinates.

According to Fig. 13.4, among our ultra-high resolution PDB structures the
one-standard-deviation error distance in the Cα atomic positions peaks in the range of
0.3–0.5 Å. The lower bound is around 0.15–0.2 Å, and in these lectures we shall adopt
∼0.15 Å, i.e. around 20% of the radius of the carbon atom, as the lower-bound esti-
mate for the size of quantum-mechanical zero-point fluctuations in the Cα positions.
Note that historically ∼0.2 Å has been considered as the boundary between X-rays
and γ-rays.

13.1.4 Phases of proteins

Like most linear polymers, proteins have a highly complex phase structure that can
depend on a multitude of factors, including the chemical structure of a polymer and
its solvent, temperature, pressure, changes in the solvent’s acidity, and many other en-
vironmental factors [16, 17]. In a good solvent environment, the interactions between
a polymer segment and the solvent molecules usually cause the polymer to expand,
and the polymer behaves like a self-avoiding random walk. In a poor solvent envir-
onment, such as the water that surrounds proteins in our cells, the polymer–polymer
self-interactions dominate and the polymer tends to collapse into a space-filling con-
formation. These two phases are separated by a θ-regime, where the repulsive and
attractive interactions cancel each other and the polymer has the geometric character
of a random walk (Brownian motion).

In the limit where the number N of monomers is very large, many aspects of the
phase structure become universal [18–20]. An example of a universal quantity in the
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case of a linear polymer such as a protein is the compactness index ν. It is defined in
terms of the radius of gyration Rg [16, 17, 21–23]:

R2
g =

1
2N2

∑
i,j

(ri − rj)2. (13.2)

Here, ri are the coordinates of all the atoms in the polymer. In the case of a protein,
with no loss of generality, we may restrict ri to the coordinates of the backbone Cα
atoms only. The compactness index ν governs the large-N asymptotic form of (13.2).
When the number N of monomers becomes very large, we have [23]

R2
g

N large−−−−−→ R2
0N

2ν(1 +R1N
−δ1 + . . .). (13.3)

It should be obvious that ν coincides with the inverse Hausdorff dimension of the
structure. Besides the compactness index ν, the critical exponents δ1 etc. are also
universal quantities. But the form factor R0 that characterizes the effective distance
between the monomers in the large-N limit, and the subsequent amplitudes R1 etc.
that parametrize the finite-size corrections, are not universal [23]. These parameters
can in principle be computed from the chemical structure of the polymer and solvent,
in terms of environmental factors such as temperature and pressure.

As a universal quantity, ν is independent of the detailed atomic structure. Different
values of ν correspond to different phases of polymer. The four commonly accepted
mean-field values of ν are

ν =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
3
,

1
2 ,

3
5 ,

1.

(13.4)

Under poor solvent conditions such as in the case of the proteins in our cells, a
linear single-chain polymer collapses into the space-filling conformation and we have
the mean-field exponent ν = 1

3 . For a fully flexible ideal chain, the mean-field value
is ν = 1

2
. This phase takes place in the θ-regime that separates the collapsed phase

from the high-temperature self-avoiding random-walk phase, for which we have the
mean-field Flory value ν = 3

5
. Finally, when ν = 1, the polymer is like a rigid stick.

A number of proteins are like this, some collagens for example.

Research project 13.2 Three-dimensional dynamical systems such as the Lorenz equation
provide numerous examples of space curves with attractors that have all kind of Hausdorff
dimensions. Can you find physical examples of polymers (proteins) where ν takes values that
correspond to phases that are different from the four listed in (13.4)?
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The mean-field values of the critical exponents ν, δ1, etc. in (13.3) may be corrected
by fluctuations. In particular, in the universality class of the self-avoiding random walk,
the improved values are [24, 25]

ν = 0.5880± 0.0015,

δ1 = 0.47± 0.03.
(13.5)

The computation of (13.5) in [24, 25] utilizes the concept of universality to argue that
the three-dimensional self-avoiding random walk is in the same universality class as the
O(n)-symmetric scalar field theory with a quartic self-interaction, in the limit where
the number of components n→ 0. A subsequent numerical Monte Carlo evaluation of
the critical exponents (13.5), computed using a self-avoiding random-walk model on
a square lattice [23], gave very similar values:

ν = 0.5877± 0.0006,

δ1 = 0.56± 0.03.
(13.6)

In the case of crystallographic PDB protein structures, we may evaluate the de-
pendence of the radius of gyration on the number of residues using the coordinates of
the Cα atoms. The result is shown in Fig. 13.6.

A least-squares fit to the data gives

Rg ≈ R0N
ν ≈ 2.280N0.375 Å. (13.7)

Note that proteins are not homopolymers. But when N increases, the detailed amino
acid structure of a protein should become increasingly irrelevant in determining the
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Fig. 13.6 [Colour online] The Cα radius of gyration as a function of residues, in the case of
those monomeric crystallographic PDB proteins that have been measured with better than
2.0 Å resolution. The lower [red] line is the least-squares linear fit, and the upper [blue] line is
for the Flory value ν = 3

5
.
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relation between the radius of gyration and the number of residues. For long protein
chains, the inhomogeneity due to amino acids should be treated as a finite-size cor-
rection in (13.3), when N becomes very large. Indeed, in the limit of a very large
number of residues, a generic protein is like a chain along which the 20 residues have
been quite randomly distributed. It should be like a spin chain embedded in R3 where
each residue is a spin variable, with 20 different (random) values. Thus, when the
ratio 20/N becomes very small, the effect of an individual residue becomes small in
an average, statistical sense. The protein approaches a homopolymer that is equipped
with an ‘averaged’ residue.

Research project 13.3 Develop a theory of spin chains embedded in R
3.

13.1.5 Backbone geometry

According to Fig. 13.6, those proteins that can be crystallized are in the collapsed
ν ≈ 1

3 phase. To describe the properties of their thermodynamical phase state, we
need to identify a proper set of order parameters in the sense of Landau, Ginzburg,
and Wilson; the concept of order parameter is described in numerous textbooks.1

A local order parameter is a systematically constructed effective dynamical variable
that describes collectively a set of elemental degrees of freedom such as atoms and
molecules in a system that is subject to the laws of statistical physics. Examples of
order parameters include the magnetization in the case of a ferromagnet, the director
in a nematic crystal, the condensate wavefunction in superfluid helium-4, and Cooper
pair in a BCS superconductor. The concept of an order parameter is often intimately
related to the concept of symmetry breaking and emergent phenomena. For example,
in each of the cases that we mentioned, we have a symmetry that becomes broken, and
this symmetry breaking gives rise to emergent structures. In particular, the breaking of
the symmetry is described in terms of the properties of the pertinent order parameter
in each case.

In the case of a protein, we have already concluded that the phase structure relates
to aspects of the protein geometry. The different phases of a protein are character-
ized by different Hausdorff dimensions (13.4). Moreover, proteins have an apparent
symmetry that has become broken.

Amino acids are chiral molecules. An amino acid can be either left-handed (L) or
right-handed (D). The only exception is glycine, which has no chirality. For two amino
acids to form a dipeptide as shown in Fig. 13.1, they must have the same chirality;
you can’t easily shake someone’s left hand with your own right. For some reason,
the symmetry between L and D is broken in Nature—practically all amino acids that
appear in proteins of living organisms from prokaryotes such as bacteria to eukaryotes
like us, are left-handed chiral. This symmetry breaking apparently reflects itself in the
higher-level geometric structures of proteins: as a polymer chain, the proteins that
are found in living organisms are more often twisted in a right-handed manner than

1 In the context of protein research, order parameters are sometimes called reaction coordinates.
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Fig. 13.7 [Colour online] The atoms along the protein backbone form peptide planes; the
two covalent bonds C=O and N–H are antiparallel. The definitions of the various bond and
torsion angles between the covalent bonds are also shown. The two torsion angles (φ, ψ) are the
Ramachandran angles.

the opposite. Thus, any local order parameter that describes the phase properties of
proteins in a living organism should somehow capture the helical aspects of protein
geometry.

Figure 13.7 details the local geometry of a protein. In this figure, we identify a Cα
atom together with its covalently bonded N, C, and H atoms, and the residue R, which
starts with a covalently bonded carbon atom called Cβ . The covalent bonds between
these five atoms form an sp3-hybridized tetrahedron, with Cα at the centre. Take the
C atom to be the top of the tetrahedron, and N, H, and R as the three bottom vertices.
Consider the axis of the tetrahedron that runs along the covalent bond from the C
to Cα and look down this axis from C towards Cα. If the H atom is in the clockwise
direction from the residue R, then the amino acid is left-handed; this is the case in
Fig. 13.7. Otherwise, the amino acid is right-handed.

In Fig. 13.7, we also have two peptide planes, one prior to the Cα atom and the
other after Cα. The Cα atom is located at the joint vertex of the two adjacent peptide
planes. We proceed to analyse in detail the properties of the peptide plane geometry.

It turns out that the geometry of the peptide planes is indeed very rigidly planar.
The planarity is measured by the angle ω shown in Fig. 13.7; this is the angle between
the C=O covalent bond and the N–Cα covalent bond (or N–H covalent bond) The
values of ω are found to fluctuate very little around ω = π, which corresponds to the
trans conformation of the backbone and is shown in the figure; there are a few entries,
mainly involving the amino acid proline, where the backbone is in the cis conform-
ation where ω vanishes. The cis conformation is equally planar, and the fluctuations
around ω = 0 are minimal. Figure 13.8 shows the distribution of the ω angles in our
ultra-high-resolution subset of crystallographic protein structures—those that have
been measured with better than 1.0 Å resolution.

The values of the three covalent bond angles (κ1, κ2, κ3) defined in Fig. 13.7 are
also shown in Fig. 13.8. Their values are likewise subject to relatively small variations.

The various covalent bond lengths along the protein backbone also have values
that fluctuate very little around their average values. Figure 13.9 shows the various
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Fig. 13.8 [Colour online] (a) Distribution of the torsion angle ω between the covalent bonds
C=O and N–H from Fig. 13.6 in our ultra-high-resolution (1.0 Å) resolution PDB subset. The
result shows that the geometry of the peptide planes is indeed planar, with very high precision.
For trans, we have ω ≈ π and for cis, we have ω ≈ 0. (b) Distribution of the three bond angles
(κ1, κ2, κ3) defined in Fig. 13.7 in our data set. The variation around the average values is
relatively small.

bond lengths between the heavy atoms along the backbone. We also show the distance
between two consecutive Cα atoms, which is also subject to very small fluctuations.

13.1.6 Ramachandran angles

Figures 13.8 and 13.9 show that the three covalent bond angles (κ1, κ2, κ3), the torsion
angle ω, and the various covalent bond lengths reveal no dependence on local geometry.
Each of these variables has a fairly uniform distribution, which is apparently quite
insensitive to variations in local backbone geometry. Thus, we are left with only the
two Ramachandran angles (φ, ψ) in Fig. 13.7 as the potential local order parameters to
characterize local geometry along the backbone. Indeed, it turns out that the variations
in their values are not small, and in particular they appear to depend on backbone
geometry. This is shown by the Ramachandran map in Fig. 13.10, which displays
the (φ, ψ) distribution in PDB structures that have been measured with better than
2.0 Å resolution.

Note the asymmetry, both in φ and in ψ; this asymmetry translates into helicity of
the protein backbone. Regular right-handed helical structures (right-handed α-helices)
are quite common, while left-handed helical structures are very rare.

Since the phase structure of a protein relates to its geometry, we may expect
that the set of the two Ramachandran angles could be utilized as the local order
parameters to describe the phase structure of proteins. However, it turns out that
this is not the case [26]: the Ramachandran angles form an incomplete set of local
order parameters. To show this, we consider all the PDB structures in our data set
of ultra-high-resolution structures, those that have been measured with better than
1.0 Å resolution. We perform the following reconstruction. From the PDB coordinates
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Fig. 13.9 [Colour online] (a) Distribution of the three covalent bond lengths Cα–C, C–N, and
N–Cα shown in Fig. 13.7 along the protein backbone. (b) Distribution of the length between
neighbouring Cα atoms along the protein backbone. The smaller value ∼3.0 Å corresponds to
cis and the larger value ∼3.8 Å is for trans.
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Fig. 13.10 [Colour online] Distribution of Ramachandran angles (φ, ψ) defined in Fig. 13.7 in
radians.

of the atoms, we first compute the numerical values of all the Ramachandran angles,
for each and every peptide plane. Then we continue and do the inverse: we start from
the Ramachandran angles that we have computed, and we assume that all the other
angles and bond lengths have their average values. We then try to reconstruct the
original protein structure, by computing the Cα coordinates.
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Rg = 1.802N 0.452

103

Fig. 13.11 [Colour online] Comparison of Rg between the PDB structures, and the structures
obtained by a reconstruction which is based on Ramachandran angles, with all other backbone
angles and bond lengths set to their ideal values. Red circles are the original PDB structures,
blue crosses are the reconstructed structures.

It turns out that this reconstruction of the coordinates, going from Cα to Ra-
machandran and then back, usually fails. It is not possible to perform such a
reconstruction in the case of a generic protein.

In Fig. 13.11, we show how the reconstructed proteins fail to reproduce even the cor-
rect fractal geometry of folded proteins [26]. Instead of (13.7), we obtain the asymptotic
relation

Rg ≈ 1.8N0.45 Å (13.8)

for the reconstructed protein structures: the inverse Hausdorff dimension ν = 0.45 is
incorrect. In order to reconstruct the correct fractal geometry, it turns out that we
need to include all the angular variables in Fig. 13.7 as variables. Only for the bond
lengths can the average PDB values be used.

Eventually, later in these lectures, we shall construct a different set of local order
parameters and show their completeness. However, we first address the modelling of
proteins in terms of their (primary) full atom-level description.

13.1.7 Homology modelling

As shown in Fig. 13.3(a), the number of sequences in UniProt grows at a rate that
is much higher than that of structures in the PDB, shown in Fig. 13.3(b). The gap
is enormous and keeps on growing: sequencing is now fast, cheap and routine, while
crystallographic protein structure determination is difficult, time-consuming, and often
very expensive; apparently the average cost of a PDB structure is around US$100 000.
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Thus, it is impossible to close the gap between sequences and structures by purely
experimental methods. To close this gap, we need to develop efficient and accurate
computational methods.

Homology2 modelling [27–29], together with other comparative modelling tech-
niques, is presently the most reliable and effective approach to generate a three-
dimensional model of a protein’s structure from knowledge of its amino acid sequence.
These methods are consistently the top performers in the biannual Critical Assessment
of Protein Structure Prediction (CASP) tests; see http://predictioncenter.org/.

Homology modelling techniques aim to construct the atomic level structure of a
given protein (target), by comparing its amino acid sequence with various libraries of
known, homologically related protein structures (templates). Apparently, the reason
why this kind of method works is as follows. It seems to be the case that the number
of possible protein folds in nature is limited, and that the three-dimensional protein
structures seem to be better conserved than the amino acid sequences [30]. However,
the quality of a model obtained for the target is largely dictated by the evolution-
ary distance between the target and the available template structures. If no closely
homologous template can be found, these approaches typically fail.

From the point of view of physics, any template-based approach has the disadvan-
tage that there is no energy function. Thus, no energetic analyses of structure and
dynamics can be performed. For these, other techniques need to be introduced: to
understand the physical properties of a protein, we need to know the energy function.

Research project 13.4 Try to develop a structure prediction approach that uses the best of
both worlds—one that finds an initial ansatz structure using templates, and then develops it
using techniques of physics. For hints, continue reading . . .

13.1.8 All-atom models

. . . if we were organisms so sensitive that a single atom, or even a few atoms, could make a
perceptible impression on our senses—Heavens, what would life be like!

(E. Schrödinger)

We present a short overview of all-atom molecular dynamics, where impressive
progress is being made. The aim of an all-atom approach is to model the way a protein
folds, by following the time evolution of each and every atom involved, including
those of the surrounding solvent (water). But despite impressive progress, the subject
remains very much under development and provides enormous challenges to those
brave enough to face them: both conceptual and technical problems remain to be
resolved, involving issues relevant to physics, chemistry, and computer science, as well
as problems for those interested in optimization and efficient algorithm development.

2 Homology between two proteins is commonly measured on the basis of amino acid sequence

similarity. High sequence similarity is a sign of shared ancestry, but for short proteins it can also be

due to chance.
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There are many examples of all-atom energy functions, called force fields in this
context. The most widely used are CHARMM (http://www.charmm.org/) and Amber
(http://ambermd.org/); we also mention Gromacs (http://www.gromacs.org/), which
is a popular platform for performing molecular dynamics (MD) simulations using
different force fields.

A typical all-atom force field that describes a protein chain with N atoms has the
following generic form:

E(rN ) =
∑

bonds

1
2
kb(l − l0)2 +

∑
angles

1
2
ka(κ− κ0)2 +

∑
torsions

1
2
Vn[1 + cos(nω − γ)]

(13.9)

+
N−1∑
j=1

N∑
i=j+1

{
εi,j

[(
r0ij
rij

)12

− 2
(
r0ij
rij

)6
]

+
qiqj

4πε0rij

}
. (13.10)

The first two contributions in (13.9) describe harmonic oscillations of the bond lengths
and bond angles around certain ideal values (l0, κ0). The third contribution involves
torsion angles and evokes a mathematical pendulum, similarly with ideal-value ground
state(s) given by γ. Torsion angles ω are often found to be much more flexible than
bond angles κ, and thus the numerical values of Vn are commonly orders of magnitude
smaller than those of ka. Moreover, a mathematical pendulum that is used for the
torsion angles in lieu of a harmonic oscillator allows for larger-amplitude motions and
multiple equilibrium states, which is consistent with their more flexible character.

The second contribution (13.10) involves the 6–12 Lennard-Jones potential that
approximates the interaction between a pair of neutral atoms; the form is chosen
for computational efficiency. Finally, we have the Coulomb interaction. In practice,
long-range interactions (13.10) are cut off beyond a distance around 10 Å, again for
computational efficiency. The ‘ideal’ values of the various parameters are usually de-
termined by a process of optimization, using comparative simulations. For parameter
fine tuning, one may use very short peptides that have accurately known experimental
structures. Such structures can be found for example in the Engh–Huber library [12].

In a full all-atom MD simulation, one solves Newton’s equation of motion with
(13.9) and (13.10) in an environment of water, which in a full all-atom approach is
also treated explicitly. We note that, for example, the r−12 term in (13.10) mod-
els short-range Pauli repulsion due to overlapping electron orbitals, and the r−6

term emerges from long-range van der Waals interactions. Thus, these terms have
a quantum-mechanical origin, and the proper interpretation of the ensuing Newton’s
equation is in terms not of a classical equation but rather of a semiclassical one.

An MD simulation solves Newton’s equation iteratively, with a time step Δτ .
This time step should be short in comparison with the shortest timescale Δtmin that
characterizes the fastest atomic-level oscillations. The ratio of the two defines a di-
mensionless expansion parameter. For good convergence of the iterative, discretized
Newton’s equation, we should have

Δτ
Δtmin

� 1. (13.11)
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This implies that Δτ should be no more than a few femtoseconds: the modelling of
protein folding in an all-atom MD is conceptually a weak-coupling expansion in terms
of the dimensionless ratio (13.11).

Research project 13.5 Newton’s equation for the mathematical pendulum,

ω̈ = V sinω,

is integrable. Its naive discretization

ω̈ → 1

ε2
(ωn+1 − 2ωn + ωn−1)

yields the so-called standard map [31]

ωn+1 − 2ωn + ωn−1 = ε2V sinω,

which is not integrable. However, an integrable discretization of the mathematical pendulum
is known. See for example Chapter VIII of [32]. Find which one describes protein folding more
accurately.

13.1.9 All-atom simulations

Enormous computational resources have been developed and dedicated to solve the
protein folding problem [3, 4]. From the point of view of molecular dynamics this
amounts to a numerical simulation of the all-atom time evolution in a protein, from
a random chain initial condition to the natively folded conformation using a force
field such as (13.9), (13.10). For example, the Blue Gene family of supercomputers
was originally designed by IBM to address the problem of protein folding and gene
development, which explains the name. Subsequently, special purpose computers have
been constructed to address the folding problem, at all-atom level of scrutiny. Thus
far, the most powerful is the Anton supercomputer, built by D. E. Shaw Research [33–
35]. In the case of relatively short proteins, Anton can produce a few microseconds of
in vitro folding trajectory per day in silico [34]; this is about three to four orders of
magnitude more than a Blue Gene can achieve. In a series of MD simulations of 12
fast-folding proteins, from chignon with 10 residues to genetically modified λ-repressor
with 80 residues, and with each protein capable of folding within a number of micro-
seconds in vitro, Anton was able to produce dynamical trajectories that reproduced
the experimentally observed folded structures, in some examples with an impressive
precision [35]. At the moment, these results set the benchmark for all-atom protein
folding simulations. But despite the encouraging results obtained by Anton, several
issues remain to be overcome before proteins can be routinely folded at an all-atom
level, starting from a knowledge of the amino acid sequence only. We name a few, as
a challenge for future research:

• For the majority of proteins, it takes much longer than a millisecond or so to fold.
For example myoglobin, which is probably the most widely studied protein and
one that we shall fold in the sequel, needs about 2.5 s in vitro to reach its native
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state when it starts from a random chain initial condition. Thus, it would take at
least 1000 years to simulate the folding of myoglobin at the all-atoms level using
presently available computers.

• In an all-atom MD simulation with explicit water, an increase in the number of
water molecules quickly exhausts the capacity of presently available computers.
For example, in the case of the 80-residue λ-repressor mutant simulation using
Anton, only around 11 000 explicit water molecules could be included. This should
be contrasted with real physiological conditions: the normal pH of blood plasma
is around 7.4. Since pH is defined as the log10 of the reciprocal of the hydrogen
ion activity in a solution, this translates to an average of one proton per 107.4

water molecules. Protein folding is strongly affected by pH; proteins have different
natively folded states at different pH values. Thus, it remains a formidable task
to describe physiologically relevant pH environments in a truly all-atom manner.

• All-atom force fields utilize a quadratic, harmonic-oscillator approximation around
the ideal values of the bond lengths and angles (13.9), and a mathematical pen-
dulum in the case of torsional angles. As long as the atomic fluctuations around
the ideal values remain very small, this is a decent approximation. But whenever
the atoms deviate from their ideal positions more than ‘just a little’, higher order
nonlinear corrections are inevitably present and cannot be ignored. The existing
all-atom force fields are not designed to account for this. The force fields are not
built to describe protein conformations in a realistic manner, whenever the lengths
and angles are not very close to their ideal values.

13.1.10 Thermostats

This section describes a technical aspect that is not needed in the rest of the lectures. We
include it here, however, since we feel it addresses a highly important yet still open theoretical
issue that needs to be addressed by any all-atom modelling approach.

Finally, we have the theoretically highly interesting problem of thermostatting. An all-
atom simulation solves Newton’s equation. As a consequence, energy is conserved and
we have a microcanonical ensemble. But in a living cell the energy is not conserved;
instead, temperature is fixed. Accordingly, proteins in living organisms should be de-
scribed in terms of a canonical ensemble. One needs to convert the microcanonical
ensemble that is described by the all-atom Newton’s equation into a canonical one. To
achieve this conversion, one adds thermostats to the system. A thermostat models an
environment that maintains its own temperature constant while interacting with the
system of interest: we refer to [36] for a detailed description of thermostats.

The Langevin equation is an example of a thermostat that is well grounded in
physical principles. In the case of uniform damping, we write it as follows:

ẍi = −∇iE(x)− λẋi + Fi(t), (13.12)

〈Fi(t)〉 = 0, 〈Fi(t) · Fj(s)〉 = λkBTδij(t− s). (13.13)
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The derivation of the Langevin equation assumes two sets of variables, a.k.a. particles:
there are light, small particles that are fast, and there are heavy particles that are
slow. The Langevin equation describes the dynamics of the latter, in the limit where
the ensuing particles are much slower and heavier than the small and fast ones. The
derivation is based on standard arguments of statistical physics. Thus, the Langevin
equation is a priori a well-grounded and rigorous method to introduce temperature
into a Newtonian system.

In the case of all-atom MD, the Langevin equation cannot be used. There are no
small and fast variables around. The oscillating atoms are themselves the small and
fast variables. Moreover, from a conceptual point of view, the presence of a white noise
(13.13) de facto converts the ensuing numerical algorithm into a Monte Carlo process,
albeit an elaborate one.

Many alternatives to Langevin thermostat have been introduced. An example is
the Gaussian thermostat [36]. Unlike the Langevin one, it is deterministic. Instead of
small and fast background variables, one couples the variables xi of interest to explicit
thermostat variables Xk, with equations of motion

miẍi = −∇iE(x)−∇iE(x,X), (13.14)

MkẌk = −∇kU(X)−∇kE(x,X)− αkẊk. (13.15)

The thermostatting effect is modelled by the last term in (13.15); the αk is determined
by subjecting the auxiliary variables to the non-holonomic constraint

1
2
MkẊ

2

k =
3
2
kBT, (13.16)

=⇒ αk =
(

3
2
kBT

)−1 {1
2
MkẊ

2

k + Ẋk[∇kU(X) +∇kE(x,X)]
}
, (13.17)

for each of the thermostat variables. The disadvantage of a Gaussian thermostat is in
the lack of a Hamiltonian character in the equations of motion (13.14) and (13.15).

A Hamiltonian, albeit singular, thermostatting has been proposed by Nosé and
Hoover [37–40]. Their thermostat is probably the most widely used in the context
of all-atom protein folding simulations. In the simplest variant, the all-atom phase
space is extended by a single ghost particle with a singular, logarithmically divergent,
potential that provides the temperature for all the rest.3 The singular character of the
potential introduces an inexhaustible heat reservoir, in essence.

Following [41], we consider the toy-model case of a single canonical degree of free-
dom (p, q) in the presence of a single Nosé–Hoover thermostat degree of freedom (P,Q).
The classical action is [37–40]

S =
∫ T

−T

dt

{
pq̇ + PQ̇− p2

2mQ2
− V [q]− P 2

2M
− 1
β0

lnQ
}
. (13.18)

3 We remark that this ghost particle is a little like a Higgs particle that gives the mass for other

particles in subatomic physics, except that instead of mass, it gives temperature and it cannot be

observed.
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We may assume that V [q] has the double-well profile

V [q] = λ(q2 −m2)2. (13.19)

We are interested in the tunnelling amplitude between the two minimum-energy
configurations q = ±m:

〈+m,T | −m,−T〉 =
∫ ∫ q(+T)=+m

q(−T)=−m
[dp] [dq] eiS (13.20)

The integration over p is Gaussian but yields a Jacobian factor that depends on Q.
This Jacobian has the same functional form as the last term in (13.18), and thus it
can be absorbed by a redefinition (renormalization) of β0 → β. As usual, we evaluate
the transition amplitude using the Euclidean (imaginary-time) formalism, obtained
by sending t→ it. The Euclidean action is

S =
∫ T

−T

dt

{
1
2
Q2q2t + V [q] +

1
2
Q2
t +

1
β

lnQ
}
, (13.21)

and we search for a finite-action instanton trajectory that connects the two states
q = ±m; note that the continuation to imaginary time ‘inverts’ the potential term, as
shown in Fig. 13.12.

The instanton is a solution to the equations of motion

Q2qtt = Vq − 2QQtqt � Vq − γqt, (13.22)

QQtt = Q2q2t +
1
β
. (13.23)

Note how the coupling between q and the thermostat variable Q gives rise to an
effective friction-like coefficient γ(t).

V[q] V[q]

q

t it

q

-m +m -m +m

Fig. 13.12 Analytic continuation to Euclidean time has the effect of inverting the potential
V [q]. The instanton is a trajectory that starts at (Euclidean) time −T from the local maximum
at q = −m and reaches the local maximum at q = −m at time +T, as shown on the right.
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We first consider the case where the thermostat field Q is absent. This amounts
to setting Q ≡ 1 in (13.21) and (13.22) and removing (13.23), leaving us with the
equation

qtt = Vq = 4λq(q2 −m2). (13.24)

By adjusting the initial velocity, we conclude that a solution exist that starts from
q = −m at time −T, and ends at q = +m at time +T. This solution is the instanton
that gives rise to a finite tunnelling amplitude between ±m; in the limit T →∞, the
instanton has the familiar double-well topological soliton profile

q(t) = m tanh[
√

2λm(t− a)]. (13.25)

Now suppose that the thermostat field is present. We first consider a scenario where
at ±T the system reaches a stationary state where q = ±q0 �= ±m. Since the action
(13.21) should remain finite as T→∞, we arrive at the Gibbsian relation

Q(T)
T→±∞
−−−−→ Q± = e−βV [q±]. (13.26)

This proposes that β is indeed the Boltzmannian temperature factor, when positive.
Next, we integrate (13.23) and then take the limit T→∞; since the Euclidean

action should be finite, we may assume that Qt vanishes as T→∞, which removes
the surface term. We find∫ ∞

−∞
dt
(
Q2
t +Q2q2t

)
= −

∫ ∞
−∞

dt
1
β
. (13.27)

For a non-trivial tunnelling configuration and with a finite Euclidean action (13.21),
the integral on the left-hand-side of (13.27) should be finite and non-vanishing. But
since the left-hand side is manifestly non-negative, the Boltzmann temperature fac-
tor β cannot be positive as it should. Thus, we conclude that the presence of the
thermostat field suppresses tunnelling. We note that a suppression of the tunnelling
amplitude by a Nosé–Hoover thermostat in the case of double-well potential has been
observed in numerical simulations [40].

Proteins regularly need to tunnel over various different potential barriers in their
presumably highly rugged energy landscape, when proceeding from a random initial
configuration to the natively folded state. Thus, we suspect that simulations using
Nosé–Hoover thermostats can cause complications whenever we have a protein for
which we can expect that the folding pathway goes through various intermediates and
molten globules.

Research project 13.6 Investigate how the suppression of tunnelling amplitudes in the case
of a properly modified Nosé–Hoover thermostat could be avoided.

Other kind of thermostats have also been introduced; in particular, we mention
the Berendsen thermostat [42]. These thermostats, which are often convenient in nu-
merical simulations, are designed to approach canonical ensembles in a limit. But they
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commonly lack a Hamiltonian interpretation, i.e. they are non-physical, and thus a
physical interpretation of the results is absent. While this might not be an issue when
the goal is simply to find a local energy minimum of an all-atom force field such as
(13.9), (13.10), a non-physical thermostat cannot be used to model the dynamics of
proteins.

13.1.11 Other physics-based approaches

The all-atom approaches where the discretized Newton’s equation is solved iteratively
are conceptually weak-coupling expansions in the dimensionless parameter (13.11). To
describe the folding of most proteins, one needs to be able to extend this expansion
and ensure its convergence over some 15 orders of magnitude or even more. From the
perspective of subatomic physics, this is like extending perturbative Standard Model
calculations all the way to the Planck scale.

Several approaches have been developed with the goal of introducing an expansion
parameter that corresponds to a timescale clearly larger than the femtosecond scale.
Such coarse-grained force fields average over the very short-timescale atomic fluctu-
ations. If the denominator in (13.11) can be increased, so can the numerator, and
it becomes possible to develop expansions that reach longer in vivo timescales with
no increase in the in silico time. In practice, a carefully crafted coarse-grained force
field can cover up to around three orders of magnitude longer folding trajectories than
all-atom approaches, while still maintaining good overall quality. Here, we mention in
particular UNRES as an example of such a carefully crafted coarse grained force field
[43–45]. See the homepage http://www.unres.pl/.

Finally, we comment on the various versions of the Gõ model [46] and the closely
related elastic (Gaussian) network models [47]. These approaches were historically
important in obtaining insight into protein folding at a time when computer power
was insufficient for any kind of serious all-atom folding simulation. In these models, the
folded configuration is presumed to be known; the individual atomic coordinates of the
folded protein chain appear as an input. A simple energy function is then introduced,
tailored to ensure that the known folded configuration is a minimum-energy ground
state. In the Gõ model, the energy could be as simple as a square-well potential centred
at the native conformation. In elastic network models, the atoms are connected by
harmonic oscillators, with energy minima that correspond to the natively folded state.
Since the positions of all the relevant atoms appear as parameters in these models,
they contain more parameters than unknowns and so no predictions can be made: from
the point of view of a system of equations, these models are overdetermined. In any
predictive energy function, the number of adjustable parameters must remain smaller
than the number of independent atomic coordinates. Otherwise, no predictions can be
made, and no physical principles can be tested.

13.2 Bol’she

In 1972, Anderson wrote an article [2] entitled More is different that has been inspir-
ational to many. In particular, he argued for the importance of emergent phenomena.
But the call for Bol’she is already present in Schrödinger’s 1944 book:
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. . . living matter, while not eluding the ‘laws of physics’ as established up to date, is likely
to involve ‘other laws of physics’ hitherto unknown, which, however, once they have been
revealed, will form just as integral a part of this science as the former.

However, Anderson makes a crucially important point that cannot be found in
Schrödinger’s book. Anderson’s article has this point even as a subtitle: Broken sym-
metry and the nature of the hierarchical structure of science. Anderson realized that
in order for emergent phenomena to give rise to structural self-organization, one needs
a symmetry that becomes broken.

We have already pointed out that a broken symmetry is present in the case of
proteins. Individual amino acids can be either left-handed chiral or right-handed chiral,
equally. But, for some reason, living matter is built almost exclusively from amino acids
that are left-handed chiral. We note that, apparently as a consequence, protein chains
are predominantly chiral with right-handed helicity.

13.2.1 The importance of symmetry breaking

Consider a fluid-dynamical system such as water, the atmosphere, or any other scen-
ario that can be described by the Navier–Stokes or Euler equation or their many
descendants. These are fundamentally atomic systems, but with an enormous num-
ber of constituents. Their macroscopic properties are governed, often with very high
precision, by the properties of a local order parameter that computes the fluid vel-
ocity. Structures such as vortices and tornadoes, and solitonic waves like the one that
emerges from the Korteweg–de Vries equation, are all described by a solution that
breaks an underlying symmetry.

A fluid-dynamical vortex line is a familiar example of a highly regular collective
state of individual atoms, with a topological character. It is an example of an emergent
structure. At the atomic level of scrutiny, the individual atoms and molecules that
constitute the vortex are subject to random, Brownian thermal motion. By following
a single individual water molecule, you cannot really conclude whether a vortex is
present. The vortex materializes only at the macroscopic level, when the individual
haphazard atomic motions become collectively self-organized into a regular pattern.

It would be inconceivable to construct a macroscopic vortex line such as a tornado
in the atmosphere from purely atomic-level considerations, even in principle. A vortex
is an example of a soliton, and solitons cannot be constructed simply by adiabat-
ically building up individual atomic-level interactions as small perturbations around
a ground state consisting of free individual atoms. A (topological) soliton emerges
when nonlinear interactions combine elementary constituents into a localized collect-
ive excitation that is stable against small perturbations and cannot decay, unwrap, or
disentangle.

13.2.2 An optical illusion

We start to describe the importance of symmetry breaking at an intuitive level. We
consider a simple optical illusion, not a physical example. But it nevertheless demon-
strates how Bol’she gives rise to a symmetry that becomes broken, and the illusion of
breaking symmetry leads to the formation of structure, in our eyes.
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Fig. 13.13 Rotate the figure, slowly, by 180◦. When you focus your eyes on the two individual
cubes on the left, nothing much happens. However, if you focus on the set of cubes on the
right, you see an abrupt effect like a phase transition between two different but identical ground
states; we have a Z2 symmetry that has become broken by visual perception.

We then proceed to consider two physically relevant examples, where a very similar
broken symmetry is present, but now in a physically relevant fashion. Most import-
antly, each of the two examples we present describes a simple physical scenario that
shares many features with proteins.

In Fig. 13.13, we have two sets of cubes. On the left, we have two individual cubes;
on the right, there are more cubes. If we look at the cubes on the right, we should
be able to visualize some order—for example, light grey steps that come down from
the left. Now we rotate the figure, slowly. When we keep our eyes focused on the two
individual cubes on the left, nothing really happens besides an overall rotation of the
two cubes. But if we instead focus on the set of cubes on the right, we should observe a
rapid transition: there is a point at which the direction of the steps changes, abruptly,
so that, after a rotation by 180◦, we still have the same light grey steps, still coming
down from the left.

The system on the right is Bol’she, with a discrete Z2 symmetry under a rotation
by 180◦. There are two ground states, and our mind chooses one, thus breaking the
symmetry. In fact, the scenario is very much like that in Fig. 13.12, with two identical
ground states. In this sense, Anderson’s Bol’she is present in Fig. 13.13. No similar
optical illusory effect is observed when the two individual cubes on the left are rotated.

We now proceed to describe two physical examples where a similar kind of Z2 sym-
metry becomes broken, with equally dramatic physical—not illusory—consequences.

13.2.3 Fractional charge

Polyacetylene in trans conformation is like a simplified protein. Figure 13.14(a) shows
the structure. There is a ‘backbone’ consisting entirely of carbon atoms, and at each
carbon atom there is a ‘side chain’ with a single hydrogen—much like in a protein,
but simpler. In Fig. 13.14(b), we depict the (trans) polyacetylene chain by combining
each (CH) unit into a single vertex. A double line describes the σ-bond and a single
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Fig. 13.14 (a) The trans conformation of polyacetylene. (b) One of the two degenerate ground
states in a trans-polyacetylene chain. The other ground state is obtained by a reflection that
interchanges the double bonds and the single bonds. (c) A state of a trans-polyacetylene chain
with one of the double bonds converted into a single bond and then transported to form two
domain walls carrying fractional electric charges.

line the π-bond between two consecutive C atoms. Owing to a Peierls instability, the
asymmetry of the chain causes the ground state to be doubly degenerate. The free
energy acquires the double-well profile that we have depicted in Fig. 13.12. The two
ground states are related to each other by a Z2 reflection (parity) symmetry of the
polyacetylene chain about a (CH) site, which exchanges the σ- and π-bonds.

When we choose one of the ground states, we break the symmetry. But we
may introduce domain walls that interpolate between two different ground states.
In Fig. 13.14(c), we show an example. Here, we have two domain walls, each of which
interpolates between two different ground states; between the two domain walls, we
have a region where the the σ- and π-bonds have become interchanged. Quantitatively,
in terms of the double-well potential shown in Fig. 13.12, each of the two domain walls
corresponds to a topological soliton (instanton) profile (13.25).

We now argue that we have Bol’she, which makes things different: The chain in Fig.
13.14(c) is obtained from the chain in Fig. 13.14(b) by removal of a single electron.
There are 15 bonds in (b) and 14 in (c). The removal of a single electron converts
a double bond into a single bond, and we have simply moved the bonds around to
make the two identical domain walls. Since the structures in Fig. 13.14(b) and those
in Fig. 13.14(c) differ from each other only by the removal of a single bond and since
the two domain walls are identical, related to each other by parity, the two domain
walls must share equally the quantum numbers of the missing bond: the two domain
walls each have electric charge 1

2
.

This phenomenon of fermion number (charge) fractionalization demonstrates how
Anderson’s Bol’she really makes a difference: such exotic quantum number assign-
ments could never be obtained simply by linearly superposing an integer number of
initially non-interacting electrons and holes adiabatically, in a continuous manner, into
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a weakly interacting system: a charge-1
2

state simply cannot be made by combining to-
gether any finite number of particles with an integer charge—unless something Bol’she
is involved.

Fine Points A bond line in polyacetylene corresponds to two electrons, one with spin up and
the other with spin down. Thus, an isolated domain wall must have a net electric charge that
is equal in magnitude but opposite in sign to that of a single electron. But since the spins of
the electrons that have been removed are paired, the domain wall carries no spin. This unusual
spin–charge assignment has been observed experimentally and it constitutes the essence of
the fermion number fractionalization [48–50] that gives rise to electrical conductivity along
polyacetylene. In the absence of the spin doubling, we would observe a domain wall that carries
half the electric charge of one electron. Note that if we add a single electron to a domain wall,
we obtain a state that is charge-neutral but carries the spin of the electron. Alternatively, if we
remove a single electron from a domain wall, we obtain a state with spin 1

2
and a charge that

equals (minus) twice that of the electron. Neither of these states is possible without Bol’she.

13.2.4 Spin–charge separation

We shall eventually argue that proteins are very much like one-dimensional spin chains;
the side chains are akin to spin variables along the backbone. Thus, our second ex-
ample is a one-dimensional spin chain. For conceptual clarity, we may assume that
the spin variables are single electrons (or maybe protons like H+). We assume that
the background lattice prefers a ground state that is an antiferromagnetic Néel state
where all the spins point into an opposite direction from their nearest neighbours.
Furthermore, we assume that in the ground state, all the sites have single occupancy
and that there is a very strong repulsive force between the electrons that prevents a
double occupancy. Such a ground state is a Mott insulator, and we have depicted the
structure in Fig. 13.15.

As in the case of polyacetylene, the ground state is doubly degenerate: the Z2

symmetry transformation operates by reversing the direction of the spin at every single
lattice site. By choosing one of the two ground states, we break the Z2 symmetry.

If we reverse the direction of a single spin along the chain, we form a localized
configuration with three parallel neighbouring spins; see Fig. 13.16(a).

By successively reversing the direction of neighbouring spins but without changing
the total spin, we can decompose this configuration into two separate domain walls,
each consisting of two parallel spins. These domain walls interpolate between the
two ground states of the spin chain, as shown in Fig. 13.16(b). Since the lattices in

Fig. 13.15 [Colour online] One the two degenerate ground states in a Néel antiferromagnet,
with alternating spin directions along a one-dimensional lattice of electrons. The Z2-symmetric
ground state is obtained by reversing the direction of every spin.
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Fig. 13.16 [Colour online] (a) The same as in Fig. 13.15, but with the spin of only one electron
reversed. (b) The state in (a) is decomposed into two domain walls representing the spinons.

Electron removed

(a)

(b)

Spinon Holon

Fig. 13.17 [Colour online] (a) Spinon (left) and chargon (right) states in the underdoped state.
(b) The state in (a) is decomposed into two domain walls representing the spinons.

Fig. 13.16(a) and (b) differ from each other only by the flip of a single spin, the total
change in the spin between the two lattices is 1. The two domain walls in Fig. 13.16(b)
are also identical. Thus each must have a spin equal to 1

2
.

Since we have made the two domain walls without adding or removing any elec-
trons, each of them must be charge-neutral. We conclude that the domain walls are
spinons—they describe the same spin degree of freedom as a single electron but with
no charge [51]. The two domain walls interpolate between the two different ground
states of the antiferromagnetic chain, very much like the domain walls in the case of
polyacetylene.

Now we consider the same antiferromagnetic lattice but with one of the electrons
removed as shown in Fig. 13.17.

This corresponds to an underdoped case: we have a hole in the spin chain. When
we move the hole to the right, we arrive at the situation depicted in Fig. 13.17(b).
In addition to the hole, we have here another domain wall that is similar to the two
domain walls that we have in Fig. 13.16(b). This domain wall is a spinon, it has spin
1
2 but carries no charge. Since we have removed one electron and since the spinor does
not carry charge, the hole must carry a charge that is opposite to that of one electron.
But no spin is available for this hole—it describes a spinless holon.
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The ARPES experiment at Lawrence Berkeley Laboratory has confirmed that such
spinons and holons do exist: they have been observed in a one-dimensional copper oxide
(SrCuO2) wire [52].

Note that in Fig. 13.17(a), the two spins on the left and on the right of the hole
are parallel to each other, but in Fig. 13.17(b), the two spins are opposite to each
other. This confirms that, like the spinon, the spinless holon is a domain wall that
interpolates between the two different ground states of the chain.

Finally, in Fig. 13.18(a), we have added a single electron to the lattice. This example
is of particular conceptual interest since it allows us to directly address what happens
to a (pointlike) electron when it enters the antiferromagnetic environment: the presence
of the electron introduces a single site with a double bond (↑↓). The chain is now
overdoped. As before, we transport the doubly filled state, for example to the right,
so that we arrive at the situation depicted in Fig. 13.18(b). Note that owing to Pauli
exclusion, the transport occurs so that we move alternatively either a spin-up or a
spin-down state one step to the right. The final configuration shown in Fig. 13.18(b)
describes two separate domain walls that both interpolate between the two distinct
ground states of the spin chain. One of these domain walls is again a spinon. The
other one is a doublon. Since one electron has been added and since the spinon has
spin but no charge, we conclude that the doublon does not have any spin but it carries
the entire charge of one electron. The charge of the doublon is opposite to that of the
holon.

The two examples we have discussed—fermion number fractionalization and spin–
charge separation—make it plain and clear how much difference Bol’she can make:
it would be impossible to form states with the spin of an electron but no charge, or
states with the charge of an electron but no spin, simply by superposing an integer
number of non-interacting electrons and then adiabatically switching on their mu-
tual interactions. For states with such exotic quantum numbers, we need to have an
environment with a symmetry that has become broken.

13.2.5 All-atom is Landau liquid

The Landau (Fermi) liquid is a paradigm on which much of our understanding of many-
body systems like metals is based. This paradigm states that in a physical system with

Electron added

(a)

(b)

Spinon Doublon

Fig. 13.18 [Colour online] (a) The Néel state with one electron added (overdoped case). (b)
Spinon (left) and doublon (right) states in the overdoped state.
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a large number of atoms, each atom retains its individual integrity. The properties of a
material system that is described by a Landau liquid can be understood by superposing
its individual constituents in a weak-coupling expansion around a given ground state.
In particular, a Landau liquid that is made of electrons and protons can only have
spin and charge assignments that are obtained by superposing the individual spins
and charges. This is the case when the properties of the system can be understood
using the notion of adiabaticity: we imagine that we start from an initial condition
where the elemental constituents have no mutual interactions. The interactions are
then turned on, adiabatically, in a continuous manner. Accordingly, the ground state
of the original non-interacting system becomes continuously deformed into the ground
state of the interacting system.

The two examples that we have described—polyacetylene and an antiferromagnetic
spin chain—show that the Landau liquid paradigm is not a universal one. In a Landau-
liquid system, it would be impossible to have states with exotic quantum numbers
such as an electric charge that is half of that of a single electron. The Landau-liquid
paradigm can fail whenever we have emergent structures that display symmetries
that become broken. In such scenarios, there are often collective excitations such as
topological solitons that cannot be built simply by adding together small adiabatic
perturbations around a ground state of non-interacting elemental constituents.

The all-atom description (13.9) and (13.10) of a protein force field implicitly as-
sumes the Landau-liquid paradigm. According to (13.9) and (13.10), the individual
atoms oscillate around their ideal values under the influence of a potential that is
either a harmonic oscillator or a mathematical pendulum. The Lennard-Jones and
Coulomb potentials introduce continuously evolving deformations around the ideal
atomic positions, in a manner that can be modelled by a weak-coupling expansion of
the iterative Newton’s equation in powers of (13.11); in practical simulations, these
long-range interactions are turned off beyond a distance of around 10 Å.

It remains to be seen whether an all-atom Landau-liquid description of proteins
breaks down. But the basal ingredient, that of a broken Z2 symmetry, which also
appears in our examples of polyacetylene and an antiferromagnetic spin chain, is cer-
tainly present: the amino acids are left-handed chiral, and as a consequence proteins
that constitute living matter prefer right-handed helicity along their backbone.

13.3 Strings in three space dimensions

Thus we have come to the conclusion that an organism and all the biologically relevant
processes that it experiences must have an extremely ’‘many-atomic’ structure and must be
safeguarded against haphazard, ‘single-atomic’ events attaining too great importance.

(E. Schrödinger)

We start our search for broken symmetry and the ensuing Bol’she that makes us alive
by considering differentiable (class C3) strings in R3.
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13.3.1 Abelian Higgs model and the limit of slow spatial variations

The Abelian Higgs model (AHM) is the paradigmatic framework to describe vortices
as solitons. Solitonic vortices are important to many physical phenomena, from cosmic
strings in the Early Universe to type II superconductors. In particular, the Weinberg–
Salam model of electroweak interactions with its Higgs boson is a non-Abelian
extension of the AHM.

The AHM involves a single complex scalar (Higgs) field φ and a vector field Ai.
These fields are subject to the U(1) gauge transformation

φ → eieϑφ,

Ai → Ai + ∂iϑ,
(13.28)

where ϑ is a function and e is a parameter. The standard AHM Hamiltonian is

H =
1
4
G2
ij + |(∂i − ieAi)φ|2 + λ

(
|φ|2 − v2

)2
(13.29)

where

Gij = ∂iAj − ∂jAi (13.30)

When the space dimension D is odd, a Chern–Simons term (ChS) can be added to
(13.29). Explicitly,

D = 1 : ChS ∼ A,

D = 3 : ChS ∼ AdA,

D = 5 : ChS ∼ AdAdA,

...

(13.31)

The Chern–Simons term is the paradigmatic way to break parity.
In a material system, (13.29) with (13.31) is the Kadanoff–Wilson energy in the

limit where the fields have slow spatial variations [18, 19]. To describe this limit, we
start from the full free energy of a material system that is based on the AHM field
multiplet; we denote it by

F(φ,Ai) (13.32)

This free energy is in general a non-local functional of the field variables. But it must be
gauge-invariant. Thus, it can only depend on manifestly gauge-invariant combinations
of the fields such as

|φ|2, |(∂i − ieAi)φ|2, . . . (13.33)

Consider the limit where the lengthscale that is associated with spatial variations of the
field variables becomes very large in comparison with other characteristic lengthscales
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of the system. In this limit, we can expand the free energy in powers of the gauge-
covariant derivatives of the fields. The expansion looks like this [53]:

F(φ,Ai) = V (|φ|) + Z(|φ|)|(∂i − ieAi)φ|2 + ChS(A) +W (|φ|)G2
ij + . . . (13.34)

The leading term is called the effective potential. The higher-derivative terms are
multiplied by functions Z(|φ|), W (|φ|), etc.

The AHM energy (13.29) with (13.31) constitutes the leading-order non-trivial
contribution to (13.34), in powers of fields and their covariant derivatives.

We introduce a set of new variables (Ji, ρ, θ), obtained from (Ai, φ) by the following
change of variables:

φ = ρeiθ

Ai → Ji =
i

2e|φ|2 [φ∗(∂i − ieAi)φ− c.c.].
(13.35)

We can introduce these new variables whenever ρ �= 0. Note that both ρ and Ji are
gauge-invariant under the gauge transformation (13.28). But

θ → θ + ϑ. (13.36)

When we write (13.29) and (13.31) in terms of these new variables (13.35), we have

H =
1
4

(
Jij +

2π
e
σij

)2

+ (∂iρ)2 + ρ2J2
i + λ

(
ρ2 − η2

)2
+ ChS, (13.37)

where

Jij = ∂iJj − ∂jJi, (13.38)

σij =
1
2π

[∂i, ∂j ]θ. (13.39)

We observe that (13.37) involves only variables that are manifestly U(1) gauge-
invariant. In particular, unlike in the case of (13.29), in (13.37), the local gauge
invariance is entirely removed by a change of variables [54].

The term σij is a string current. It has a Dirac δ-like support that coincides with
the worldsheet of the cores of vortices. When (13.37) describes a finite-energy vortex,
(13.39) subtracts a singular string contribution that appears in Jij . Since Ji is singular
in the presence of a vortex line, it makes a divergent contribution to the third term on
the right-hand side of (13.37). But the divergence is removed, provided the density ρ
vanishes on the worldsheet of the vortex core. Thus, the vanishing of ρ along a string-
like line in space is a necessary condition for the presence of finite-energy vortex
lines.
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13.3.2 The Frenet equation

Proteins are string-like objects. Thus, to understand proteins, we need to develop the
formalism of strings in R3, at least to some extent.

The geometry of a class C3 differentiable string x(z) in R3 is governed by the Frenet
equation, described widely in elementary courses of differential geometry. The param-
eter z ∈ [0, L] where L is the length of the string in R3. We can compute the length
from

L =
∫ L

0

dz ||xz|| =
∫ L

0

dz
√

xz · xz ≡
∫ L

0

dz
√
g . (13.40)

Here, we recognize the static version of the standard Nambu–Goto action, with generic
parameter z ∈ [0, L]. We reparametrize the string to express it in terms of the arclength
s ∈ [0, L] in the ambient R3, by the change of variables

s(z) =
∫ z

0

||xz(z′)|| dz′. (13.41)

In the following, we use the arclength parametrization exclusively. We consider a single
open string that does not self-cross. We introduce the unit-length tangent vector

t =
dx(s)
ds

≡ xs, (13.42)

the unit-length binormal vector

b =
xs × xss
||xs × xss||

, (13.43)

and the unit-length normal vector

n = b× t. (13.44)

The three vectors (n,b, t) define the right-handed orthonormal Frenet frame. We may
introduce this framing at every point along the string, whenever

xs × xss �= 0. (13.45)

We proceed, for the moment, by assuming this to be the case. The Frenet equation
then computes the frames along the string as follows:

d

ds

⎛⎜⎝n
b
t

⎞⎟⎠ =

⎛⎜⎝ 0 τ −κ
−τ 0 0
κ 0 0

⎞⎟⎠
⎛⎜⎝n

b
t

⎞⎟⎠ . (13.46)

Here

κ(s) =
||xs × xss||
||xs||3

(13.47)
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is the curvature of the string on the osculating plane that is spanned by t and n, and

τ(s) =
(xs × xss) · xsss
||xs × xss||2

(13.48)

is the torsion that measures how the string deviates from its osculating plane. Both
κ(s) and τ(s) are extrinsic geometric quantities, i.e. they depend only on the shape of
the string in the ambient space R3. Conversely, if we know the curvature and torsion,
we can construct the string. For this, we first solve for t(s) from the Frenet equation.
We then solve for the string by integration of (13.42). The solution is unique, modulo
a global translation and rotation of the string.

Finally, we note that both the curvature (13.47) and the torsion (13.48) trans-
form as scalars, under reparametrizations of the string. For this, we introduce an
infinitesimal local diffeomorphism along the string, by deforming s as follows:

s→ s+ ε(s). (13.49)

Here, ε(s) is an arbitrary infinitesimally small function such that

ε(0) = ε(L) = 0 = εs(0) = εs(L). (13.50)

Under this reparametrization of the string, the curvature and torsion transform as
follows:

δκ(s) = −ε(s)κs,

δτ(s) = −ε(s)τs,
(13.51)

which is how scalars transform. The Lie algebra of diffeomorphisms (13.49) is the
classical Virasoro (Witt) algebra.

13.3.3 Frame rotation and Abelian Higgs multiplet

In order to relate the Abelian Higgs multiplet with extrinsic string geometry, we ob-
serve that the normal and binormal vectors do not appear in (13.42). As a consequence
an SO(2) rotation around t(s) (Fig. 13.19),(

n
b

)
→

(
e1

e2

)
=
(

cos η(s) sin η(s)
− sin η(s) cos η(s)

)(
n
b

)
. (13.52)

has no effect on the string. For the Frenet equation, this rotation gives

d

ds

⎛⎜⎝ e1

e 2

t

⎞⎟⎠ =

⎛⎜⎝ 0 τ + ηs −κ cos η
−(τ + ηs) 0 κ sin η
κ cos η −κ sin η 0

⎞⎟⎠
⎛⎜⎝e1

e2

t

⎞⎟⎠ . (13.53)



604 What is life?—70 years after Schrödinger

b

n

ηe2
e1

t

Fig. 13.19 [Colour online] Rotation between the Frenet frame and a generic frame, on the
normal plane of the string.

We may utilize the κ-dependent terms in (13.53) to promote κ into a complex quan-
tity, with a modulus that coincides with the manifestly frame-independent geometric
curvature (13.47):

κ
η→ κ(cos η + i sin η) ≡ κeiη. (13.54)

This enables us to interpret the transformation of (κ, τ) in (13.53) in terms of a
one-dimensional version of the U(1) gauge transformation (13.28). We identify the
curvature as the Higgs field and the torsion as the U(1) gauge field [55]:

κ→ κe−iη ≡ φ,

τ → τ + ηs ≡ Ai.
(13.55)

Note that when we choose

η(s)→ ηB(s) = −
∫ s

0

τ(s̃) ds̃, (13.56)

we arrive at the unitary gauge in terms of the abelian Higgs multiplet. This defines
Bishop’s parallel transport framing [56]. The Bishop-frame vectors eB1,2 do not rotate
around the tangent vector:

d

ds

(
eB1 + ieB2

)
= −κe−iηBt. (13.57)

Thus, unlike the Frenet framing, which that cannot be introduced when the curvature
κ(s) vanishes, the Bishop framing can be introduced and defined in an unambiguous
and continuous manner even in that case. However, it turns out that in the case of
proteins, which is the subject we are interested in, the Bishop frames do not work very
well [57].
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13.3.4 The unique string Hamiltonian

The curvature and torsion are the only available geometric quantities for constructing
energy functions of strings, while (13.29) with (13.31) is the unique energy of the
Abelian Higgs multiplet in the Kadanoff–Wilson sense of universality.

Consider a string in the limit where the curvature and torsion are slowly varying
functions along it. The shape of the string cannot depend on the framing, and thus
its energy can only involve combinations of the curvature and torsion in a manifestly
frame-independent fashion.

On the other hand, (13.29) with (13.31) is the unique SO(2) ∼ U(1)-invariant
energy function that involves a complex Higgs field and a gauge field. It emerges from
general arguments and symmetry principles alone, in the limit where the lengthscale
that is associated with spatial variations of the field variables becomes very large in
comparison with other characteristic lengthscales of the system.

Thus, the only Hamiltonian that can describe a string and its dynamics in the
infrared limit is [55]

H =
∫ L

0

ds
[
|(∂s + ieτ)κ|2 + λ(|κ|2 −m2)2

]
+ a

∫ L

0

ds τ. (13.58)

We have included here the one-dimensional version of the Chern–Simons term (13.31).
It introduces net helicity along the string, breaking the Z2 symmetry between strings
that are twisted in the right-handed and left-handed sense.

In (13.58), both κ and τ are expressed in a generic, arbitrary framing of the string.
The corresponding gauge-invariant variables (13.35) are the curvature (13.47) and
torsion (13.48) that characterize the extrinsic string geometry. In terms of these gauge-
invariant variables, which from now on we denote by (κ, τ ) the Hamiltonian (13.58) is

H =
∫ L

0

ds
[
(∂sκ)2 + e2κ2τ2 + λ (κ2 −m2)2

]
+ a

∫ L

0

ds τ, (13.59)

where we have simply followed the steps that gave us (13.37). Thus, (13.59) is the
unique energy of a string, in terms of geometrically defined curvature and torsion, and
in the limit where the spatial variations of curvature and torsion along the string are
small.

13.3.5 Integrable hierarchy

A relation exist between (13.59), the integrable hierarchy of the nonlinear Schrödinger
(NLS) equation, and the Heisenberg spin chain of ferromagnetism. For this, we
introduce the Hasimoto variable

ψ(s) = κ(s)eie
∫ s
0 ds

′ τ(s′) (13.60)

that combines the curvature and torsion into a single gauge-invariant complex variable.
In terms of (13.60), we obtain the Hamiltonian of the integrable NLS equation [58,
59, 62] as follows:

κ2
s + e2κ2τ2 + λκ4 = ψ̄sψs + λ(ψ̄ψ)2 = H3. (13.61)
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The lower-level conserved densities in the integrable NLS hierarchy are the helicity
H−2, length (i.e. Nambu–Goto) H−1, number operator H1, and momentum H2:

H−2 = τ,

H−1 = L,

H1 = κ2,

H2 = κ2τ.

(13.62)

The energy (13.59) is a combination of H−2, H1, and H3. From the perspective of the
NLS hierarchy, the momentum H2 should also be included for completeness. If higher-
order corrections are desired, the natural candidate is the modified Korteweg–de Vries
(mKdV) density

H4 = κκssτ + 4κ2τ3 − 4e2κ2
sτ + 3λ, κ4τ (13.63)

which appears as the next-level conserved density in the NLS hierarchy.
We note that the Heisenberg spin chain is obtained from H1 using the Frenet

equation:

∫ L

0

dsH1 =
∫ L

0

ds κ2 =
∫ L

0

ds |ts|2. (13.64)

The combination of H−1 and H1 leads to Polyakov’s rigid-string action [60]. This
combination also coincides with the Kratky–Porod model of polymers [61].

In [60], the concept of perturbative-level Wilsonian universality is employed to ar-
gue that no additional terms besides H−1 and H1 should appear in the infrared limit.
But, in the presence of non-perturbative structures, any perturbative argument be-
comes incomplete: The NLS Hamiltonian (13.61) supports solitons that do not coexist
with perturbative arguments.

13.3.6 Strings from solitons

Solitons are the paradigm structural self-organizers in Nature. They materialize in
diverse scenarios [58, 59, 62, 63]; we have already seen that solitons conduct electricity
in organic polymers. But solitons can also transmit data in transoceanic cables, and
they can transport chemical energy along proteins. Solitons explain the Meissner effect
in superconductivity, and they model dislocations in liquid crystals. Solitons are used
to describe hadronic particles, cosmic strings, and magnetic monopoles in high-energy
physics.

We argue that solitons also describe life. We argue that each of us has some 1020

solitons in our body. These solitons are the building blocks of folded proteins, they
are the essential ingredients in all the metabolic processes that make us alive.
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The NLS equation that we obtain from (13.61) is the paradigm equation that
supports solitons [58, 59, 62, 63]. Depending on the sign of λ, the soliton is either dark
(λ > 0) or bright (λ < 0). The torsion-independent contribution to (13.59),

H =
∫ ∞
−∞

ds
[
κ2
s + λ (κ2 −m2)2

]
, (13.65)

reproduces our previous instanton equation (13.22) with Q =
√

2. The Hamiltonian
(13.65) supports the double-well soliton, a.k.a. the paradigmatic topological soliton:
when m2 is positive and when κ can take both positive and negative values, the
equation of motion

κss = 2λκ(κ2 −m2) (13.66)

is solved by (see (13.25))

κ(s) = m tanh[m
√
λ(s− s0)]. (13.67)

We have concluded that the energy function

E =
∫
ds

[
κ2
s + λ(κ2 −m2)2 +

1
2
dκ2τ2 − bκ2τ − aτ +

1
2
cτ2

]
(13.68)

is the most general one, a linear combination of all the densities (13.61) and (13.62).
In (13.68), we have also included the Proca mass; this is the last term. Even though
the Proca mass does not appear in the integrable NLS hierarchy, it does have a claim
to be gauge-invariant [64, 65]. Eventually, we shall present a topological argument why
the Proca mass should be included.

The energy (13.68) is quadratic in the torsion. Thus, we can eliminate τ using its
equation of motion

δE
δτ

= dκ2τ − bκ2 − a+ cτ = 0. (13.69)

This gives

τ [κ] =
a+ bκ2

c+ dκ2
≡ a

c

1 + (b/a)κ2

1 + (d/c), κ2
(13.70)

and we obtain the following effective energy for the curvature:

Eκ =
∫
ds

(
1
2
κ2
s + V [κ]

)
, (13.71)

with the equation of motion

δEκ
δκ

= −κss + Vκ = 0, (13.72)
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where

V [κ] = −
(
bc− ad

d

)
1

c+ dκ2
−
(
b2 + 8λm2

2b

)
κ2 + λκ4. (13.73)

This is a deformation of the potential in (13.65); the two share the same large-κ
asymptotics. When we select the parameters properly, we can expect that (13.69),
(13.72), and (13.73) continue to support topological solitons. But we do not know
their explicit profile, in terms of elementary functions. In the sequel, we shall construct
these solitons numerically.

Once we have constructed the soliton of (13.72), we evaluate τ(s) from (13.70). We
substitute these profiles into the Frenet equation (13.46) and solve for t(s). We then
integrate (13.42) to obtain the string x(s) that corresponds to the soliton.

13.3.7 Anomaly in the Frenet frames

When the curvature of a string vanishes, we have an anomaly in the Frenet framing.
It turns out that the origin of the anomaly is the raison d’être for a topological soliton
to reside on a string.

Up to now, we have assumed (13.45) so that the curvature (13.47) does not vanish.
But we have also observed that in the case of the Abelian Higgs model (13.37), it is
natural for the density ρ to vanish on the worldsheet of a vortex core. Thus, in the
context of the AHM, the vanishing of ρ relates to important, physically significant
effects.

Furthermore, the explicit soliton profile (13.67) displays both positive and nega-
tive values, and in particular (13.67) vanishes when s = s0. Consequently, we should
consider the possibility that κ may vanish, even become negative, along a string.

We start by extending the curvature (13.47) so that it has both positive and
negative values. According to (13.54), the negative values of κ are related to the
positive ones by a η = ±π frame rotation,

κ
η=±π
−−−−→ e±iπκ = −κ. (13.74)

Hence, we compensate for an extension of (13.47) to negative values by introducing
the discrete Z2 symmetry [57]

κ↔ −κ,
η ↔ η ± π

}
⇐⇒ κeiη ↔ κeiη. (13.75)

An (isolated) point where κ(s) vanishes is called an inflection point. Figure 13.20
shows an example of an inflection point. As shown in this figure, in the limit of a plane
curve, we obtain a discontinuity in the Frenet frames, when the string goes through
the inflection point: the zweibein (n,b) becomes reflected according to

n + ib→ −(n + ib) = e±iπ(n + ib) (13.76)
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Fig. 13.20 [Colour online] A string with inflection point (ball). At each point, the Frenet-frame
normal vector points towards the centre of the osculating circle. At the inflection point, we have
a discontinuity in the direction of the normal vectors: the radius of the osculating circle diverges,
and the normal vectors are reflected in the osculating plane, from one side to the other side of
the string.

when we have a simple inflection point along the string. At the inflection point itself,
the Frenet frames cannot defined. Thus, we cannot deduce whether we have a jump
by η = +π or by η = −π at the inflection point. We cannot conclude whether the
Frenet-frame vectors (n,b) become rotated clockwise or counterclockwise by an angle
π along the tangent vector. There is a Z2 anomaly in the definition of Frenet framing,
due to inflection points.

To analyse the anomaly, consider a string x(s) that has a simple inflection point
when s = s0. Thus, κ(s0) = 0 but κs(s0) �= 0, as shown in Fig. 13.20. To simplify the
notation, we redefine the parameter s so that the inflection point occurs at s0 = 0.

We can always remove the inflection point by a generic deformation of the string:
a deformation that is restricted to the plane as in Fig. 13.20 only slides the inflection
point along the string without removing it. In order to remove the inflection point, we
need to deform the string away from its instantaneous tangent plane: the codimension
of the inflection point in R3 is 2, and the inflection point is not generic along a string.

Consider two different generic deformations,

x(s)→ x(s) + δx1,2(s) = x1,2(s). (13.77)

In the case shown in Fig. 13.20, these two deformations amount to moving the string
either slightly up from the plane or slightly down from the plane, around the inflection
point. We assume that the deformations are very small and compactly supported, so
that

δx1,2(±ε±) = 0. (13.78)

Here ε± > 0 are small and determine the parameter values where the deformations
x1,2(s) bifurcate.

Imagine now a closed string, denoted by γ, that starts from x(−ε−), follows along
x1 to x(+ε+), and then returns along x2 back to x(−ε−). Introducing the Frenet-
frame normal vectors of γ and shifting γ slightly into the direction of these normals,
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we obtain a second closed string, which we call γ̃. Let t and t̃ be the corresponding
tangent vectors. The Gauss linking number of γ and γ̃ is

Lk =
1
4π

∮
γ

∮
γ̃

ds ds̃
x− x̃
|x− x̃|3 · (t× t̃). (13.79)

Proceeding along x1,2(s), the respective Frenet frames are continuously rotated by
η1,2 ≈ ±π; in the limit where δx1,2 → 0, we would obtain the discontinuous jump
(13.76). By continuity of Frenet framing in the complement of inflection points, the
linking number has values Lk = ±1 when the η1,2 change in the same direction; we
recall that γ proceeds ‘backwards’ along x2. But if the framings along x1(s) and x2(s)
rotate in the opposite directions, we have Lk = 0.

Accordingly, the relative sign of η1,2 depends on the way in which the inflection
point is circumvented: we have a frame anomaly in the Frenet framing as δx1,2 → 0,
and the value of Lk depends on how we define δx1,2(s).

Exercise 13.1 Analyse the framing of a string in the presence of an inflection point, using the
Bishop frames (13.56).

13.3.8 Perestroika

An inflection point together with the corresponding Frenet-frame anomaly can be given
an interpretation in terms of a string specific bifurcation, which is called inflection-
point perestroika [66–70]. It explains why a uniquely defined Frenet framing across
the inflection point, or any other framing that rotates around the tangent vector, is
not possible:

Consider a segment of a string, along which the torsion τ(s) vanishes. Accordingly
the string segment is constrained on a plane, as in Fig. 13.20. When a string is con-
strained on a plane, a simple isolated inflection point is generic. This follows since for
a string on plane the inflection point has codimension 1. Moreover, in the case of a
string on a plane, a single simple inflection point is a topological invariant. It can only
be moved around the plane, but not made to disappear unless it escapes the plane,
which we now assume not to be the case. If we have two simple inflection points along
a string on plane, we can bring them together to deform the string so that no inflection
point remains. Thus, the inflection point is a mod 2 topological invariant of a string
on a plane.

Consider now a generic string in R3; a generic string is not constrained on a plane.
The codimension of a single simple inflection point is 2, and thus a generic string does
not have any inflection points. But along a string that moves freely in R3, an isolated
simple inflection point appears generically, at some point, at some moment, during the
motion. When this infection-point perestroika takes place along the moving string, it
leaves a trail behind: the inflection-point perestroika changes the number of flattening
points, which are points along the string where the torsion τ(s) vanishes [69, 70].

At a simple flattening point, the curvature κ(s) is generically non-vanishing, but
the torsion τ(s) changes its sign. Accordingly the inflection-point perestroika can only
change the number of simple flattening points by 2. Apparently, it always does [69, 70].
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Unlike the inflection point, a flattening point where τ(s) = 0 is generic along a
static space string. Furthermore, unlike a simple inflection point, a single simple
flattening point that occurs in a one-parameter family of strings in R3 is a topo-
logical invariant. It cannot disappear on its own, under local deformations that
leave the ends of the string intact. A pair of flattening points can be combined
together, into a single bi-flattening point, which can then dissolve. When this hap-
pens, a second string-specific bifurcation that is called a bi-flattening perestroika takes
place.

Apparently, inflection-point and bi-flattening perestroikas are the only two bifur-
cations where the number of flattening points can change [70]. The number of simple
flattening points is a local invariant of the string. Besides the flattening number, and
the self-linking number in the case of a framed string, a generic smooth string does not
possess any other essential local invariants [69]. The two are also mutually independent,
even though they often appear together.

For example, one can deduce that the self-linking number of a string increases
by 1 if the torsion is positive when the string approaches its simple inflection point,
and if two simple flattening points disappear after the passage of the inflection point.
Moreover, if the torsion is negative, the self-linking number decreases by 1 when two
flattening points disappear after the passage [69]. But when two simple flattening
points dissolve in a bi-flattening perestroika, the self-linking number in general does
not change.

A bifurcation is the paradigmatic cause of structural transitions, including phase
transitions, in any dynamical system. Inflection-point and bi-flattening perestroikas
are the only bifurcations that are string-specific. Accordingly, these two perestroikas
must have a profound influence on determining the physical behaviour and phase
structure of string-like configurations. In particular, they must be responsible for any
string-specific structural reorganization that can take place when the value of the
compactness index ν (13.4) changes. Since perestroikas are related to the creation
and disappearance of topological solitons such as (13.67) along a string, it is clear
that perestroikas and topological solitons, with the ensuing physical effects, are com-
monplace whenever we have a string with an energy function of the form (13.68).

Example A good example of the interplay between inflection points and flattening
points is given by (13.67) or, more generally, by a soliton solution of (13.72) and
(13.70). For a regular string, the denominator of (13.70) should not vanish. Thus, in
the case of an inflection point, the ratio d/c should be positive. When b/a is negative,
we have a symmetric pair of inflection points around the inflection point. Thus, starting
from a one-parameter family of strings κ(s, v) with v the parameter, if initially κ(s, v) is
sufficiently large and, for example, positive, and we are not close to an inflection point,
then there are no flattening points either. When v is varied so that the inflection point
is approached, a pair of flattening points emerges and remains whenever the curvature
has the profile (13.67). In particular, we conclude that it is important to retain the
Proca mass term, even a very small one, as a regulator.
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13.4 Discrete Frenet frames

Proteins are not like continuous differentiable strings. Rather, they are like piece-
wise linear polygonal strings. Thus, to understand the physical properties of proteins,
we need to develop the formalism of discrete strings. Accordingly, we proceed to
generalize the Frenet-frame formalism to the case of polygonal strings that are
piecewise-linear [57].

Let ri with i = 1, . . . , N be the vertices of a piecewise-linear discrete string. At
each vertex we introduce the unit tangent vector

ti =
ri+1 − ri
|ri+1 − ri|

, (13.80)

the unit binormal vector

bi =
ti−1 − ti
|ti−1 − ti|

, (13.81)

and the unit normal vector

ni = bi × ti. (13.82)

The orthonormal triplet (ni,bi, ti) defines a discrete version of the Frenet frames
(13.42)–(13.44) at each position ri along the string, as shown in Fig. 13.21.

In lieu of the curvature and torsion, we have the bond angles and torsion angles,
defined as in Fig. 13.22.

When we know the Frenet frames at each vertex, we can compute the values of
these angles: the bond angles are

κi ≡ κi+1,i = arccos(ti+1 · ti) (13.83)

and the torsion angles are

τi ≡ τi+1,i = sign{bi−1 × bi · ti} arccos(bi+1 · bi) (13.84)

n

t

b

Fig. 13.21 [Colour online] Discrete Frenet frames along a piecewise-linear discrete string.
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Fig. 13.22 [Colour online] Definition of bond (κi) and torsion (τi) angles, along the piecewise
linear discrete string.

Conversely, when the values of the bond and torsion angles are all known, we can
use the discrete Frenet equation⎛⎜⎝ni+1

b i+1

ti+1

⎞⎟⎠ =

⎛⎜⎝cosκ cos τ cosκ sin τ − sinκ
− sin τ cos τ 0

sinκ cos τ sinκ sin τ cosκ

⎞⎟⎠
i+1,i

⎛⎜⎝ni
b i

ti

⎞⎟⎠ (13.85)

to compute the frame at position i+ i from the frame at position i. Once all the frames
have been constructed, the entire string is given by

rk =
k−1∑
i=0

|ri+1 − ri| · ti. (13.86)

Without any loss of generality, we may choose r0 = 0, make t0 point into the direction
of the positive z axis, and let t1 lie on the y–z plane.

The vectors ni and bi do not appear in (13.86). Thus, as in the case of continuum
strings, a discrete string remains intact under frame rotations of the (ni,bi) zweibein
around ti. This local SO(2) rotation acts on the frames as follows:⎛⎜⎝n

b
t

⎞⎟⎠
i

→ eΔiT
3

⎛⎜⎝n
b
t

⎞⎟⎠
i

=

⎛⎜⎝ cos Δi sin Δi 0
− sin Δi cos Δi 0

0 0 1

⎞⎟⎠
⎛⎜⎝n

b
t

⎞⎟⎠
i

. (13.87)

Here Δi is the rotation angle at vertex i and T 3 is one of the SO(3) generators

T 1 =

⎛⎜⎝0 0 0
0 0 −1
0 1 0

⎞⎟⎠ , T 2 =

⎛⎜⎝ 0 0 1
0 0 0
−1 0 0

⎞⎟⎠ , T 3 =

⎛⎜⎝0 −1 0
1 0 0
0 0 0

⎞⎟⎠ (13.88)

that satisfy the Lie algebra

[T a, T b] = εabcT c. (13.89)
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Using these matrices, we can write the effect of frame rotation on the bond and torsion
angles as follows:

κiT
2 → eΔiT

3
(κiT 2)e−ΔiT

3
, (13.90)

τi → τi + Δi−1 −Δi. (13.91)

From the point of view of lattice gauge theories, the transformation of bond angles
is like an adjoint SO(2) ∈ SO(3) gauge rotation of a Higgs triplet around the Cartan
generator T 3, when the Higgs triplet is in the direction of T 2. The transformation of
torsion angle coincides with that of the SO(2) lattice gauge field. Since the ti remain
intact under (13.87), the gauge transformation of (κi, τi) has no effect on the geometry
of the discrete string.

A priori, the fundamental range of the bond angle is κi ∈ [0, π], while for the torsion
angle the range is τi ∈ [−π, π). Thus, we identify (κi, τi) as the canonical latitude and
longitude angles of a two-sphere S2. In parallel with the continuum case, we find it
useful to extend the range of κi into negative values κi ∈ [−π, π] mod 2π. As in (13.74),
we compensate for this twofold covering of S2 by a Z2 symmetry, which now takes the
form

κk → −κk for all k ≥ i,

τi → τi − π.
(13.92)

This is a special case of (13.90) and (13.91), with

Δk = π for k ≥ i+ 1,

Δk = 0 for k < i+ 1.
(13.93)

13.4.1 The Cα trace reconstruction

We have already concluded that the Ramachandran angles are not sufficient for recon-
structing the protein backbones: As shown in Fig. (13.11) ,the reconstructed backbones
are not in the same universality class as folded proteins. The value of the compactness
index ν is different. For a correct reconstruction, we need to utilize all the bond and
torsion angles that we have defined in Fig. 13.7. Only for the bond lengths can the
average values be used.

We now consider the protein backbone reconstruction in terms of the virtual Cα
backbone. We identify the vertices in Fig. 13.22 with the Cα atoms, so that (κi, τi)
are the virtual Cα backbone bond and torsion angles. For the virtual Cα–Cα bond
lengths, we use the average PDB value

|ri+1 − ri| ∼ 3.8 Å. (13.94)

It turns out that, unlike in the case of the Ramachandran angles, the ensuing recon-
structed Cα backbones reproduce the original crystallographic structures, with a very
high precision; the difference is mostly within the range of experimental errors, as
measured by the B-factor (13.1).
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Fig. 13.23 [Colour online] Comparison of the Cα–Cα radius-of-gyration data between the ori-
ginal PDB structures and those reconstructed in terms of variable virtual bond and torsion
angles in combination with optimal Cα–Cα virtual bond lengths. The [blue] crosses are the
original PDB structures, and the [red] circles are the reconstructed ones. The line shows the fits
of the radius of gyration. We see no visual difference between the two cases.

In Fig. 13.23, we compare the radius-of-gyration values in our ultra-high-resolution
protein structures for the original PDB structures and those that have been recon-
structed using the virtual Cα backbone bond and torsion angles when we use the
constant virtual bond length value (13.94). Unlike in Fig. (13.11), we now observe no
visual difference. For the reconstructed data, we obtain the relation [26]

Rg ≈ 2.281N0.375 Å. (13.95)

This is remarkably close to (13.7)—the difference is immaterial. Thus, we conclude
that in the case of crystallographic protein structures, the virtual Cα trace bond and
torsion angles (κi, τi) form a complete set of geometrical local order parameters.

13.4.2 Universal discretized energy

The goal is to describe the structure and dynamics of proteins beyond the limitations
of an expansion in a small coupling like (13.11). For this, we propose to start with
an energy function where the virtual Cα backbone bond and torsion angles appear as
local order parameters; these variables form a complete set of local order parameters
for reconstruction.

Let F be the thermodynamic Helmholtz free energy of a protein. Its minimum-
energy configuration describes a folded protein, under thermodynamic equilibrium
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conditions. The free energy is the sum of the internal energy U and the entropy S at
temperature T :

F = U − TS. (13.96)

It is a function of all the interatomic distances:

F = F (rαβ), rαβ = |rα − rβ|, (13.97)

where the indices α, β, . . . extend over all the atoms in the protein system, including
those of the solvent environment.

We assume that the characteristic lengthscales of spatial deformations along the
protein backbone around its thermal equilibrium configuration are large in compari-
son with the covalent bond lengths; there are no abrupt wrenches and buckles, only
gradual bends and twists. We also assume that the Cα virtual bond length oscillations
have a characteristic timescale that is short in comparison with the timescale we con-
sider; we adopt (13.94) as a time-averaged value for all the virtual bond lengths. The
completeness of the Cα bond and torsion angles then suggests that in the vicinity of
the free-energy minimum we should utilize these angles as the local order parameters.
Accordingly, we consider the response of the interatomic distances to variations in
these angles:

rαβ = rαβ(κi, τi) (13.98)

Suppose that at a local extremum of the free energy, the Cα bond and torsion
angles have the values

(κi, τi) = (κi0, τi0). (13.99)

Consider a conformation where the (κi, τi) deviate from these extremum values. The
deviations are

Δκi = κi − κi0,

Δτi = τi − τi0.
(13.100)

Taylor-expand the infrared-limit Helmholtz free energy (13.96) around the extremum:

F [rαβ = rαβ(κi, τi)] ≡ F (κi, τi)

= F (κi0, τi0) +
∑
k

(
∂F

∂κk

∣∣∣∣0Δκk +
∂F

∂τk

∣∣∣∣
0

Δτk

)

+
∑
k,l

(
1
2

∂2F

∂κk∂κl

∣∣∣∣0Δκk Δκl +
∂2F

∂κkτl

∣∣∣∣
0

Δκk Δτl

+
1
2
∂2F

∂τk∂τl

∣∣∣∣
0

Δτk Δτl

)
+O(Δ3).

(13.101)
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The first term in the expansion evaluates the free energy at the extremum. Since
(κi0, τi0) correspond to the extremum, the second term vanishes and we are left with
the following expansion of the averaged free energy:

F (κi, τi) = F (κi0, τi0)

+
∑
k,l

(
1
2

∂2F

∂κk∂κl

∣∣∣∣0Δκk Δκl +
∂2F

∂κkτl

∣∣∣∣
0

Δκk Δτl +
1
2
∂2F

∂τk∂τl

∣∣∣∣
0

Δτk Δτl

)
+ . . .

(13.102)

In the limit where the characteristic scale of the extent of spatial deformations around
a minimum-energy configuration is large in comparison with a covalent bond length,
and the amplitude of these deformations remains small, we may rearrange the ex-
pansion (13.102) in terms of of the differences in the angles as follows. First come
local terms. Then come terms that connect the nearest neighbours. Then come terms
that connect the next-to-nearest neighbours. And so forth . . . This reordering of the
expansion ensures that we recover the derivative expansion (13.34) at leading order
when we take the continuum limit where the virtual bond length vanishes. Moreover,
since the free energy must remain invariant under the local frame rotations (13.90)
and (13.91), we conclude [55, 71–78] that to leading order the expansion of the free
energy must coincide with a discretization of the AHM energy (13.29) with (13.31):

F = −
N−1∑
i=1

2κi+1κi +
N∑
i=1

[
2κ2

i + λ(κ2
i −m2)2 +

1
2
qκ2
i τ

2
i − pτi +

1
2
rτ2
i

]
+ . . .

(13.103)
The corrections include next-to-nearest-neighbour couplings and so forth, which are
higher-order terms from the point of view of our systematic expansion. The approxi-
mation (13.103) is valid, as long as there are no abrupt wrenches and buckles but only
gradual bends and twists along the backbone. In particular, long-range interactions are
accounted for as long as they don’t introduce any localized buckling of the backbone.

In (13.103), λ, q, p, r, and m depend on the atomic-level physical properties and
the chemical microstructure of the protein and its environment. In principle, these
parameters can be computed from this knowledge.

We note the following. The free energy (13.103) is a deformation of the
standard energy function of the discrete nonlinear Schrödinger (DNLS) equation
[58, 59]. The first sum together with the first three terms in the second sum is
the energy of the standard DNLS equation, in terms of the discretized Hasimoto
variable (13.60). The fourth (p) term is the conserved helicity, which breaks the Z2

parity symmetry and is responsible for the right-handed helicity of the Cα backbone.
The last (r) term is the Proca mass that we again add as a ‘regulator’. Observe in
particular the explicit presence of the nonlinear, quartic contribution to the (virtual)
bond angle energy. This is the familiar double-well potential, shown in Fig. 13.12. Its
Z2 symmetry eventually becomes broken. The breaking of this symmetry is essential
for the emergence of structure in the case of proteins. It is the source of Bol’she that
makes us alive. We note that this kind of explicit nonlinearity is absent in (13.9).
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We summarize. The expression (13.103) for the free energy describes the small-
amplitude fluctuations around the local extremum (κi0, τi0) in the space of bond and
torsion angles. It can be identified as the long-wavelength (infrared) limit of the full
free energy, in the sense of Kadanoff and Wilson. To the present order of the expansion
in powers of (κi, τi), the functional form (13.103) is the most general long-wavelength
free energy that is compatible with the principle of gauge invariance. This fundamen-
tal symmetry principle ensures that no physical quantity depends on our choice of
coordinates (framing) along the backbone.

Research project 13.7 Develop a method to compute the parameters in (13.103) from an
all-atom energy function.

13.4.3 Discretized solitons

The energy (13.103) is a deformation of the integrable energy of the DNLS equation
[58, 59, 62]: The first term together with the λ- and d-dependent terms constitute the
(naively) discretized Hamiltonian of the NLS model in the Hasimoto variable. The
conventional DNLS equation is known to support solitons. Thus, we can try and find
soliton solutions of (13.103).

As in (13.70), we first eliminate the torsion angle:

τi[κ] =
a+ bκ2

i

c+ dκ2
i

= a
1 + bκ2

i

c+ dκ2
i

≡ aτ̂i[κ]. (13.104)

For bond angles, we then have

κi+1 = 2κi − κi−1 +
dV [κ]
dκ2

i

κi (i = 1, . . . , N), (13.105)

where we set κ0 = κN+1 = 0, and V [κ] is given by (13.73). This equation is a de-
formation of the conventional DNLS equation, and it is not integrable, a priori. For a
numerical solution, we extend (13.105) to the following iterative equation [73]:

κ
(n+1)
i = κ

(n)
i − ε{κ(n)

i V ′[κ(n)
i ]− (κ(n)

i+1 − 2κ(n)
i + κ

(n)
i−1)}. (13.106)

Here {κ(n)
i }i∈N denotes the nth iteration of an initial configuration {κ(0)

i }i∈N , and ε
is some sufficiently small but otherwise arbitrary numerical constant; we often choose
ε = 0.01 in practical computations. The fixed point of (13.106) is clearly independent
of the value chosen. But the radius and rate of numerical convergence in a simulation
towards the fixed point depend on the value of ε: The fixed point is clearly a solution
of (13.105).

Once the numerically constructed fixed point is available, we calculate the corres-
ponding torsion angles from (13.104). Then, we obtain the frames from (13.85) and
can proceed to the construction of the discrete string, using (13.86).
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At the moment, we do not know of an analytical expression for the soliton solution
of (13.105). But we have found [72, 74, 76] that an excellent approximate solution can
be obtained by discretizing the topological soliton (13.67):

κi ≈
m1e

c1(i−s) −m2e
−c2(i−s)

ec1(i−s) + e−c2(i−s)
. (13.107)

Here, (c1, c2, ,m1,m2, s) are parameters. m1 and m2 specify the asymptotic κi-values
of the soliton. Thus, these parameters are entirely determined by the character of the
regular, constant bond and torsion angle structures that are adjacent to the soliton. In
particular, these parameters are not specific to the soliton per se, but to the adjoining
regular structures. The parameter s defines the location of the soliton along the string.
This leaves us with only two loop-specific parameters, c1 and c2. These parameters
quantify the length of the bond angle profile that describes the soliton.

For the torsion angle, (13.104) involves one parameter (a) that we have factored out
as the overall relative scale between the bond angle and torsion angle contributions to
the energy; this parameter determines the relative flexibility of the torsion angles with
respect to the bond angles. Then, there are three additional parameters (b/a, c/a, d/a)
in the remainder τ̂ [κ]. Two of these are again determined by the character of the regular
structures that are adjacent to the soliton. As such, these parameters are not specific
to the soliton. The remaining single parameter specifies the size of the regime where
the torsion angle fluctuates.

On the regions adjacent to a soliton, we have constant values of (κi, τi). In the case
of a protein, these are the regions that correspond to the standard regular secondary
structures: in a rough sense, proteins are made of right-handed α-helices, β-strands,
and loops. For example, the standard right-handed α-helix is

α-helix:

{
κ ≈ 1

2π,

τ ≈ 1,
(13.108)

and the standard β-strand is

β-strand:

{
κ ≈ 1,

τ ≈ π.
(13.109)

All the other standard regular secondary structures such as 3/10 helices and left-
handed helices are similarly described by definite constant values of κi and τi.

Protein loops correspond to regions where the values of (κi, τi) are variable, while
protein loops are the soliton proper: a soliton is a configuration that interpolates
between two regular structures, with constant values of (κi, τi).

13.4.4 Proteins out of thermal equilibrium

When a protein folds towards its native state, it is out of thermal equilibrium. Several
studies propose that in the case of a small protein, the folding takes place in a manner
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that is consistent with Arrhenius’ law; we recall that this law states that the reaction
rate depends exponentially on the ratio of activation energy EA and temperature:

r ∝ exp
(
− EA
kBT

)
. (13.110)

On the other hand, in the case of simple spin chains, it has been found that the
Glauber dynamics [79, 80] describes the approach to thermal equilibrium in a manner
that follows Arrhenius’s law. Since we have argued that proteins can be viewed as
spin chains, with residues corresponding to the spin variables, it is natural to try and
model the way in which a protein approaches thermal equilibrium by using Glauber
dynamics.

Glauber proposed to model non-equilibrium dynamics in terms of a Markovian
Monte Carlo (MC) time evolution, defined by the heat bath probability distribution
[79, 80]

P =
x

1 + x
, with x = exp

(
−ΔE
kT

)
. (13.111)

Here, ΔE is the energy difference between consecutive MC time steps (∼activation
energy). We compute it from (13.103) in the case of a protein. In addition, in the
case of a protein, we need to account for steric constraints: analysis of PDB structures
reveals that the distance between two Cα atoms that are not nearest neighbours along
the backbone, is always larger than (13.94):

|ri − rk| > 3.8 Å for |i− k| ≥ 2. (13.112)

Note the apparent similarity between Arrhenius’ law and Glauber’s algorithm. We
also note that the scale of units of kT , which appears in (13.111) as a temperature fac-
tor, should not be directly identified with the Boltzmannian temperature factor kBT .
The scale of units depends on the overall scale of the energy function (13.103), and
in particular by our choice of the normalization factor in the first, nearest-neighbour
interaction term. To determine the unit, we need a renormalization condition. For this,
we need to perform a proper experimental measurement(s), and compare the predic-
tions of our model with those of the protein that it describes, at that temperature.
One suitable renormalization point could be to try and identify the experimentally
measured θ-transition temperature by comparison with the properties of our model.

13.4.5 Temperature renormalization

This subsection is somewhat technical. The details are not needed in the rest of the lectures.
We include it because we feel that good understanding of temperature renormalization of
parameters is relevant to the physics of proteins [78]. For example, thus far this has not been
really addressed in any other approach we are aware of. You might find the subject described
here to be an inspiration for your future research.
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In the probability distribution (13.111) the nearest-neighbour coupling contribution
in (13.103) becomes normalized as follows:

− 2
kT

N∑
i=1

κi+1κi. (13.113)

Thus, the temperature factor kT depends on the physical temperature factor kBT in
a non-trivial fashion. That is, we should really write

2
kT → J(T )

kBT
(13.114)

where J(T ) is the strength of the nearest-neighbour coupling at Boltzmannian kBT .
Its numerical value depends on the temperature in a manner that is governed by the
standard renormalization group equation

T
dJ

dT
= βJ (J ;λ,m, q, p, r) ∼ βJ (J) + . . . (13.115)

For simplicity, we may assume that to leading order the dependence of βJ on the
other couplings can be ignored. Note that the parameters, and thus their β-functions,
depend on the properties of the environmental factors: the properties and pH of the
solvent, the pressure, etc.

In the low-temperature limit, we can expand the nearest-neighbour coupling as
follows:

J(T ) ≈ J0 − J1T
α + . . . as T → 0. (13.116)

Here, J0 is non-vanishing, and the critical exponent α controls the low-temperature
behaviour of J(T ). The asymptotic expansion (13.116) corresponds to a β-function
(13.115) that in the T → 0 limit approaches

βJ (J) = α(J − J0) + . . . (13.117)

Consequently, at low temperatures, we have

kT ≈ 2kB
J0

T. (13.118)

In terms of the temperature factor, (13.115) translates into

T
d

dT

(
1
kT

)
= − 1

kT +
1

2kBT
βJ

(
2kBT
kT

)
. (13.119)

We try to find an approximate solution in the collapsed phase, when the tempera-
ture T is below the critical θ-point temperature Tθ at which the transition between
the collapsed phase and the random-walk phase takes place This coincides with the
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physical temperature value that corresponds to the unfolding transition temperature
factor value kTΘ. Let

βJ

(
2kBT
kT

)
=

2kBT
kT + F

(
2kBT
kT

)
(13.120)

and define

y =
1
kT , x =

1
2kBT

. (13.121)

Equation (13.119) then translates into

dy

dx
= −F

(y
x

)
, (13.122)

with the solution

ln(cx) = −
∫ y/x du

F (u) + u
, (13.123)

where c is an integration constant. We shall assume that the leading nonlinear
corrections are logarithmic, which is often the case. To leading order, we then have

F (u) = (η − 1)u+ αu lnu+ . . . (13.124)

Note that in general there are higher-order corrections. When we reintroduce the
original variables and set

η = −α lnJ0, (13.125)

we get for the temperature factor

kT ≈ 2
J0
kBT exp

(
J1

J0
Tα

)
(13.126)

≈ 2
J0
kBtT +

2J1

J2
0

kBT
α+1 + . . . as T → 0 (α > 0), (13.127)

where we have chosen the integration constant so that in the low-temperature limit
we obtain (13.118).

For the nearest-neighbour coupling, (13.126) yields

J(T ) ≈ J0 exp
(
−J1

J0
Tα

)
. (13.128)

Thus, the coupling between bond angles becomes weak, at an exponential rate, when
the temperature approaches the transition temperature Tθ between the collapsed phase
and the random-walk phase.
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Similarly, all the other couplings that are present in (13.103) are temperature-
dependent. Each has its own renormalization group equation. For example, the quartic
κi self-coupling λ in (13.103) flows according to a renormalization group equation of
the form

T
dλ

dT
= βλ(λ). (13.129)

For simplicity, we again assume that to leading order βλ depends only on λ.
It is natural to interpret λ as a measure of the strength of hydrogen bonds: struc-

tures such as α-helices and β-strands become stable owing to the presence of hydrogen
bonds. At the same time, the value of λ controls the affinity of κi towards the ground-
state value of the quartic potential in (13.103). The hydrogen bonds are presumed
to become vanishingly weak when the protein unfolds. This can take place when the
protein approaches the transition temperature Tθ that separates the collapsed phase
from the random-walk phase. This suggest that, asymptotically,

λ(T )→ λθ|T − Tθ|γλ as T → Tθ from below. (13.130)

Here, γλ is a critical exponent that controls the way in which the strengths of (ef-
fective) hydrogen bonds vanish. More generally, we may send Tθ → TH , which is the
temperature at which hydrogen bonds disappear even between the solvent molecules;
in the case of water under atmospheric conditions, TH ≈ 100◦C. In general, we expect
the value of TH to be higher than that of Tθ.

Above T > Tθ, when the hydrogen bonds become vanishingly weak, we expect
that effectively λ ≈ 0 (or m ≈ 0) in (13.103). On the other hand, we expect that as
the temperature decreases, the value of λ(T ) increases, so that in the low-temperature
limit we have

λ(T )→ λ0 − λ1T
γ0 + . . . as T → 0. (13.131)

Thus,

βλ(λ) ≈ γ0(λ− λ0) +O((λ− λ0)2). (13.132)

Here, λ0 should be close to the value we obtain from PDB when we compute the
parameters in (13.103) from the crystallographic low-temperature structure.

Research project 13.8 Try to evaluate the β-function (13.115) numerically in the case of
a simple protein, such as villin headpiece (PDB code 1YRF), using results from detailed
experimental measurements.

Research project 13.9 Determine how the parameters in (13.9) and (13.10) depend on
temperature.
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13.5 Solitons and ordered proteins

Various taxonomy schemes such as CATH (http://www.cathdb.info/) and SCOP
(http://scop.mrc-lmb.cam.ac.uk/scop/) have revealed that folded proteins are build
in a modular fashion, from a relatively small number of building blocks. Despite an
essentially exponentially increasing number of new crystallographic protein structures
being discovered, novel fold topologies are now rarely found and some authors think
that most modular building blocks of proteins are already known [30, 81]. This con-
vergence in protein architecture demonstrates that protein folding should be a process
that is driven by some kind of universal structural self-organization principle.

We know that solitons are the paradigmatic structural self-organizers. Thus, we
argue that the soliton solution of the DNLS equation (13.105) with (13.104) must be
the universal modular building block from which folded proteins can be constructed.
Indeed, we know that the energy function (13.103) is unique, in the limit where it be-
comes applicable. Moreover, it has already been shown that over 92% of all Cα-traces
of PDB proteins can be described in terms of no more than 200 different paramet-
rizations of the DNLS soliton (13.107), with a root-mean-square distance (RMSD)
precision that is better than 0.5 Å [75].

Accordingly, we set out to describe the modular building blocks of proteins in
terms of various parametrizations of the DNLS soliton profile, which is described by
(13.106), (13.104), (13.85), and (13.86).

13.5.1 λ-repressor as a multisoliton

In order to identify the soliton structure of a given protein, we start by computing
the Cα virtual backbone bond and torsion angles from the PDB data. We initially fix
the Z2 gauge in (13.92) so that all the bond angles take positive values κi ∈ [0, π]. A
generic protein profile consists of a set of κi with values that are typically between
κi ≈ 1 and κi ≈ π/2; the upper bound can be estimated using steric constraints. The
torsion angle values τi are commonly much more unsettled, and their values extend
more widely over the entire range τ ∈ [−π,+π].

As an example we consider the λ-repressor, which is a protein that controls the
lysogenic-to-lytic transition in bacteriophage λ-infected E. coli cells. The transition
between the lysogenic and lytic phases in bacteriophage λ-infected E. coli is the
paradigmatic example of a genetic switch mechanism, which has been described in
numerous molecular biology textbooks and review articles (see e.g. [82, 83]). The
interplay between the lysogeny-maintaining λ-repressor protein and the regulator pro-
tein that controls the transition to the lytic state is a simple model for more complex
regulatory networks, including those that can lead to cancer in humans.

The λ-repressor structure that we consider has PDB code 1LMB. It is a homodimer
with 92 residues in each of the two monomers. It maintains the lysogenic state by
binding to DNA with a helix–turn–helix motif that is located between residue sites 33
and 51. The λ-repressor is a fast-folding protein. In [35], an 80-residue-long mutant of
the λ-repressor was studied in an all-atom simulation.

In Fig. 13.24 (left column) we show the (κi, τi) spectrum of 1LMB, with the con-
vention (i.e. Z2 gauge fixing) that κi is positive. We display the segments between
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Fig. 13.24 Bond angle κ and torsion angle τ spectrum of the λ-repressor 1LMB, with indexing
that follows PDB. Left column: spectrum in the Z2 gauge where all κi > 0. Right column:
spectrum after implementation of the Z2 gauge transformations that identify the solitons.
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residues 19 and 82. This spectrum is fairly typical of the PDB structures that we have
analysed.

The results in Section 13.3.8 suggest that in analysing the PDB data, one should
first pay attention to flattening points, i.e. points where τi changes its sign. The flat-
tening points should be located near a putative inflection point where a soliton is
located and perestroika takes place. Accordingly, we perform in the spectrum of Fig.
13.24 (left column) the Z2 gauge transformations (13.92) in the vicinity of the appar-
ent flattening points, to identify the putative multisoliton profile of κi. For example,
in the case of 1LMB, we observe four regions with an irregular τi profile as shown in
Fig. 13.24. By a judicious choice of Z2 gauge transformations, we identify seven dif-
ferent solitons in κi. The profiles are shown in the right column of Fig. 13.24. Each of
the soliton profiles is clearly accompanied by putative flattening points. Note that τi
is multivalued, mod 2π. Thus, the large fluctuations in the values of τi are deceptive.
Once we account for the multivaluedness, we find that τi is actually quite regular. This
is in full accordance with the observed, much higher, flexibility of the torsion angles
in relation to the bond angles that is known to occur in proteins.

On the basis of the general considerations in Section 13.3.8, we argue that pro-
tein folding from a regular unfolded configuration with no solitons to the biologically
active natively folded configuration with its solitons is a process that is driven by
inflection and flattening-point perestroikas. The initial configuration with no solitons
can be chosen to coincide with the minimum of the second sum in (13.103). It could
also be, for example, a uniform right-handed α-helix (13.108), or β-strand (13.109),
or polyproline II-type conformation. When the protein folds, it proceeds from this ini-
tial configuration towards the final configuration, through successive perestroikas, i.e.
bifurcations. These perestroikas deform the Cα backbone, creating DNLS-like solitons
along it, thus causing the backbone to enter the space-filling ν ∼ 1

3 collapsed phase.
In the case of 1LMB, we identify seven soliton profiles as shown in Fig. 13.24 (right

column). We proceed to determine the parameters in the energy function (13.103). For
this, we train the energy function so that it describes the seven individual solitons in
terms of a solution of (13.105) with (13.104) for each of them individually. The training
is performed by demanding that the fixed point of the iterative equation (13.106)
models the ensuing Cα backbone structure as a soliton solution, with a prescribed
precision.

We have developed a program GaugeIT that implements the Z2 gauge transform-
ations to identify the background, and a program PropoUI that trains the energy
so that it has an extremum that models the background in terms of solitons. These
programs are described at

http://www.folding-protein.org

In the case of a protein for which the PDB structure is determined with ultra-high
resolution, typically below 1.0 Å, PropoUI routinely constructs a soliton solution that
describes the Cα backbone with a precision comparable to the accuracy of the ex-
perimentally measured crystallographic structure; recall that the accuracy of the
experimental PDB structure is estimated by the B-factors using the Debye–Waller
relation (13.1).
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Fig. 13.25 [Colour online] Distance between the PDB backbone of the first 1LMB chain and
its seven solitons. The black line denotes the distance between the PDB structure and the
corresponding soliton. The grey area around the black line describes the lower-bound estimate
of 15 pm (quantum-mechanical) zero-point fluctuation distance around each soliton, obtained
from Fig. (13.4). The grey [red] line denotes the Debye–Waller fluctuation distance (13.1).
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In Fig. 13.25, we compare the distance between the Cα backbone and the seven
individual soliton solutions for 1LMB. The B-factor fluctuation distance in the experi-
mental structure 1LMB, evaluated from the Debye–Waller relation, is also displayed.
As shown in the figure, the solitons describe the loops with a precision that is fully
comparable to the experimental uncertainties. The grey zone around the soliton profile
denotes our best estimate for the extent of quantum-mechanical zero-point fluctu-
ations; according to Fig. 13.4, there are practically no Debye–Waller values less than
15 pm, which we have chosen here as the zero-point fluctuation distance, in the figure.

13.5.2 Structure of myoglobin

Myoglobin [9] is the primary oxygen-carrying protein in the muscle cells of mammals.
It is closely related to haemoglobin, which is the oxygen-binding protein in blood.
Myoglobin gives meat its red colour; the more red, the more myoglobin. It also allows
organisms to hold their breath for a period of time: diving mammals such as whales
and seals have a high myoglobin concentration in their muscles.

Myoglobin was the first protein to have its three-dimensional structure determined
by X-ray crystallography. Subsequently, it has remained among the most actively
studied proteins. But, theoretically, the investigation of myoglobin, for example in
an all-atom MD simulation, remains a formidable task: the experimentally measured
folding time from a random chain to the natively folded state is around 2.5 s [84]. At
the same time, the fastest special purpose MD supercomputer ever built, Anton, can
produce at most a few microseconds of in vitro folding trajectory per day in silico—in
the case of proteins that are much shorter and simpler than myoglobin. Accordingly,
it would take at least a million or so days to reproduce a single myoglobin folding
trajectory in silico, at an all-atom level, even with Anton. A good convergence of
Newton’s iteration with the energy function (13.9), (13.10) over such a long timescale
would be truly amazing.

We have already noted that all-atom MD simulation is conceptually a weak-
coupling expansion, appropriate for describing phenomena over very short time periods
only: the time ratio (13.11) is the small, iterative expansion parameter. In the case of
long-time trajectories, such a weak-coupling expansion cannot be expected to be very
effective, not even convergent. Alternative approximate methods need to be introduced
to model myoglobin and the large majority of proteins that fold much more slowly
than the microsecond to millisecond scale.

From the perspective of quantum field theory, this means that we need a non-
perturbative approach. For example, in quantum chromodynamics (QCD), we do not
expect standard perturbation theory to be capable of describing hadrons. On the other
hand, lattice QCD is designed for modelling hadrons. But it can hardly describe the
scattering of quarks and gluons.

Indeed, we have argued that in the case of proteins, the energy function (13.103)
is an example of such a non-perturbative approach. It avoids altogether the need to
introduce a time step ratio such as (13.11) as a weak-coupling expansion parameter.
Instead, the Cα geometry is modelled in terms of small variations in the angular
variables around their equilibrium conformations. Since the approximation does not
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involve time directly, it becomes in principle possible to describe folding phenomena
that can be very difficult, even impossible, to model in terms of conventional and
presently available all-atom MD.

We proceed to apply the energy function (13.103) to investigate detailed properties
of myoglobin. Here, we analyse the static structure, and in Section 13.5.3, we consider
out-of-equilibrium dynamics.

We first construct the multisoliton solution that models the myoglobin backbone.
We use the crystallographic PDB structure 1ABS as a decoy, to train the energy
function. This structure has been measured at very low liquid helium temperatures
∼20 K. Thus, the thermal B-factor fluctuations (13.1) are small.

At this point, we suggest that the reader should download the PDB structure 1ABS, to
make it easier to follow details of our analysis. We propose to use the Java interface
provided at the PDB site (http://www.pdb.org/) for visualization of the backbone and side-
chain atoms. We also recommend the analysis tools available on the Molprobity website
(http://molprobity.biochem.duke.edu/), which we shall refer to in the following. We shall
provide the values for all the parameters in the energy function (13.103), which the reader
can use as input in the programs Propro and GaugeIT, which are described at our website
(http://www.folding-protein.org). This enables a detailed analysis of the multisoliton that
describes 1ABS, and should help the reader to start independent research.

We proceed to the construction of the multisoliton: 1ABS has 154 amino acids, and
the PDB index runs over i = 0, . . . , 153. Conventionally, one identifies the structure
as a bundle of eight α-helices (A,B,C, . . . ,H), which are separated by seven loops as
shown in Fig. 13.26.

Here, we shall limit the construction of the multisoliton to the sites with PDB index
N between 8 and 149. That is, we include all the named helices but not include the
flexible tails at the ends of the backbone. These tails could be included, but without
much additional insight into the issues that we address.

A
E

B

CG

F

H

D

Fig. 13.26 Myoglobin has eight α-helices, which are named A,B,C, . . . , H.
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Fig. 13.27 [Colour online] (a) The κi (black) and τi (grey [red]) profiles of 1ABS using
the standard differential geometric convention that bond angles are positive. (b) The soliton
structure becomes visible in the κi profile once we implement the transformations (13.92).

In Fig. 13.27(a), we show the backbone bond and torsion angle spectra, with the
convention that all κi are positive. In Fig. 13.27(b), we show the spectra after we have
implemented the Z2 transformations (13.92) to putatively identify the multisoliton
profile; in our analysis, we use the program packages Propro and GaugeIT described
at our website (http://www.folding-protein.org).

We recall that both Fig. 13.27(a) and (b) correspond to the same intrinsic backbone
geometry. The Z2 transformation is a symmetry of the discrete string that is obtained
by solving the discrete Frenet equation.
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Table 13.1 The solitons along the 1ABS Cα-backbone, with indexing starting from the N-
terminus. We have left out the end sites that correspond to monotonic helices, and the N-
and C-terminal segments. The type identifies whether the soliton corresponds to a loop that
connects α-helices and (or) 3/10-helices.

SOLITON 1 2 3 4 5

Sites 15–27 30–41 39–49 47–57 54–66

Type α–α α–3/10 3/10–3/10 3/10–3/10 3/10–α

Soliton 6 7 8 9 10

Sites 72–87 83–92 94–106 110–123 121–135

Type α–α α–α α–α α–α α–α

We conclude from the κi profile Fig. 13.27(b) that the myoglobin backbone has 11
helices that are separated by 10 single soliton loops. The numbers of loops and helices
are more or less unambiguously determined by the number of inflection points that
we identify visually in Fig. 13.27, in the manner explained in Section 13.3.8. The PDB
sites of the 10 individual soliton profiles that we use for our construction are identified
in Table 13.1. We emphasize that our geometry-based identification of the loops and
helices along the 1ABS backbone does not necessarily coincide with the conventional
one used, for example, in crystallography, which is based on inspection of hydrogen
bonds. In particular, according to the conventional classification, the soliton pair 3
and 4, the soliton pair 6 and 7, and the soliton pair 9 and 10, are all interpreted as a
single loop.

From our geometric point of view, the PDB data reveal that in 1ABS, we have
four different types of solitons: those that connect two α-helices, those that connect
an α-helix with a 3/10-helix or vice versa, and those that connect two 3/10-helices;
see Table 13.1.

In Table 13.2, we give our parameter values for the multisoliton solution. This
describes the 1ABS backbone with 0.78 Å RMSD accuracy.

Note that in those terms in (13.103) that involve the torsion angles, the numerical
parameter values are consistently much smaller than in terms that contain only the
bond angles. This is in line with the known fact that in proteins the torsion angles,
i.e. dihedrals, are usually quite flexible while the bond angles are relatively stiff.

Note also that our energy function has 80 parameters, while there are 153 amino
acids in the entire myoglobin backbone. Thus, the energy function (13.103) is highly
predictive: the number of free parameters is even less than the number of amino acids.
This shows that myoglobin displays structural redundancy in its amino acids.

The predictive power of (13.103) can alternatively be characterized as follows:
When we assume that all the bond lengths have the constant value (13.94), we are left
with 282 Cα angular coordinate values in our truncated backbone. These we need to
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Table 13.2 Parameter values in energy (13.103) for the multisoliton solution that describes
1ABS.

SOLITON λ1 λ2 m1 m2

1 9.923 2.232 1.54097 1.54548

2 6.48516 0.9955 1.58013 1.54058

3 2.05153 0.657 1.66032 1.60224

4 0.89676 6.74235 1.3563 1.5232

5 9.26118 0.83376 1.55206 1.5386

6 0.98018 2.1337 1.45791 1.54653

7 1.37667 3.16891 1.47151 1.04128

8 10.3168 4.2801 1.18192 1.61334

9 0.80042 1.28973 1.5154 1.60278

10 3.15255 0.91475 1.55827 1.55151

SOLITON a b c d

1 −5.62412 e-08 −4.13459 e-07 1.81044 e-08 4.273 e-09

2 −6.25287 e-11 −1.68598 e-05 1.47093 e-07 2.82807 e-07

3 −9.05135 e-08 1.20232 e-06 5.10166 e-11 5.75389 e-09

4 −2.33413 e-07 −3.3991 e-07 2.36516 e-08 7.98841 e-09

5 −9.73035 e-08 4.78674 e-07 1.03189 e-10 4.88194 e-09

6 −7.25906 e-09 3.76092 e-09 6.82624 e-10 1.87212 e-14

7 −1.39052 e-13 5.97719 e-13 3.77897 e-14 5.81911 e-14

8 −1.27193 e-07 1.41736 e-06 1.07182 e-10 1.26295 e-08

9 −2.03487 e-07 1.13574 e-06 1.46007 e-11 7.82707 e-08

10 −1.07811 e-07 1.02768 e-06 7.49571 e-11 7.73639 e-09

determine from the properties of the energy function (13.103), in order to construct
the backbone from (13.85) and (13.86). We have a total of 80 parameters in Table
13.2, and thus a total of 202 coordinates remain to be determined by the multisoliton
solution that minimizes the energy function. Therefore, we have 202 unknowns that
are to be predicted by the model. These predictions then directly probe the physical
principles on which (13.103) has been built.
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We recall that approaches such as the Gō model and its variants and various elastic
network models lack this kind of predictive power. In those models, the positions of all
the atoms are assumed to be known a priori. In addition, one needs a description how
the atoms interact. Thus, there are always more parameters than degrees of freedom,
and no predictions can be made.

In Fig. 13.28, we interlace the 1ABS backbone with the multisoliton; the difference
is very small.

In Fig. 13.29, we analyse site-wise the precision of the multisoliton configuration
with the PDB structure 1ABS. The 15 pm grey-shaded region around the multisoli-
ton profile again corresponds to the regime of zero-point fluctuations that we have

Fig. 13.28 [Colour online] Comparison between the PDB structure 1ABS (dark [purple]) and
the corresponding multisoliton solution (light [blue]).

2

1.5

D
ev

ia
ti

on
 f
ro

m
 1

A
B

S 
( 

)

1

0.5

0
20 40 60 80 100 120 140

PDB site index

Fig. 13.29 [Colour online] Comparison of the RMSD between the 1ABS configuration and the
multisoliton solution, with the Debye–Waller B-factor fluctuation distance around the 1ABS
backbone. The [blue] markings at the top, along the 2.0 Å line, denote sites where Molprobity
(http://molprobity.biochem.duke.edu/) detects imperfections.
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deduced from Fig. 13.4. Conceptually, the multisoliton describes a single myoglobin
structure in the limit of vanishing temperature. In particular, as such, the multisoliton
does not account for any kind of conformational fluctuations that are due to thermal
effects, lattice imperfections, or any other kind of conformational substate effects; we
model thermal effects using the Glauber heath bath (13.111). On the other hand,
the experimentally measured 1ABS crystal structure should not be interpreted as a
single static low-temperature structure. Instead, it is an average over a large num-
ber of closely packed crystallographic structures. A comparison between Figs. 13.25
and 13.29 shows that in the latter, the distance between the PDB backbone and the
multisoliton profile is larger than that between the PDB backbone and the individual
solitons in Fig. 13.25. Figure 13.29 describes the single multisoliton solution to the
equations (13.105), and (13.104), while in Fig. 13.25 we have constructed the individ-
ual solitons by solving (13.105) and (13.104) independently for each loop. A similar
individual soliton construction in the case of 1ABS gives profiles that are comparable,
even slightly more precise, than those in Fig. 13.25. But for energetic studies we need
the full multisoliton with its energy function, and we need the local energy minimum
of (13.103) for the entire backbone.

We presume that a multisoliton solution could be constructed with a precision even
better than 0.78 Å in Cα RMSD. But the convergence of (13.106) becomes slow when
we use a laptop like a MacBook Air. Thus, we have simply terminated the process
when we reach the value 0.78 Å,which is in any case much better than that obtained
in any other approach, using any other computer, to our knowledge.

In Fig. 13.29, we observe that the distance between the multisoliton solution and
the Cα backbone of 1ABS has its largest values mainly in two regimes. These are
located roughly between sites 35 and 45 and between sites 79 and 98; we propose that
the reader inspects the structure of 1ABS using the visualization interface of the PDB.
The first regime corresponds to the single soliton that models the loop between helices
B and C in Fig. 13.26. The second regime corresponds to the location of helix F. This
helix is part of the ‘V’-shaped pocket of helices E and F, where the haem group is
located. In particular, the reader can see that helix F includes the proximal histidine
at site 93, which is bonded to the iron ion of the haem. Note that, in addition, our
analysis detects an anomaly at about site 121.

In order to understand the origin of the observed deviations from an ideal mul-
tisoliton crystal, we check for the presence of potential structural disorders in 1ABS
using Molprobity ; we recommend that the reader perform this analysis on the Mol-
probity website (http://molprobity.biochem.duke.edu/). In Fig. 13.28, along the top,
at the level of the 2.0 Å line, we have marked [blue online] those regions where, ac-
cording to Molprobity, we have potential clashes. The Molprobity clash score of 1ABS
is 20.32, which puts it in the 10th percentile among structures with comparable reso-
lution (100 being the best score). The regions of potential structural clashes correlate
with those regions where our multisoliton profile has the largest deviations from the
1ABS backbone (except for the vicinity of site 121, which is unproblematic according
to Molprobity).

We first consider the difference between the multisoliton and the 1ABS backbone
around sites 79–98, which was also identified by the ansatz as a potentially troublesome
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one. The difference appears to be largely due to a deformation of helix F. It could be
caused by a bond between the proximal histidine at site 93 and the oxygen-binding
haem iron. This might introduce a strain that modifies the backbone. The effect of the
haem is not accounted for by our energy function in its present form. Consequently, we
propose the histidine–haem interaction as the likely explanation for the relatively large
deviation between our multisoliton profile and the 1ABS backbone at this position.

We proceed to consider the difference between the multisoliton and the 1ABS
backbone around sites 35–45. These sites are also located very close to the haem. For
example, the distance between the Cα at site 45 (arginine) and the haem oxygen 154
is 4.84 Å, and the Cα of phenylalanine at site 43 is even closer to the haem. This
proximity between the backbone and the haem is reflected in the Molprobity clash
at site 45 (between Cδ and 154 HEM). We conclude that there could be strain in
the backbone structure that is due to the haem, and this could explain the difference
between the 1ABS backbone and the multisoliton configuration in this regime.

Finally, we note that in Fig. 13.29, we also have our previously observed anomaly
at site 121 (glycine). At this point, we have no explanation for the anomaly except that
glycine is flexible and that this region is on the exterior of the protein. This leaves the
hydrophobic phenylalanine at nearby site 123 exposed to the solvent. Consequently,
relatively strong fluctuations between several locally conformationally different but
energetically degenerated substates are possible.

13.5.3 Dynamical myoglobin

Myoglobin stores O2 by binding it to the iron atom, which is inside the myoglobin.
The oxidization causes a conversion from ferrous ion (Fe2+) to ferric ion (Fe3+); the
oxidized molecule is called oxymyoglobin. When the oxygen is absent, the molecule is
called deoxymyoglobin. We propose that the reader finds examples of each from the
PDB and inspects the structures using the three-dimensional Java interface.

Numerous detailed experimental investigations have been made of both oxymyo-
globin and deoxymyoglobin. But to our knowledge, the understanding of the oxygen
transport mechanism in myoglobin remains incomplete: We do not yet know exactly
how small non-polar ligands such as O2, CO, and NO move between the external solv-
ent and the iron-containing haem group, which is located inside the myoglobin. From
the available static crystallographic PDB structures, one cannot identify any obvious
ligand pathway. It has been proposed that the process involves thermally driven large-
scale conformational motions. Collective thermal fluctuations could open and close
gates through which the ligands migrate. Such gates are not necessarily visible in the
crystallized low-temperature structures. Computational investigations that model the
dynamics of myoglobin might provide a clue as to how these gates operate.

13.5.3.1 Glauber dynamics and phase structure

We start our investigation into how ligand gates might open and close by perform-
ing heating and cooling simulations of myoglobin with the energy function (13.103)
in combination with Glauber dynamics (13.111) and (13.112) [77]. We use the 1ABS
multisoliton that we have constructed. The structure is a carbon-monoxy-myoglobin
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(MbCO), but with the covalent bond between the CO and iron broken by photodissoci-
ation. In any case, its dynamical properties should serve as a good first-approximation
model of how myoglobin behaves more generally.

We start our simulations at a low-temperature value, from the multisoliton config-
uration that we have constructed: A classical soliton solution is commonly interpreted
as a structure that describes the limit of vanishing temperature where thermal
fluctuations become very small.

We take

kTL = 10−16 (13.133)

for the numerical value of the low-temperature factor, in terms of the dimensionless
unit that is determined by our choice of the overall energy scale in (13.103). At this
value of the temperature factor, thermal fluctuations are absent in our multisoliton.
For the numerical high-temperature value, we choose

kTH = 10−13. (13.134)

By applying the renormalization group arguments in Section 13.4.5, we have related
the two temperature factors kT and kBT . Our conversion relation, which we shall
justify in the sequel, is

kT = 1.6181× 10−9kBTe
0.05506T . (13.135)

We use CGS units, so kB = 1.381× 10−16 erg/K.
Under in vivo conditions, myoglobin always interacts with water. This interaction

is essential for maintaining the collapsed phase. In our approach, we account for the
solvent (water) implicitly, in terms of the parameter values in (13.103). In particular,
as such, our model can only effectively take into account the highly complex phase
properties of water at sub-freezing temperatures. We do not even try to address the
obvious complications that appear when the temperature rises above the boiling point
of water.

We start the simulation at kTL. The heating takes place with an exponential rate of
increase during 5 million Monte Carlo steps. We model the non-equilibrium response
using the Glauber protocol (13.111). According to (13.135), in terms of the physical
temperature factor kBT , the heating process should correspond to an adiabatically
slow nearly linear rate of increase.

When we arrive at the high-temperature kTH = 10−13, we fully thermalize the
system by keeping it at this temperature value during 5 million steps. We then proceed
to cool it back down to kTL. We use the same rate of cooling as we use for heating,
i.e. we cool exponentially in kT during 5 million steps. Each complete heating–cooling
cycle takes about 3 minutes of wall-clock time when we use a single processor in a
standard laptop (MacBook Air). Consequently, time is no constraint for us and we
can collect very, very good statistics. In particular, we have checked that our results,
and the conclusions are quite insensitive to the rate of heating and cooling.

For statistical purposes, we have performed 100 repeated heating and cooling cycles
that we have then analysed in detail; an increase in the number of cycles does not
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change our conclusions. Note that in an all-atom approach, a comparable simulation
would take over 100 000 years even with Anton [33], while for us a few minutes is
enough.

During the simulations, we follow the evolution of both the radius of gyration Rg
and the RMSD RRMSD between the simulated configuration and the folded 1ABS
structure. In Fig. 13.30(a), we show the evolution of the radius of gyration and in Fig.
13.30(b) the evolution of the RMSD distance to 1ABS, as functions of steps during our
100 repeated heating and cooling cycles; Note that in these plots we have converted
the temperature into the kelvin scale, using (13.135).

We make the following observations: At low temperatures, with temperature factors

kT < 10−15, (13.136)

the radius of gyration is essentially constant, Rg ≈ 14.6, and only subject to very small
thermal fluctuations. In the range

10−15 < kT < 10−14, (13.137)

we have a regime where the radius of gyration increases at an accelerating rate in the
number of steps. The increase in Rg continues until we reach a temperature near kTH .
But for temperatures where the temperature factor is in the range

10−14 < kT < kTH = 10−13, (13.138)

the rate of increase decelerates so that when we reach the temperature kTH , we observe
no increase in Rg. This suggests that we have reached the random-walk θ-regime.
Furthermore, the radius of gyration value

Rg ≈ 22 Å (13.139)

is extremely close to the experimentally measured value ∼23.6 Å for the molten globule
state of myoglobin. The difference can be entirely attributed to the 12 residues that we
have excluded (7 from the N-terminus and 5 from the C-terminus) when constructing
the multisoliton.

We have confirmed that the transition near kTH is indeed a θ-transition between
the collapsed phase and the random-walk phase, by heating the configuration to
substantially higher temperature factor values. We have found that above this puta-
tive θ-transition, the radius of gyration remains essentially intact under temperature
variations all the way to

kT = 10−8. (13.140)

Around this temperature value another transition takes place, presumably to the ν ∼ 3
5

self-avoiding random-walk phase. In Fig. 13.30(c), we show how the RMSD between the
heated configuration and 1ABS changes as a function of temperature during heating
and cooling cycles between kTL = 10−16 and kT = 10−8. We observe two clear tran-
sitions that are consistent with the transitions between collapsed and random-walk
phases, and between random-walk and self-avoiding random-walk phases according
to (13.4).
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Fig. 13.30 [Colour online] (a) Evolution of the radius of gyration during 100 repeated heating
and cooling cycles. (b) Evolution of the RMSD between the 1ABS backbone and the simulated
configuration during 100 repeated heating and cooling cycles. (c) Evolution of the RMSD be-
tween the 1ABS backbone and the simulated configuration during 100 repeated heating and
cooling cycles, to very high temperature values. In each plot, the central [blue] line denotes the
average, and the shaded area around it is the extent of one standard deviation fluctuations.
Along the top axis, we show the temperature on the kelvin scale, using the conversion relation
(13.135).
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When we decrease the temperature, the evolution of Rg becomes inverted. At the
end of the cycle, when the temperature reaches kTL, the configuration returns back to
a very close proximity of the original folded state; see Fig. 13.30(b). This demonstrates
the stability of the multisoliton solution that describes the natively folded myoglobin
as a local minimum of the energy (13.103).

Figure 13.31(a) shows the average values of Rg. These averages are evaluated at
several different temperature values, over 100 runs, both during the heating period
when 0 < x < 7.5 and during the cooling period when 7.5 < x < 15, where x is the
number of MC steps in millions. The data can be approximated by a fitting function
of the form

Rg(x) ≈ a tanh[b(x− c)] + d. (13.141)

The parameter values are listed in Table 13.3.
In Fig. 13.31(a), we display the derivative of (13.141). We can try and use the

maximum of the derivative to identify the θ-transition temperature in our model.
For this, we assume that the experimentally measured [85, 86] transition temperature
at Tc ≈ 348 K is the one that corresponds to the θ-transition. We identify it with
the maximum of the derivative of Rg, to conclude that during the heating cycle the
θ-transition temperature relates to our dimensionless temperature values as follows:

T hg ≈ 1.63× 10−14 ≈ 348K. (13.142)

We use this value to determine one of the two parameters in (13.135).
During the cooling cycle, we find the slightly different

T cg ≈ 1.71× 10−14 ≈ 349K. (13.143)

We note that an asymmetry between heating and cooling has been observed
experimentally [85].

The RMSD between the simulated configuration and the 1ABS backbone depends
on temperature in a very similar manner. In Fig. 13.31(b), we show the comparison
between simulation and the corresponding approximation (13.141),

RRMSD ≈ a tanh[b(x− c)] + d. (13.144)

Table 13.3 Parameter values in the fits (13.141), (13.144) for the two ranges 0–7.5 and 7.5–15
(in millions) of iteration steps

Rg RRMSD

RANGE a b c d a b c d

0–7.5 3.519 0.9047 3.6855 18.29 7.9 0.8318 3.5715 9.291

7.5–15 −3.486 0.9193 11.2965 18.28 −7.872 0.8327 11.4255 9.298
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These parameter values are also listed in Table 13.3 separately for the heating period
0 < x < 7.5 and for the cooling period 7.5 < x < 15. Figure 13.31(b) also shows the
derivative of RRMSD(x). As in the case of the radius of gyration, we use the maximum
of the derivative to estimate the peak rate of change of the transition temperature.
During the heating period, the increase in RRMSD peaks at

T hRMSD ≈ 1.35× 10−14 ≈ 344K. (13.145)

During the cooling period, we find that the peak corresponds to a slightly higher
temperature value,

T hRMSD ≈ 1.45× 10−14 ≈ 346K. (13.146)

These values are very close to those we observe in the case of Rg.

13.5.3.2 Backbone ligand gates

We proceed to try and identify potential thermally driven backbone ligand gates. We
are interested in studying how the gates open and close as the myoglobin is heated and
cooled. Moreover, thus far, we have fixed only one of the two parameters in (13.142)
using the θ-transition temperature. We shall fix the second parameter in the sequel,
by considering the dynamics of the backbone ligand gates.

We investigate the shape of the backbone visually, during the heating and cooling.
We find that qualitatively the thermal fluctuations follow a very similar pattern. The
backbone becomes unfolded in more or less the same manner, again and again, as the
temperature increases. The inverse pattern is observed during cooling.

During heating, we observe a clear onset of the unfolding transition, which we
characterize in terms of backbone ligand gates. We have identified three major gates,
which we call Gates 1, 2, and 3 and define as follows.

Gate 1 is defined as the area between the segment that starts at PDB site 37
(Pro) and ends at 44 (Asp) and the segment that starts at 96 (Lys) and ends at 103
(Tyr). The opening of this gate takes place as the distance between the two segments
increases. The open gate exposes the haem to the solvent. Figure 13.32(a) shows the
location of this gate along the 1ABS backbone.

Gate 2 is located between the helical structures E and F, as shown in Fig. 13.32(b).
This gate extends over the entire length of both helices E and F. Thus, in order to
compare it with Gate 1, which is composed of segments with only eight residues, we
select two opposing segments along helices E and F, each with eight amino acids. The
first segment, located in the helical structure E, starts with site 61 (Leu) and ends
with site 68 (Val). The second segment, located in the helical structure F opposite
to the first segment, starts with site 89 (Leu) and ends with site 96 (Lys). We have
intentionally selected these two segments to be far from the loop that connects helices
E and F. This is because in our simulations, we have observed that the amplitudes of
the thermal fluctuations in the segment distances tend to increase the further away
the segment is located from the connecting loop: the opening and closing of the gate
resemble the opening and closing of scissors, with blades formed by helices E and F
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Fig. 13.32 [Colour online] Stereographic cross-eyed view of the ligand Gates 1, 2, and 3 as
defined in the text. (a) Gate 1, between the segment starting at PDB site 37 (Pro) and ending
at 44 (Asp) and the segment starting at 96 (Lys) and ending at 103 (Tyr). (b) Gate 2, between
the segment starting at 61 (Leu) and ending at 68 (Val) and the segment starting at 89 (Leu)
and ending at 96 (Lys). (c) Gate 3, between the segment starting at 25 (Gly) and ending at 32
(Leu) and the segment starting at 106 (Phe) and ending at 113 (His). We also show the location
of the haem [orange], the proximal histidine (93), the valine (68), the distal histidine (64) [all
green] and the CO (black ellipsoid) of 1ABS.

that are connected by the loop between these two helices. Note that the first segment
along helix E includes both the distal histidine at site 64 and the valine at the end
site 68. This valine is also inside the haem pocket, and it is presumed to have an
important role in discrimination between CO and O2. Similarly, the opposite segment
in the helical structure F includes the proximal histidine at site 93.

Finally, Gate 3, which is shown in 13.32(c), is located between the helical structures
B and G. Again, in order to compare this relatively long gate with Gate 1, we select two
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opposing segments, each with eight amino acids. The segment in the helical structure
B starts at site 25 (Gly) and ends at site 32 (Leu). The segment in helix G starts at
site 106 (Phe) and ends at site 113 (His).

During the heating and cooling cycle of the myoglobin, we follow the size of the
three gates. We do this by computing the distance di (i = 1, 2, 3) between the respect-
ive segments as a functions of temperature. We define the distance di between the two
segments for each of the three gates as follows:

di =

√√√√ 8∑
n=1

(xn − yn)2 . (13.147)

Here xn are the eight coordinates in the first segment, and yn are the corresponding
coordinates in the second segment, along Gate i = 1, 2, 3. Note that the two segments
in each of the three gates are spatially oriented in an antiparallel manner with respect
to PDB indexing. Consequently, in computing (13.147), we invert the indexing in one
of the two segments with respect to the PDB indexing.

We start by investigating the temperature dependence of the three gates, using the
experimental data available from the PDB. For this, we compute the following three
gate ratios from PDB data:

Gate 1
Gate 2

=
d1

d2
,

Gate 3
Gate 2

=
d3

d2
,

Gate 3
Gate 1

=
d3

d1
. (13.148)

We use all the presently available myoglobin structures in PDB that have been meas-
ured with resolution 2.0 Å or better. The results are shown in Fig. 13.33. In each plot,
we observe substantial fluctuations in the gate ratios in the case of PDB data that
have been taken at around 100 K. But this reflects only the fact that the majority of
PDB data have been collected at this temperature value. Overall, we conclude that
the gate ratios show no temperature dependence for T < 300 K.

We proceed to the computation of the temperature dependence of the gate ratios
using our 1ABS multisoliton with the energy function (13.103). The results are shown
in Fig. 13.34. We have found that Gate 3 is the first to open as the temperature
increases, and the last to close as the temperature decreases. Gate 2 is the last to
open , and the first to close. In the low-temperature limit, Gate 3 is about half the
size of Gate 2. But its size exceeds that of Gate 2 in terms of the segment separation
distance (13.147) at a temperature

kT c23 ≈ 10−14 ∼ 340K. (13.149)

The transition is very rapid, in line with the general results of [87]: when the tem-
perature reaches the θ-transition value ∼348 K, Gate 3 is about twice as large as
Gate 2.

Gate 1 also opens much faster than Gate 2, but more slowly than Gate 3. It also
closes more slowly than Gate 2, but faster than Gate 3. In the low-temperature limit,
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Fig. 13.33 The three gate ratios (13.148). The dashed lines are simply guides to the eye.

Gate 1 is about half as wide as Gate 2. But it becomes wider than Gate 2 when the
temperature reaches a value

kT c12 ≈ 10−14. (13.150)

However, Gate 1 does not become quite as wide as Gate 3. This is shown in
Fig. 13.34(a).
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the heating and cooling cycles.
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We are now in a position to determine the second parameter in (13.126) to arrive at
(13.135); we recall that one of the two parameters is already determined, in (13.142).
For this, we proceed as follows. When we compare the plots in Fig. 13.33, we con-
clude that, experimentally, the gate ratios do not display any observable temperature
dependence when T < 300 K. Consequently, the lowest possible value of the tempera-
ture factor kT at which Fig. 13.34 can display any change in the gate ratios should
correspond to a temperature above 300 K. When we read off the lowest possible kT
value where we have an observable effect in Fig. 13.34, we conclude that, necessarily,

kT ≈ 10−15 > kB × 300K. (13.151)

This gives a lower bound. When we adopt this lower-bound value as our estimate for
the gate opening temperature, we obtain the second parameter value in (13.135).

In reality, the actual gate opening temperature can be higher, but at the moment
experimental basis for choosing a higher value is lacking: the single presently existing
NMR data on myoglobin in the PDB is 1MYF. It has been measured at the slightly
higher temperature of 308 K. But the quality of data does not enable us to improve
our estimate.

We note that a higher gate opening temperature has no qualitative effect on our
conclusions, and quantitatively the differences are minor. The only effect would be a
sharpening of the θ-transition onset.

We conclude with a summary of the consequences that the results in Fig. 13.34
might have for ligand migration. We have found that to the extent that backbone ther-
mal fluctuations play a role in ligand migration, Gate 3 between the helical structures
B and G can be very important. This gate opens very much like a baseball glove as
the temperature is increased. Gate 1 might also play a role, but probably a lesser one
than Gate 3. On the other hand, the V-shaped Gate 2 between helices E and F seems
to be quite sturdy,; it does not seem to open as much as the other two gates. The pres-
ence of the distal and proximal histidines in Gate 2 and their attractive interactions
with haem might have an additional stabilizing effect that is not accounted for by our
model. Consequently, we do not see how the thermal backbone fluctuations that take
place in Gate 2, could play a major role in ligand migration—at least to the extent
that backbone fluctuations are relevant.

A recent terahertz-timescale spectroscopy experiment has detected collective ther-
mal fluctuations in the protein, that might be related to our theoretical proposals for
ligand gate dynamics [88]. However, more detailed experiments need to be performed.

13.6 Intrinsically disordered proteins

The crystallographic protein structures in PDB are ordered proteins. An ordered
protein has an essentially unique native fold that can be determined by X-ray crystal-
lography. But most proteins are not ordered; most do not seem to have an essentially
unique native fold. Instead, the low-energy landscape of most proteins seems to com-
prise several states that are energetically degenerate but conformationally disparate,
with local energy minima that are separated from each other by very low free-energy
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barriers. We call them intrinsically disordered proteins. Normally, these proteins can-
not be crystallized, and structural data are in short supply. Our aim is to describe
the properties of such proteins by extending the methods that we have developed. For
this, we start by describing some formalism.

But please keep in mind that there is a grey zone between ordered and intrinsically
disordered proteins: a skillful crystallographer might be able to produce a crystal out
of a protein that others consider hopeless.

13.6.1 Order versus disorder

When an ordered protein is cooled to low temperatures, it should assume an essentially
unique native fold that corresponds to a minimum of the low-temperature thermo-
dynamic (Helmholtz) free energy. More specifically, in the case of a protein with an
ordered native fold, cooling should produce a highly localized statistical distribution
of structurally closely related conformational substates. When taken together, this
ensemble constitutes the folded native state at low temperatures. But if a protein is
intrinsically disordered, then instead we expect the low-temperature limit to produce a
scattered statistical distribution of structurally disparate but energetically comparable
ensembles of conformational substates. Moreover, these different substates should be
separated from each other only by relatively low energy barriers. The unstructured,
disordered character of the protein is a consequence of a motion around this scat-
tered landscape: the protein swings and sways back and forth, quite freely, over the
low energy barriers that separate the various energetically degenerate but structurally
disparate conformations.

We may think that the state space of a ordered protein with an essentially unique
native fold, consists of a set of snapshot states |s〉 that form a tightly localized and
essentially Gaussian distribution around an average state |s〉ave. When taken together,
the set of these snapshots determine the low-temperature folded native state as an en-
semble of conformational substates. In fact, we expect that for an ordered protein, the
extend of conformational variations around the average state |s〉ave can be estimated
from the crystallographic Debye–Waller B-factor.

However, in the case of an intrinsically disordered protein the low-temperature
set of snapshot states |s〉 exhibits a disperse statistical distribution. We have no sin-
gle tightly localized peak, with a clearly identifiable average value, in the statistical
distribution of snapshots. Instead, the statistical distribution of the snapshot states
is scattered. The snapshots become apportioned between several structurally disperse
but energetically degenerate conformational substates.

Of particular interest are those energetically degenerate substates that are separ-
ated from each other by relatively low energy barriers. The unstructured and unsettled
character of an intrinsically disordered protein is a consequence of thermally induced
fluctuations that move the configuration around the structurally diverse and energet-
ically degenerate landscape: The protein swings and sways back and forth between
the disparate snapshot states |s〉. Because of the very low energy barriers, this dy-
namics persists even at very low temperatures, where quantum-mechanical tunnelling
transitions eventually take over the thermally induced ones. Thus, the unstructured
character can persists even at very low temperatures.
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We interpret the ensemble of snapshot states in terms of a Hartree state |Φ〉, which
is a linear combination of the form

|Φ〉 �
∑∫
i

pi |si〉 . (13.152)

Here, the index set i can have both discrete and continuum portions, including various
small- and large-amplitude collective coordinates. We envision that the state space
spanned by |si〉 can be endowed with a norm (metric) that enables us to select and
orthonormalize the set of eigenconformations (snapshot structures) |si〉. The detailed
construction of a norm in the space of string-like structures will not be addressed here.

When the |si〉 are normalized, the coefficient pi determines the probability weight
for the ensuing eigenconformation |si〉 to contribute in the Hartree state. In particular,
when it describes an intrinsically disordered protein, the Hartree state (13.152) is a
mixed state and not a pure state; the conformational entropy is non-vanishing:

S = −
∑∫
i

pi log pi > 0. (13.153)

Note that if we have a single value pk ≈ 1, and the other pi with i �= k are vanishingly
small, pi ≈ 0, then the Hartree state |Φ〉 reduces to a pure state and describes an
ordered native fold.

The eigenconformations |si〉 are time-independent, akin to states in the Heisenberg
picture of quantum mechanics. But the pi can be time-dependent quantities; they then
describe the time evolution of |Φ〉. For sufficiently long timescales, longer than the
characteristic thermal tunnelling time between different eigenconformations |si〉, the
time dependence of the pi is governed by a Liouville equation

dρ̂

dt
=
∂ρ̂

∂t
+ {ρ̂, H} ≡ Lρ̂, (13.154)

where

ρ̂ =
∑
i

pi |si〉 〈si| (13.155)

is the density matrix. The second term in (13.154) is the Poisson bracket with the (to-
tal) semiclassical Hamiltonian H; in a quantum-mechanical version, the density matrix
and the Hamiltonian are replaced by the corresponding Heisenberg operators. We note
that for a non-equilibrium system, the total operator L becomes the (semiclassical)
Lindblad superoperator.

For a system at or very near thermodynamic equilibrium, the |si〉 concur with the
extrema configurations of the low-temperature limit of the Helmholtz free energy. The
probabilities pi are evaluated from the corresponding values of the free energy, and
(13.152) takes the form

|Φ〉 � 1
Z

∑∫
{s}

e−βE(s) |s〉 , (13.156)
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where

Z =
∑∫
{s}

e−βE(s) (13.157)

and β = 1/kT is the inverse temperature. For completeness, we note that for an
extremum conformation |si〉 that is not a local minimum of the free energy, a
Maslov-index contribution needs to be included.

13.6.2 hIAPP and type 2 diabetes

We now proceed to consider an example of an intrinsically disordered protein with
very extensive and important biological, medical, and pharmaceutical ramifications.

The human islet amyloid polypeptide (hIAPP), also known as amylin, is a widely
studied 37-amino-acid polypeptide hormone; for extensive reviews, we refer to [89,
90]. It is processed in pancreatic β-cells from an 89-residue precursor protein, by a
protease cleavage in combination of post-translational modifications. hIAPP is secreted
in response to meals, and the peptide cooperates with insulin to regulate blood glucose
levels. But hIAPP can also form pancreatic amyloid deposits, and their formation and
buildup correlates strongly with the depletion of islet β-cells. This hIAPP amyloidosis
is present in over 90% of patients with type 2 diabetes, and the deposits are considered
as the hallmark of the disease in progression.

It still remains to be fully clarified whether the hIAPP amyloid aggregation is the
direct cause of apoptosis in the islet β-cells. Instead, the amyloid fibres might only
be a consequence of the disease, which is ultimately caused by some other yet-to-
be-identified agent. Among the arguments that support the existence of a first-hand
causal relationship between hIAPP fibrillation and the onset of type 2 diabetes is
the observation that wild-type mice do not develop the disease, while transgenic mice
that express hIAPP can fall ill with the disease. It has also been observed that direct
contact between the hIAPP amyloid fibrils and the surfaces of pancreatic islet β-cells
has a toxic effect on the latter.

There is a real possibility that understanding the structural landscape of hIAPP,
in particular how the amyloidosis transition takes place, could be a major step towards
the identification of therapeutic targets and the development of strategies to combat
a potentially deadly disease that presently plagues around 5% of the world’s adult
population. Indeed, type 2 diabetes is arguably among the most devastating diseases
to curse mankind. Its annual economic cost has been globally estimated to be in excess
of 425 billion Euros, and the number of sufferers is estimated to almost double during
the next 20 years.

The structure of aggregated hIAPP fibrils has been studied very extensively
[89, 90]. The fibrils consist of an ordered parallel arrangement of monomers, with a
zipper-like packing. Apparently, the fibril formation proceeds by nucleation, with one
monomeric hIAPP molecule first assuming a hairpin-like structure. This is followed
by a piling-up of several monomers, which eventually leads to the buildup of amyloid
fibrils as the hallmark of the disease in progression. But the structure of full-length
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monomeric hIAPP, its potentially disease-causing dynamical conformational state in
pancreatic cells, remains unknown, as does the reason for the occasional formation of
the disease-causing hairpin-like structure. Moreover, despite the highly ordered nature
of amyloid fibril aggregates, only very recently have experimental advances made it
possible to obtain high-resolution models. However, we still largely lack the detailed
atomic-level knowledge needed for drug development.

The monomeric form of hIAPP is presumed to be an example of an intrinsically dis-
ordered protein. When biologically active and healthy, it is in an unsettled and highly
dynamic state. As such, it lacks an ordered three-dimensional folded state that could
be studied by conventional X-ray crystallographic approaches. Several experimental
methods based, for example, on solution and solid-state NMR and other techniques
are currently under development to try and characterize the conformation of mono-
meric hIAPP. But the existing techniques do not yet permit a direct examination of
the atomic level structure. Detergents such as sodium dodecyl sulfate (SDS) micelles
are commonly introduced as stabilizing agents.

The detailed atomic-level information could in principle be extracted by theor-
etical means using MD simulations. However, with explicit water, presently available
computer power can at best cover a dynamical in vitro/in vivo trajectory up to around
a microsecond per a day in silico. But amyloid aggregation takes hours, even days.
Thus, the present all-atom computational investigations are largely dependent on our
ability to determine an initial conformation for the simulations. Otherwise, one might
end up simulating only the initial condition.

Because of its intrinsically disordered character, the structural data of hIAPP
in isolation remain sparse in the PDB. The only presently available PDB data on
hIAPP consist of two NMR structures and one crystallographic structure. Both NMR
structures describe hIAPP in a complex with SDS micelles; the PDB access codes are
2L86 and 2KB8. The sole available crystallographic structure describes hIAPP that
has been fused with a maltose-binding protein; the PDB access code is 3G7V. We note
that these three structures are all very different from each other.

The NMR structure 2L86 has been measured at pH 7.4, i.e. around the pH value
of the extracellular domain where the hIAPP amyloid deposits appear. On the other
hand, the NMR structure 2KB8 has been measured at pH 4.6, which is closer to the
pH of around 5.5 inside the β-cell granules of the pancreas. We should point out that
even though hIAPP amyloidosis is apparently an extracellular process, some evidence
suggests that the aggregation might have an intracellular origin. Thus, a thorough
investigation of the role of hIAPP in the onset of type 2 diabetes, should account
for both the extracellular and the intracellular structural properties of the peptide. In
addition, a detailed analysis how hIAPP interacts with cell membranes is needed; we
note that, to some extent, micelles might mimic membrane effects.

We conclude by pointing out that hIAPP also affects several other organs besides
the pancreas. For example, it is known to have binding sites in the brain, where it
apparently has a regulatory effect on gastric emptying. Delayed gastric emptying is
commonly diagnosed in patients with diabetes. But gastroparesis is also a component
in a number of other disorders. Certainly, the ability of hIAPP to cross the blood–brain
barrier and affect the central nervous system is related to its structure. Amyloid fibres
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can hardly cross the barrier. Thus, besides apparently contributing directly to type 2
diabetes, aggregation should also have a wider influence on the regulatory activity of
hIAPP.

13.6.3 hIAPP as a three-soliton

We shall investigate in detail the physical properties of a 28-segment monomer of
hIAPP; we propose that the reader gets access to the entry 2L86 in PDB. The segment
we are interested in consists of residues 9–36 where several studies have either observed
or predicted that the amyloid fibril formation starts [89, 90]. The physical properties of
the short N-terminal segment that comprises residues 1–8 are not addressed here. The
structure of this segment is more involved, owing to the disulfide bond that connects
the cysteines located at residues 2 and 7. Moreover, it remains to be understood what
is the role, if any, of residues 1–8 in hIAPP aggregation. These residues appear to have
a tendency towards forming long and stable non-β-sheet fibres in solution, under the
same conditions in which hIAPP aggregates into amyloid fibres.

We use the NMR structure 2L86 from the PDB as a decoy to train the energy
function. We construct a multisoliton configuration as an extremum of the energy
function (13.103) that accurately describes 2L86. Since 2L86 is a composite of hIAPP
with SDS micelles, we propose the following biological setup. We consider the struc-
tural evolution of an isolated hIAPP in the extracellular domain, in a scenario where
the polypeptide is initially in a direct but residual interaction with the cell membrane.
The effect of an initial cell membrane interaction is modelled by the effect of SDS mi-
celles in 2L86. Following the construction of the multisoliton configuration, we study
the presumed disordered structural landscape of an isolated hIAPP; we try and model
hIAPP as it enters the extracellular domain. For this, we subject the multisoliton to
a series of heating and cooling simulations as in the case of myoglobin, using Glauber
dynamics. During heating, we increase the temperature until we detect a structural
change in the multisoliton, so that the configuration behaves like a random walker.
We fully thermalize the configuration at the random-walk phase. We then reduce the
ambient temperature, to cool the configuration to very low temperature values until it
freezes into a conformation where no thermal motion prevails. Since an isolated hIAPP
is intrinsically disordered, instead of a single native fold as in the case of myoglobin,
we expect the low-temperature limit to produce a scattered statistical distribution of
structurally disparate but energetically comparable ensembles of conformational sub-
states (13.152). Moreover, the individual different substates should be separated from
each other by relatively low energy barriers. The unstructured, disordered character of
hIAPP is then a consequence of a motion around this landscape: it swings and sways
back and forth, quite freely, over the low energy barriers that separate the various
energetically degenerate but structurally disparate conformations. We shall find that
in the case of hIAPP, the heating and cooling procedure, which in the case of myo-
globin yields a single low-energy state, now produces exactly this kind of structurally
scattered ensemble of conformations.

Table 13.4 shows the parameter values that we find by training the energy function
(13.103) to describe 2L86. These parameters values are taken from [91].
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Table 13.4 Parameter values for the three-soliton configuration that describes 2L86; soliton 1
covers the PDB segment THR 9–ASN 21, soliton 2 covers the segment ASN 22–ALA 25, and
soliton 3 covers the segment ILE 26–THR 36. The value of a is fixed at a = −10−7.

SOLITON q1 q2 m1 m2 d/a c/a b/a

1 9.454 4.453 1.521 1.606 −8.164× 10−2 −1.402× 10−3 −2.568

2 2.927 2.441 1.667 1.534 −4.894× 10−1 −1.067× 10−3 −19.48

3 1.119 8.086 1.522 1.514 −3.578× 10−2 −5.907× 10−3 −1.908
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Fig. 13.35 [Colour online] (a) Spectrum of the bond and torsion angles of 2L86 (first entry)
with the convention that the bond angle takes values κ ∈ [0, π). (b) Spectrum of the bond and
torsion angles that identify the soliton structures.

In Fig. 13.35(a), we show the spectrum of bond and torsion angles for the first NMR
structure of 2L86, with the convention that the bond angle takes values of κ ∈ [0, π). In
Fig. 13.35(b), we have introduced the Z2 symmetry (13.92) to disclose three individual
solitons along the backbone. The first soliton from the N-terminus is centred at site
17. The third soliton is centred at site 27. Both of these solitons correspond to clearly



Intrinsically disordered proteins 653

visible loops in the three-dimensional structure in PDB entry 2L86. The second soliton,
centred at site 23, is much less obvious in the three-dimensional NMR structure. This
soliton appears more like a bend in an α-helical structure, extending from the first
soliton to the third. The Z2-transformed (κ, τ) profile shown in Fig. 13.35(b) is the
background that we have used in training the energy function (13.103).

In Fig. 13.36, we compare the bond and torsion angle spectrum of our three-
soliton solution with the first NMR structure of 2L86; the solution is obtained using
the program ProPro from http://www.folding-protein.org.

The quality of our three-soliton solution is clearly very good, at the level of the
bond and torsion angles.

Figure 13.37 shows the three-soliton solution, interlaced with the first NMR
structure of 2L86.

The RMSD between the experimentally determined structure and the three-soliton
configuration is 1.17 Å. This is somewhat large when compared with the multisoli-
ton structures that we have found previously. But the resolution of the present
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Fig. 13.36 [Colour online] Comparison of the three-soliton bond angle (circles [blue]) with the
experimental 2L86 bond angle spectrum (triangles [red]). (b) Comparison of the three-soliton
torsion angle (circles [blue]) with the experimental 2L86 torsion angle spectrum (triangles [red]).
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Fig. 13.37 [Cour online] The three-soliton solution (light [blue]) interlaced with the 2L86
experimental structure (dark [red]).
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Fig. 13.38 [Colour online] The full black line denotes the Cα atom distance between the three-
soliton configuration and the model 1 NMR configuration 2L86; the grey region is an estimated
0.15 Å zero-point fluctuation distance from the three-soliton configuration. The dashed [red]
line denotes the B-factor Debye–Waller fluctuation distance from model 1 of 2L86. The [blue]
points with error bars denote the average Cα distance between the model 1 NMR structure
and the average of the remaining 19 models on 2L86; the error-bars indicate the maximum and
minimum Cα distances.

experimental NMR structure is not that good, and this is reflected by the some-
what lower quality of the three-soliton solution in comparison with the case of
high-resolution crystallographic structures.

Figure 13.38 compares the residue-wise Cα distances between the 20 different NMR
structures in PDB entry 2L86 and our three-soliton solution. For those residues that
precede the bend-like second soliton centred at site 23, the distance between the ex-
perimental structures and the numerically constructed solution is relatively small. We
observe a quantitative change in the precision of the three-soliton solution, which
takes place after site 23. The distance between the experimental structures and the
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three-soliton solution clearly increases after this residue. It could be that this change
is due to the SDS micelles used in the experimental setup to stabilise hIAPP/2L86:
SDS is widely used as a detergent to enable NMR structure determination in the case
of proteins with high hydrophobicity. The mechanism of SDS–protein interaction is
apparently not yet fully understood. But it is known that the hydrophobic tails of
SDS molecules interact in particular with the hydrophobic core of a protein. These
interactions are known to disrupt the native structure with the effect that the protein
displays an increase in its α-helical posture; these additional α-helical structures tend
to be surrounded by SDS micelles.

The residue at site 23 of hIAPP is the highly hydrophobic phenylalanine. It is
followed by the very flexible glycine at site 24. Thus, the apparently abnormal bend
located at site 23 and affecting the quality of our three-soliton configuration could be
due to an interaction between the phenylalanine and the surrounding SDS micelles.
A high sensitivity of the hIAPP conformation to the phenylalanine at site 23 is well
documented.

An analysis of 2L86 structure using Molprobity (http://molprobity.
biochem.duke.edu/) suggests a propensity towards poor rotamers between sites
23 and 36, i.e. the region where the quality of our three-soliton solution decreases.

A comparison with the statistically determined radius-of-gyration relation (13.7)
reveals that for 2L86 the value of Rg ≈ 9.2 (over residues N = 9, . . . , 36). This is
somewhat high. According to (13.7), we expect a value close to Rg ≈ 7.9 when we set
N = 28. The structure of 2L86 should be more compact.

We conclude that, most likely, the SDS–hIAPP interaction has deformed a loop
that, in the absence of micelles, would be located in the vicinity of residue 23. Probably,
interaction with the micelles has converted this loop into a structure resembling a
bend in an α-helix. This interaction between hIAPP and SDS interferes with our
construction of the three-soliton configuration, adversely affecting its precision.

13.6.4 Heating and cooling hIAPP

Following our myoglobin analysis, we proceed to investigate the properties of the
three-soliton model of 2L86 under repeated heating and cooling, using the Glauber
algorithm.

Figure 13.39 illustrates the evolution of the three-soliton configuration during re-
peated heating and cooling: (a) shows the evolution of the radius of gyration, and (b)
the evolution of the RMSD from the PDB structure 2L86. Both the average value
and the standard deviation from the average are shown. During the cooling period,
we observe only one transition, in both the radius of gyration and the RMSD. Thus,
based on our previous experience, we are confident that at high temperatures we are
in the random-walk regime. The profile of each curve in Fig. 13.39 also shows that the
structures are fully thermalized, in both in the high- and low-temperature regimes.

We observe that the average final value of the radius of gyration Rg ≈ 7.8 is
an excellent match with the prediction obtained from (13.7). In particular, the fi-
nal configurations are quite different from the initial one: The RMSD between the
initial configuration and the average final configuration is around 4.8 Å.
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Fig. 13.39 [Colour online] Evolution of the radius of gyration of the three-soliton configuration
during the heating and cooling cycle. (b) Evolution of the RMSD from the initial configuration.
The grey [red] line is the average value over all configurations, and the light-grey zone marks the
extent of one standard deviation from the average value. The Monte Carlo steps are displayed
in multiples of 106.

Figure 13.40 shows results for a representative simulation with 1500 complete heat-
ing and cooling cycles; an increase in the number of cycles does not have a qualitative
effect on the result. The figure shows the distribution of the final snapshot conform-
ations, grouped according to their radius of gyration versus end-to-end distance. The
final conformations form clusters, and we identify the six major clusters that we ob-
serve in our simulations. By construction, the clusters correspond to local extrema of
the energy function tht we have constructed to model 2L86: the average conformation
of each cluster can be identified with a particular snapshot state |s〉 in the expansion
(13.152), (13.156). Five of the clusters, denoted 2–6 in Fig. 13.40, have an apparent
spread. This implies that the energy has a flat conformational direction around its
extremum. Clusters 3 and 5 are also somewhat more scattered than clusters 2, 4, and
6. Finally, cluster 1 is a localized one: this cluster corresponds to a sharply localized
snapshot state |s〉. Note that the initial conformation, marked with a [red online] tri-
angle in Fig. 13.40, does not appear among the final configurations. It is apparently
an unstable extremum of the energy, stabilized by the micelles.
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Fig. 13.40 [Colour online] Distribution of all final configurations in a run with 1500 full heating
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Fig. 13.41 Superposition of all six major clusters from Fig. 13.40, interlaced with each other
and with PDB entry 2L86.

In Fig. 13.41, we display the average conformations in each of the six clusters,
interlaced with each other and the initial 2L86 configuration. In this figure, the first two
Cα atoms from the N-terminus are made to coincide. We have maximized the alignment
of the subsequent Cα atoms, to the extent that this is possible. The figure reveals the
presence of substantial conformational differences among the clusters. The totality
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Fig. 13.42 [Colour online] Superposition of ten representative conformations (dark grey [red])
in each of the six clusters, as marked, together with PDB entry 2L86 (light grey [blue]).

of the conformations shown in Fig. 13.41 can be given an interpretation in terms of
the dynamical hIAPP. It is a long-time-period average picture of the Hartree state
(13.152), (13.156) that is a linear combination of the various snapshot conformations
|si〉 (i = 1, . . . , 6).

In Fig. 13.42, we compare the individual clusters with the initial 2L86 configuration
(light grey [blue online]). In each of these comparisons, we show ten representative
entries in each of the clusters (dark grey [red online]), to visualize the extent of
conformational fluctuations within each cluster. We observe that the conformational
spread within each of the six clusters is not very large.

In conclusion, we have found that the three-soliton configuration that models
the Cα backbone of the human islet amyloid polypeptide is quite unsettled: its low-
temperature limit comes endowed with six different conformational clusters. This is
a marked contrast with the properties of a multisoliton configuration that models a
protein that is known to possess a unique folded native state, such as myoglobin. The
low-temperature clustering of hIAPP is in full accord with the intrinsically disordered
character of the protein: the different clusters can be viewed as instantaneous snapshot
conformations, between which the dynamic hIAPP swings and sways in an apparently
unsettled manner that is characteristic of an intrinsically disordered protein.

Only cluster 1 appears different. This cluster has a much more localized con-
formational distribution than the other five clusters, and the posture comprises two
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antiparallel helices. This suggests to us that cluster 1 is a good candidate to trigger
the formation of hIAPP fibrils and amyloidosis that correlates with type 2 diabetes.

My advice to all my students is—be careful with your lifestyle to keep your hIAPP folds under
good control.

13.7 Beyond Cα

Thus far, we have analysed protein structure and dynamics in terms of the Cα atoms
only. We have argued that the virtual Cα backbone bond and torsion angles form a
complete set of local order parameters to describe the protein backbone conformation.

The Cα atoms play a central role in X-ray crystallography, where the experimental
determination of protein structure often starts with a skeletonization of the electron
density map. From Figs. 13.1 and 13.7 we observe that the Cα atoms are located cen-
trally, forming the vertices that connect the peptide planes and coinciding with the
branch points between the backbone and the side chain. Thus, the Cα atoms are sub-
ject to stringent stereochemical constraints. Accordingly, the first step in experimental
model building is the initial identification of the skeletal Cα trace.

The central role of the Cα atoms is widely exploited in structural classifica-
tion schemes like CATH (http://www.cathdb.info/) and SCOP (http://scop.mrc-
lmb.cam.ac.uk/scop/), in various homology modelling techniques [27–29], in de novo
approaches [3], and in the development of coarse-grained energy functions for fold-
ing prediction [44, 45]. The so-called Cα-trace problem has been formalized and
has been the subject of extensive investigations [92–94]. The aim is to construct
an accurate main chain and/or all-atom model of the folded protein from know-
ledge of the positions of the central Cα atoms only. Both knowledge-based approaches
such as MaxSprout (http://www.ebi.ac.uk/Tools/structure/maxsprout/) and de novo
methods like PULCHRA (http://cssb.biology.gatech.edu/PULCHRA) have been de-
veloped for this purpose. In the case of the backbone atoms, various geometric
algorithms can be utilized. For the side-chain atoms, most approaches rely either
on a statistical approach or on a conformer rotamer library in combination with steric
constraints, complemented by an analysis based on diverse scoring functions. For the
final fine-tuning of the model, all-atom molecular dynamics simulations can be utilized.

The Ramachandran map shown in Fig. 13.10 is used widely both in various
analyses of the protein structures and as a tool in protein visualization. It de-
scribes the statistical distribution of the two dihedral angles φ and ψ that are
adjacent to the Cα carbons along the protein backbone. In the case of side-chain
atoms, visual analysis methods similar to the Ramachandran map have been intro-
duced. For example, there is the Janin map that can be used to compare observed
side-chain dihedrals in a given protein against their statistical distribution in a
manner that is analogous to the Ramachandran map. Crystallographic refinement
and validation programs like PHENIX (http://www.phenix-online.org/), REFMAC
(http://www2.mrc-lmb.cam.ac.uk/groups/murshudov/), and many others, utilize the
statistical data obtained from libraries such as the Engh and Huber library [12] that
are built using small molecular structures that have been determined with a very high
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resolution. At the level of entire proteins, side-chain restraints are commonly derived
from analysis of high-resolution PDB crystallographic structures [95]. Backbone-
independent rotamer libraries that make no reference to backbone conformation and
both secondary-structure-dependent and backbone-dependent rotamer libraries have
been developed. According to [95] the information content in the secondary-structure-
dependent libraries and the backbone-independent libraries essentially coincide, and
both are often used during crystallographic protein structure model building and re-
finement. But for the prediction of side-chain conformations, for example in the case
of homology modelling and protein design, it is often an advantage to use the more
revealing backbone-dependent rotamer libraries.

13.7.1 ‘What-you-see-is-what-you-have’

We shall present a short introductory outline of how the Cα Frenet frames can be
utilized to develop a new generation of visualization techniques for protein structure
analysis, refinement, and validation. Our outline is based on [96–98].

Despite the availability of various three-dimensional visualization tools such as
the Java-based viewer on the PDB website, thus far the visualization of proteins
has not yet taken full advantage of modern visualization techniques. The commonly
available three-dimensional viewers present the protein in the ‘laboratory’ frame, and
as such they provide mainly an external geometry-based characterization of protein
structure. On the other hand, the method that we describe is based on internal,
comoving framing of the protein backbone—watching a roller-coaster is not the same
as taking the ride. As such, our approach provides complementary visual information.
Starting from the positions of the Cα atoms, we aim for a three-dimensional what-
you-see-is-what-you-have type of visual map of the all-atom structure. Indeed, the
visualization of a three-dimensional discrete framed curve is an important and widely
studied topic in computer graphics, from the association of ribbons and tubes to the
determination of camera gaze directions along trajectories.

In lieu of the backbone dihedral angles that appear as coordinates in the Ra-
machandran map and correspond to a toroidal topology, we use the geometry of virtual
2-spheres that surround each heavy atom. For this, we employ the geometric inter-
pretation of the virtual Cα backbone bond and torsion angles in terms of latitude and
longitude on the surface of a sphere S2. We shall outline how the approach works in
the case of the backbone N and C atoms, and the side-chain Cβ atoms. The approach
can easily be extended to visually describe all the higher-level side-chain atoms on the
surface of the sphere, level-by-level along the backbone and side chains [96–98]. The
outcome is a three-dimensional visual map that describes the backbone and side-chain
atoms exactly in the manner they are seen by an imaginary, geometrically determined
and Cα-based miniature observer who roller-coasts along the backbone: at each Cα
atom, the observer orients herself consistently according to the purely geometrically
determined Cα-based discrete Frenet frames. Thus, the visualization of all the other
atoms depends only on the Cα geometry—there is no reference to the other atoms
in the initialization of the construction. The other atoms—including subsequent Cα
atoms along the backbone chain—are all mapped on the surface of a sphere that
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surrounds the observer, as if these atoms were stars in the sky; the construction pro-
ceeds along the ensuing side chain, until the positions of all the heavy atoms have been
determined. This provides purely geometric and equitable direct visual information on
the statistically expected all-atom structure in a given protein, based entirely on the
Cα trace.

We start with the bond and torsion angles (13.83) and (13.84), and we choose each
bond angle to take values κ ∈ [0, π]. We identify the bond angle with the latitude angle
of a two-sphere centred at the Cα carbon. We orient the sphere so that the north pole
where κ = 0 is in the direction of t. The torsion angle τ ∈ [−π, π) is the longitudinal
angle of the sphere. It is defined so that τ = 0 on the great circle that passes both
through the north pole and through the tip of the normal vector n. The longitude
angle increases in the counterclockwise direction around the vector t. We also find
it useful to introduce the stereographic projection of the sphere onto the plane. The
standard stereographic projection from the south pole of the sphere to the plane with
coordinates (x, y) is given by

x+ iy ≡ reiτ = tan
(

1
2
κ

)
eiτ . (13.158)

This maps the north pole where κ = 0 to the origin (x, y) = (0, 0). The south pole
where κ = π is sent to infinity; see Fig. 13.43.

If need be, the visual effects of the projection can be enhanced by sending

κ→ f(κ), (13.159)

where f(κ) is a properly chosen function of the latitude angle κ.

13.7.1.1 The Cα map

We first explain how to visually describe the Cα trace in terms of the Cα Frenet
frames (13.80)–(13.82). Consider the virtual miniature observer who roller-coasts the
backbone by moving between the Cα atoms. At the location of each Cα, the observer
has an orientation that is determined by the Frenet frames (13.80)–(13.82). The base
of the ith tangent vector ti is at the position ri. The tip of ti is a point on the surface
of the sphere (κ, τ) that surrounds the observer and points towards the north pole.
The vectors ni and bi determine the orientation of the sphere. These vectors define

k = π s

k = 0

R

PN

(x, y)

(K, T)

Fig. 13.43 Stereographic projection of the 2-sphere S
2 on the plane R

2 from the south pole.
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a frame on the normal plane to the backbone trajectory, as shown in Fig. 13.21. The
observer maps the various atoms in the protein chain on the surface of the surrounding
two-sphere, as if the atoms were stars in the sky.

The map of the Cα backbone is constructed as follows. The observer first translates
the centre of the sphere from the location of the ith Cα all the way to the location of
the (i+ 1)th Cα with no rotation of the sphere with respect to the ith Frenet frames.
The observer then identifies the direction of ti+1, i.e. the direction towards the site
ri+2 to which she proceeds from the next Cα carbon, as a point on the surface of the
sphere. This determines the corresponding coordinates (κi, τi). After this, the observer
redefines her orientation so that it matches the Frenet framing at the (i+ 1)th central
carbon, and then proceeds by repeating the construction, in exactly the same manner.
The ensuing map, over the entire backbone, gives an instruction to the observer at each
point ri how to turn at site ri+1 to reach the (i+ 2)th Cα carbon at the point ri+2.

In Fig. 13.44, we show the Cα Frenet-frame backbone map. It describes the stat-
istical distribution that we obtain when we plot all PDB structures that have been
measured with better than 2.0 Å resolution and using the stereographic projection
(13.158). For our observer, who always fixes her gaze position towards the north pole
of the surrounding 2-sphere at each Cα, i.e. towards the small filled [red online] dot
at the centre of the annulus, the intensity of shading [of colour online] in this map
reveals the probability of the direction at position ri where the observer will turn at
the next Cα carbon when she moves from ri+1 to ri+2. In this way, the map is in
a direct visual correspondence with the way in which the Frenet-frame observer per-
ceives the backbone geometry. Note how the probability distribution is concentrated
within an annulus, roughly between the latitude angle values κ ∼ 1 and κ ∼ 3/2. The
exterior of the annulus is a sterically excluded region, while the entire interior is in

–π

π

–π/2

π/2

b

0

αL-helix

α -helix

β-strand

n

K

T

Fig. 13.44 [Colour online] The stereographically projected Frenet-frame map of backbone Cα

atoms, with major secondary structures identified. Also shown is the direction of the Frenet-
frame normal vector n; the vector t corresponds to the small solid [red] circle at the centre and
it points away from the viewer. The map is constructed using all PDB structures that have
been measured with better than 2.0 Å resolution.
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principle sterically allowed but very rarely occupied in the case of folded proteins. In
the figure, we identify the four major secondary structure regions, according to the
PDB classification; α-helices, β-strands, left-handed α-helices, and loops.

13.7.1.2 The backbone C and N and the side-chain Cβ maps

Consider our imaginary miniature observer, located at the position of a Cα atom and
oriented according to the discrete Frenet frames. She proceeds to observe and record
the backbone heavy atoms N and C and the side-chain Cβ atoms that are covalently
bonded to Cα. These atoms form the covalently bonded heavy-atom corners of the
Cα centred sp3-hybridized tetrahedron. In Fig. 13.45, we show the ensuing density
distributions on the surface of the Cα-centred sphere, the way in which they are seen
by the miniature observer. These figures are constructed from all the PDB entries that
have been measured using diffraction data with better than 1.0 Å resolution.

As visible in Fig. 13.45 in the Cα-centred Frenet frames, the Cβ, C, and N atoms
each oscillate in a manner that depends on the local secondary structure. Note that
in the case of both Cβ and N, the left-handed α region (L-α) is distinctly detached
from the rest. But in the case of C, the L-α region is connected with the other regions.
On the other hand, also in the case of C, the cis-prolines form a clearly detached and
localized region, which is not similarly visible in the case of C and Cβ .

L-α
L-α

L-α

α

β

b

b

C

Cβ

n

n b

cis-PRO

(a) (b)

(d)(c)

n

N

t

t

t

t

β
α

β

α

Fig. 13.45 [Colour online] Distributions of (a) Cβ atoms, (b) backbone C atoms, and (c)
backbone N atoms in the Cα-centred Frenet frames in PDB structures measured with better
than 1.0 Å resolution. The three major domains, namely α-helices, β-strands, and left-handed
α-helices, are indicated. (d) A combination of the distributions in (a)–(c). Note that cis-prolines
are also clearly identifiable in the C-atom distribution (b).
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We now consider the three bond angles

ϑNC � N–Cα–C,

ϑNβ � N–Cα–Cβ

ϑβC � Cβ–Cα–C.

(13.160)

The angle ϑNC relates to the backbone only, while the definitions of the other two
involve the side-chain Cβ . In experimental protein structure validation, these three
angles are often presumed to have their ideal values. For example, the deviation of
the Cβ atom from its ideal position is among the validation criteria used in Mol-
Probity (http://molprobity.biochem.duke.edu/), which uses it in identifying potential
backbone distortions around Cα.

In Fig. 13.46, we show the distribution of the three tetrahedral bond angles in
our 1.0 Å PDB data set. We find that in the case of the two side-chain-related angles
ϑNβ and ϑβC, the distribution displays a single peak that is compatible with the ideal
values ( the isolated small peak in Fig. 13.46(b) is due to cis-prolines). But in the case
of the backbone-specific angle ϑNC, we find that this is not the case. The PDB data
show a clear correlation between the ϑNC distribution and the backbone secondary
structure. We recall that ϑNC pertains to the relative orientation of the two peptide
planes that are connected by the Cα.
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Fig. 13.46 [Colour online] Distribution of the three angles (13.160) according to secondary

structures. Blue is for α-helices, red is for β-strands, and yellow is for loops; the small (yellow)

peak in N–Cα–Cβ at an angle around 103◦ is due to prolines.
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The two Ramachandran angles (φ, ψ) in Fig. 13.10 are directly adjacent to the
given Cα, and each is specific to a single peptide plane; see Fig. 13.7. But this is not
the case for ϑNC, which connects two peptide planes. This angle contributes to the
bending of the backbone. Consequently, a systematic secondary structure dependence
should be present in this angle. Owing to the very rigid structure of the Cα-centred
sp3-hybridized covalent tetrahedron, one then expects that the secondary structure
dependence should also become visible in the side-chain-specific angles ϑNβ and ϑβC.
The lack of any observable secondary-structure dependence in the experimental data
on these two angles suggests that existing validation methods distribute the refinement
tension entirely to ϑNC.

Research project 13.10 Can you explain in detail why secondary-structure dependence is
absent from PDB data on ϑNβ and ϑβC?

The construction that we have presented can be continued to visualize all the
higher-level side-chain atoms in a protein, beyond Cβ [96–98]. It turns out that these
higher-level atoms also display a highly organized, systematic pattern akin to those
shown in Fig. 13.45. In particular, the underlying geometry of the Cα backbone is
clearly visible in these side-chain atoms; there is a very strong coupling between the
Cα backbone geometry and the side-chain geometry. Accordingly, it becomes possible,
in principle, to determine with high accuracy the all-atom structure of the protein
from knowledge of the Cα atom positions only. This enables us to extend our Cα-
based approach that builds on (13.103) to construct the full all-atom structure of the
entire protein: the Cα positions can be computed from the energy function (13.103),
and the remaining atoms are located by s statistical analysis.

According to Fig. 13.45(a), in the intrinsic, purely geometric Frenet-frame coord-
inate system, the directions of the Cβ atoms are subject to only small fluctuations. At
the level of Cβ , the side chains all point in essentially the same direction. Thus, the
crystallographic protein structures are like a spin chain where the side chains are the
spin variables, and the collapsed phase bears a resemblance to a ferromagnetic phase.

Research project 13.11 See how far you can get using the spin-chain analogy of folded
proteins, with side chains as the spin variables.
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